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Topics

 Counter factual events and the definition of causality

What is a marginal structural model (MSM)?

 Simple simulation study with a confounding variable

 Simple longitudinal example

More complex longitudinal example where classical 
methods do not work.

 Applying MSMs to real longitudinal studies

 Classical analysis vs MSM

 Classical analysis vs MSM

Counterfactual Events

Let      be the outcome for the      patient,  iY thi

a be some exposure, and

ia be the actual exposure of the     patient.thi

a
iY is the potential outcome that would have been 

observed for the      patient if, possibly contrary to 
fact, she received exposure a.

thi
Then

For example:

iY denotes whether or not the     patient develops bronchiolitisthi

thi
ia

i iY Y is the bronchiolitis outcome that actually happened 
to the     patient given her true treatment.

1
iY is the bronchiolitis outcome that would have 

happened to the     patient if she had been treatedthi

0
iY is the bronchiolitis outcome that would have happened 

to the     patient if she had not been treated.thi

1 
0 

a


 


patient receives immunoprophylactic treatment

patient does not receive this treatment

1
0ia


 


thi

if      patient receives treatment

if      patient does not receive treatment

thi

a
iY is the counterfactual event that would have occurred 

given an exposure that may or may not have happened

Reality

Sally 
gets  
treated

1ia 
Sally gets 
bronchiolitis 

ia
i iY Y

1

1
iY



Counterfactual land

Sally does 
not get 
treated

0a 

Sally does 
not get 
bronchiolitis

0 0iY 

Sally gets 
bronchiolitis

0 1iY 

0 0Pr 1 1 Pr 0i iY Y         

Causal Relationships

An treatment A has a causal effect on outcome Y if

Pr Pra a
i iY Y       

for exposures a and a

For example, treatment has a causal effect on disease if

Pr[Sally gets disease given she is treated]
Pr[Sally gets disease given she is not treated]

Note that this is very different from

Pr[Sally gets disease after being treated]
Pr[Johny gets disease after not being treated]

due to possible confounding by indication.
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Causal inference gurus think of observational data as 
having massive amounts of missing data

If we are lucky and or diligent we could observe all 
of the data that actually occurred.

In addition there is at least twice as much missing 
data from counterfactual outcomes that did not 
occur as a consequence of exposures not 
received. 

Directed Acyclic Graphs (DAGs)

L:
Low Birth 
Weight B:

Bronchiolitis

T:
immunoprophylaxis

Causally related events are indicted by arrows

Here L confounds the causal effect of T on B

Randomized Clinical Trials

A:
Patient 

randomized to 
therapy

Y:
Treatment 
outcome

L:                    
Risk factors for 

outcome

Hence, any association between A and Y must be causal. 

Since treatment assignment is controlled by randomization 
there can be no causal path between L and A

Exchangeability

A model with treatment , covariate    and outcome    
is exchangeable if the counterfactual outcome           
is independent of   .

|a
i iY L

That is Pr | , Pr |a a
i i i i iY L A Y L      

In other words, knowing the actual treatment that a patient 
receives tells me nothing about her counterfactual outcome.

In a RCT treatment is assigned at random, and it does not 
matter which group receives which treatment. Hence, the 
treatment groups are exchangeable and

        Pr 1 Pr 1|a a
i i iY Y A

A L Y

A

B:
Bronchiolitis

T:
Immunoprophylaxis

Here, immunoprophylaxis is much more likely to be given 
to babies at high risk of bronchiolitis.

Hence, if I know Johny did not receive T then I know that he 
is less likely to develop B than if I did not know his actual 
treatment.

In other words, babies who did, and did not, receive T are 
not exchangeable, since treated babies are inherently at 
greater risk than untreated babies.

Example of Non-Exchangeability
Marginal Structural Models

A model is 

structural if it regresses a counterfactual 
outcome      against treatment and other 
covariates.

a
iY

marginal if it only involves treatment covariates.

No 
confounders 
in model

True due to exchangeability

iY iA
In a RCT if I use simple logistic regression to regress 
outcome     against treatment      then I have a 
marginal structural model (MSM)

   logit logita
i i iY Y A           
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Simple Confounder Example

Pr 1 0.6L    

Pr 1| 1 0.9A L    
Pr 1| 0 0.3A L    

L
Confounder

A
Treatment

Y
Outcome

0 1 Total

0 278,998 120,050 399,048

39.9%

1 59,728 541,224 600,952

60.1%

338,726 661,274 1,000,000

100%

A

Total 

L

Simple Confounder Example

Odds ratio for 
A given L = 21.1

Pr 1| 1 0.9A L    

Pr 1| 0 0.3A L    

L
Confounder

A
Treatment

Y
Outcome

Pr 1 0.6L    

0 1 Total

0 278,998 120,050 399,048

69.9% 30.1% 100%

1 59,728 541,224 600,952

9.9% 90.1% 100%

338,727 661,274 1,000,000

A

L

Total 

Sample Size = 1,000,000

Simple Confounder Example

L
Confounder

A
Treatment

Y
Outcome

We can’t do anything about the relationship 
between L and Y or A and Y.

The key idea of MSMs is that we take a weighted 
sample of subjects in which the relationship 
between L and A is destroyed.

We do this using inverse probability treatment weights (IPTWs)

Inverse Probability Treatment Weights

0 1 Total

0 278,998 120,050 399,048

1 59,728 541,224 600,000

338,726 661,274 1,000,000

L

A

Total 

Inverse Probability Treatment Weights

 True Estimated

0 0 278,998 0.7 0.6992 1/0.6992 = 1.430 399,048

0 1 120,050 0.3 0.3008 1/0.3008 = 3.324 399,048

0

1 0 59,728 0.1 0.0994 1/0.0994 = 10.061 600,952

1 1 541,224 0.9 0.9006 1/0.9006 = 1.110 600,952

1

Total 1,000,000 2,000,000

L A
True 

Sample 
Size

Pr[A|L] Estimated       
IPTW IPTW  N

399,048

600,952

Inverse Probability Treatment Weights

 True Estimated

0 0 278,998 0.7 0.6992 1/0.6992 = 1.430 199,524

0 1 120,050 0.3 0.3008 1/0.3008 = 3.324 199,524

0

1 0 59,728 0.1 0.0994 1/0.0994 = 10.061 300,476

1 1 541,224 0.9 0.9006 1/0.9006 = 1.110 300,476

1

Total 1,000,000 1,000,000

399,048

600,952

Pr[A|L]True 
Sample 

Size
AL

Weighted 
Sample 

Size

Estimated       
IPTW
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True Sample

Weighted Sample

Odds ratio for 
A given L = 21.1

Odds ratio for 
A given L = 1

0 1 Total

0 278,998 120,050 399,048

1 59,728 541,224 600,952

338,726 661,274 1,000,000

L

A

Total 

0 1 Total

0 199,524 199,524 399,048

1 300,476 300,476 600,952

500,000 500,000 1,000,000

A

Total 

L

L
Confounder

A
Treatment

Y
Outcome

Real Sample

In the weighted sample the DAG is

L
Confounder

A
Treatment

Y
Outcome

Regressing Y against A allows me to estimate the 
marginal causal effect of A on Y

L
Confounder

A
Treatment

Y
Outcome

Suppose the true model is

 logit Y A L        

where logit .01    
log 2    
log 3    

the OR for    associated with    adjusted for    = 3Y AL

Then the OR for    associated with    adjusted for    = 2Y A L

Simulate number of 
patients with the indicated 
values of Y given L and A

L A Y
Sample 

Size

0 0 0 276,183

0 0 1 2,815

0 0

0 1 0 117,656

0 1 1 2,394

0 1

1 0 0 57,978

1 0 1 1,750

1 0

1 1 0 510,294

1 1 1 30,930

1 1

Total 1,000,000

278,998

120,050

59,728

541,224

Classical Model

 logit i i iY A L        

applied to real data

Odds   Standard
Ratio  Error 

L  2.973   0.052
A  2.003   0.037

Robust standard errors are calculated with the Huber-White 
sandwich estimator

MSM Model

 
 

logit

logit

a
i

i i

Y

Y A

   
     

applied to IPTW data with 
robust standard error estimate

Odds    Robust
Ratio  Std. Err. 

A  1.998    0.042

logit 1i iY A     

applied to real data gives OR for    associated with     = 3.88Y A
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Collapsible Statistics

L
Stratifying
Variable

A
Treatment

Y
Outcome

If the relative risks of Y given A are identical in strata 
defined by L, then these relative risks also equal the
overall (marginal) risk of Y associated with A

Statistics with this property are called collapsible

Relative risks are collapsible, odds ratios are not 
unless they approximate relative risks.

L=0

0 1 Total

0 8 6 14

1 2 4 6

10 10 20

A

Y

Total 

L=1

0 1 Total

0 7 4 11

1 3 6 9

10 10 20

Y

Total 

A

All Subjects

0 1 Total

0 15 10 25

1 5 10 15

20 20 40

A

Y

Total 

RR = (4/10)/(2/10) = 2 RR = (6/10)/(3/10) = 2

RR = (10/20)/(5/20) = 2

Marginal relative risk = within-strata relative risks.

L=0

0 1 Total

0 2 2 4

1 4 8 12
6 10 16

A

Y

Total 

L=1

0 1 Total

0 8 4 12

1 2 2 4

10 6 16

A

Y

Total 

All Subjects

0 1 Total

0 10 6 16

1 6 10 16

16 16 32Total 

Y

A

OR = (8/2)/(4/2) = 2 OR = (2/4)/(2/8) = 2

OR = (10/6)/(6/10) = 2.78

Marginal odds ratio  within-strata odds ratios.

In Simulated example I chose 
the probabilities of Y to be    
< 6% so that the odds ratios 
can be interpreted as relative 
risks

L A Y
Sample 

Size

0 0 0 276,183

0 0 1 2,815

0 0

0 1 0 117,656

0 1 1 2,394

0 1

1 0 0 57,978

1 0 1 1,750

1 0

1 1 0 510,294

1 1 1 30,930

1 1

Total 1,000,000

278,998

120,050

59,728

541,224

L1
Confounder

A1
Treatment

Y
Outcome

MSMs in Longitudinal Data Analysis

L2
Confounder

A2
Treatment

Here A1 affects Y directly and through A2

L1 and L2 confound the effects of A1 and A2 on Y

This model can be analyzed with either classical 
methods or MSMs.

L1
Confounder

A1
Treatment

Y
Outcome

MSMs in Longitudinal Data Analysis

L2
Confounder

A2
Treatment

In the IPT weighted data the model becomes

The MSM analysis consists of regressing Y against A1 
and A2 in the weighted sample and using robust 
standard errors.
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L1
Confounder

A1
Treatment

Y
Outcome

Classical methods fail if A1 has a causal effect on L2

L2
Confounder

A2
Treatment

Here L2 confounds the effect of A2 on Y

But L2 is on the causal pathway from A1 to Y

If I adjust for L2 I block the effect of A1 on Y through L2

I need to adjust for L2 to estimate the causal effect of A2 
on Y.

Moreover, suppose that unknown variables U confound 
the effect of L2 on Y

L1
Confounder

A1
Treatment

Y
Outcome

L2
Confounder

A2
Treatment

U

Now the path from A1 to Y through U collides at L2.

This means that as long as we do not adjust for L2 
that the effect of A1 on Y through U is blocked

If I adjust for L2, I open a path from A1 through U to Y, 
which means that U confounds the effect of A1 on Y.

Selective school that only 
accepts scholars or athletes 

Athlete Scholar

If I attend the school and I am not an athlete then I must 
be a scholar.

Stratifying on (adjusting for) a collider induces a relationship 
(opens a path) between its parents Sample Size  = 1,000,000 

More Complicated Longitudinal Example

Pr 1 1 0.5A    

Pr 1| 1 1 0.8L A    

Pr 1| 1 0 0.4L A    

 logit 2i i iY A L        logit .01    
log 2    
log 3    

L is on the causal pathway from A1 to Y

Pr 2 1| 1 0.9A L    

Pr 2 1| 0 0.3A L     L Strongly confounds the effect of 
A2 on Y

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

Simulated number of 
patients with indicated 
values of A1, L, A2 and Y

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

A1 L A2 Y
Sample 

Size

0 0 0 0 207,779
0 0 0 1 2,119
0 0 1 0 88,567
0 0 1 1 1,758
0 1 0 0 19,420
0 1 0 1 573
0 1 1 0 169,410
0 1 1 1 10,390
1 0 0 0 69,208
1 0 0 1 694
1 0 1 0 29,216
1 0 1 1 612
1 1 0 0 38,778
1 1 0 1 1147
1 1 1 0 339600
1 1 1 1 20729

log 3    

2 log 2    

The effect of A1 on Y through L is blocked by stratifying on L

  1 2 2logit 1i i i iY A A L         

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

95%
Odds   Confidence
Ratio   Interval

A1  1.00 0.98 – 1.02
A2  2.03   1.96 – 2.11
L   3.00 2.89 – 3.11
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 logit 1i iY A      

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

But A1 has an appreciable effect on Y through L

95%
Odds   Confidence
Ratio   Interval

A1 1.59   1.56 – 1.62

 logit 2i iY A     

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

And L confounds the effect of A2 on Y

95%
Odds   Confidence
Ratio   Interval

A2 3.95   3.83 – 4.08

2 log 2    

  2logit i i iY A L       

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

And L confounds the effect of A2 on Y

95%
Odds   Confidence
Ratio   Interval

A2 2.03 1.96 – 2.11
L  3.00 2.89 – 3.10 log 3    

2 log 2    

Inverse Probability Treatment Weights

0 0 279,800 0.6996 1/0.6996 = 1.429 199,976

0 1 120,153 0.3004 1/0.3004 = 3.329 199,976

0

1 0 59,918 0.0999 1/0.0999 = 10.014 300,024

1 1 540,129 0.9001 1/0.9001 = 1.111 300,024

1

Total 1,000,000 1,000,000

Weighted 
Sample 

Size

399,953

600,047

Estimated 
Pr[A2|L]

L A2
True 

Sample 
Size

Estimated       
IPTW

True Sample

Weighted Sample

Odds ratio for 
A2 given L = 21.0

Odds ratio for 
A2 given L = 1

0 1 Total

0 279,800 120,153 399,953

1 59,918 540,129 600,047

339,718 660,282 1,000,000

A2

L

Total

0 1 Total

0 199,976 199,976 399,952

1 300,024 300,024 600,048

500,000 500,000 1,000,000

L

Total

A2

Unweighted regression of Y 
against A2 and L gives OR = 
2.03 for A2 adjusted for L

Unweighted regression of Y 
against A1 gives OR = 1.59

  1 1 2 2logit i i iY A A       

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

MSM Analysis in IPT Weighted Sample

95%
Odds   Confidence
Ratio   Interval

A1 1.46   1.41 – 1.50
A2 2.04   1.96 – 2.13
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  1 1 2 2logit i i iY A A       

Y
Outcome

L
Confounder

A1
Treatment

A2
Treatment

95%
Odds   Confidence
Ratio   Interval

A1 1.25   1.23 – 1.28
A2 3.72   3.60 – 3.84

Classical Regression of Y against A1 and A2 
without Adjustment for L

This OR is too high

Applying MSMs to Real Data

 For real data we are unlikely to have a model with a 
perfect fit in which the IPT weighting perfectly blocks 
the causal link between confounders and treatment.

 Often use propensity scores to adjust for 
indication bias.

 The results from MSMs are less powerful and are 
harder to interpret than classical methods. This is 
particularly true when common events are modeled 
by odds ratios.

My advice is to avoid using them whenever 
classical methods are viable. They should only 
be used with some longitudinal studies.

 IPT weights are stabilized by multiplying by the 
unadjusted probability of treatment

Longitudinal Data Does not Always Require MSMs

Use classical methods regressing Y against A1, A2, … , An

adjusting for L1, L2, … , Ln

Y
Outcome

A1
Treatment

A2
Treatment

… An
Treatment

L1 L2 Ln…
Longitudinal Data with Covariates on the 

Causal Pathway to Y 

L1

Y
Outcome

L2

A1
Treatment

A2
Treatment

… An
Treatment

… Ln

Use classical methods regressing Y against A1, A2, … , An

Longitudinal Data with Covariates that are both 
Confounders and on the Causal Pathway to Y

L1

A1
Treatment

Y
Outcome

L2

A2
Treatment

… An
Treatment

… Ln

Use marginal structural models to regress Y 
against A1, A2, … , An in an IPT weighted sample

Thanks

Advice on MSMs

Tan Ding
Dale Plummer

Bryan Shepherd
Wayne Ray

Help with the PRIMA RSV & Asthma database
Pingsheng Wu

Programming and data management


