Department of Biostatistics Seminar/Workshop Series

A multivariate methodology for analyzing genome-wide association studies

Janice Brodsky, PhD Candidate, Statistics

University of California, Los Angeles

Wednesday, December 16, 1:30-2:30pm, MRBIII Conference Room 1220

Intended Audience: Persons interested in applied statistics, statistical theory, epidemiology, health services research, clinical trials methodology, statistical computing, statistical graphics, R users or potential users

In the last few years, high-dimensional genome-wide association (GWA) studies have become a common tool in genetics for investigating which genes are associated with physical traits. However, the results of many GWA studies have fewer genes than expected or even no genes at all. This does not necessarily indicate that there are no genetic associations in the data: genes with weaker associations or which only work in groups will be missed with the standard GWA statistical analysis. We present a multivariate methodology for analyzing GWA data which is designed to handle weaker signals, dependent data, and multicollinearity. We applied this method to a large GWA study, and the results were consistent with previously performed studies. We also discuss extensions of the methodology.
Topic revision: r2 - 26 Apr 2013, JohnBock

This site is powered by FoswikiCopyright © 2013-2022 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Vanderbilt Biostatistics Wiki? Send feedback