

 - 1 -

An Introduction to Stata:
A statistical package for managing, analyzing, & graphing data

Theresa A Scott, MS

Department of Biostatistics

Vanderbilt School of Medicine

theresa.scott@vanderbilt.edu

http://biostat.mc.vanderbilt.edu/TheresaScott

OBJECTIVE:

The objective of this lecture is to become familiar with the basics of Stata.

� NOTE: We will not be “analyzing” data in any way except for generating some basic data descriptive

statistics (eg, mean & SD for continuous variables; raw & relative frequencies for categorical variables).

INTERACTING WITH Stata:

Stata can be used either as a point-and-click application (ie, a graphical user interface, GUI) or as a command-

driven package.

• GUI provides an easy interface for those new to Stata (ie, do not have to memorize command syntax).

• Command language provides a fast way to communicate with Stata & to communicate more complex

ideas (ie, not limited by menu selections).

• Command syntax also has the advantage of reproducibility.

o If you have an analysis you need to modify often & run repeatedly, you can submit commands in a

“batch mode” via do-files (covered later).

• Many of the commands are short & easy to execute, & as proficiency grows, it is often faster to type

commands rather than use the menu.

� NOTE: We will be only covering the command syntax in these notes.

Stata LAYOUT:

Stata has 5 windows (see image on next page):

• Command window: where commands are entered – press the Enter key on your keyboard to execute

any command.

� NOTE: All commands & variables are case sensitive (eg, “age” vs “Age”).

• Results window: where results appear (ie, are printed).

• Variables window: lists the variables in the current dataset.

• Review window: lists past (ie, already executed) commands.

• Graph window: where graphs are displayed (appears when graphs are generated).

Clicking on a past command in the Review window brings it into the Command window where it can be

modified & executed. Can also hit the Page Up button on your keyboard to bring up a previously executed

command; can then be modified & executed.

� NOTE: In these notes, all Stata syntax (eg, commands & variables) is typed as bold Courier New font.

 - 2 -

Figure: Screen shot of Stata layout

THE “FABULOUS FIFTIES”:

Stata has a lot of commands (around 500 depending on how you count them). Putting aside the statistical

commands that might be of interest to you, the following table contains 50 some odd commands everyone

should know.

� NOTE: All of the listed Stata commands in following table will not be covered in these notes. However, we

will cover a portion of them by way of a sample Stata session (see below).

Table: 50 some odd “essential” Stata commands.

Category

Stata

Command

Functionality

Operating-system interface pwd Show the file-path of the current directory (stands for “print

working directory”)

 cd Change directory

 sysdir Query & set system directories

 mkdir Create a (new) directory

 dir / ls Show files in the current directory

 erase Erase a disk file

 copy Copy a file from disk or URL

 type Display the contents of a file

Inputting data input Enter data from the keyboard

 infile Read unformatted ASCII (text) data

 infix Read ASCII (text) data in fixed format

 insheet Read ASCII (text) data created by a spreadsheet

 use Load a Stata-format dataset (ie, a Stata .dta file)

 clear Clear the entire dataset & everything else

Review

Window

Variables

Window

Results

Window

Command

Window

 - 3 -

Table, cont’d

Data manipulation edit List & edit data using the Data Editor

 generate Create a new variable (ie, column)

 replace Replace one of a variable’s values with another value

 egen Extended generate – has special functions that can be used

when creating a new variable

 recode Recode the values of a categorical variable

 rename Rename a variable

 drop Drop variables and/or observations (ie, rows)

 keep Keep variables and/or observations

 sort Sort observations in a dataset

 encode Create the numeric version of a string variable

 decode Create the string version of a numeric variable

 order Change the order of the variables in a dataset

 by Repeat a Stata command on subsets of the dataset

 reshape Convert a dataset from “wide” to “long” format & vice versa

 append Append datasets

 merge Merge datasets

 compress Compress data in memory

 save Save the dataset currently in memory as a Stata file (.dta)

Formatting format Specify the format to display variables

 label Manipulate (define, assign, list, & drop) variable & value

labels

Basic data reporting describe Describe the contents of the dataset in memory or on disk

 codebook Show detailed contents of a dataset

 inspect Display a simple summary of the dataset’s attributes

 list List values of variables

 browse List data using the Data Editor

 count Count observations satisfying specified condition(s)

 assert Verify the truth of a claim (ie, that an expression is true)

 summarize Calculate & display univariate summary statistics

 tabulate Generate one- & two-way frequency tables

 tabstat Calculate & display a table of summary statistics – summary

statistics for a series of numeric variables, possibly broken

down by another (categorical) variable; can specify the list of

statistics to display

 table Calculate & display a table of summary statistics – can break

down each variable (numeric or categorical) by up to 3

categorical variables; can specify the list of statistics to display

Keeping track of your work log Create a log file

 notes Apply notes to the dataset in memory

Getting on-line help help Display online help for a specific Stata command

 search Search Stata documentation for a keyword

The Internet & updating Stata update Update Stata

 net Install user-written additions from the net

 ado Manage user-written additions from the net

 news Report Stata news

 - 4 -

SAMPLE Stata SESSION:

To demonstrate a portion of the Stata commands mentioned in the previous table, let’s use an example dataset –

a random subset of the well known Primary Biliary Cirrhosis data set. The full data set contains the data from

the Mayo Clinic’s trial on primary biliary cirrhosis (PBC) of the liver conducted between 1974 & 1984.

Specifically, the trial was a randomized placebo controlled trial of the drug D-penicillamine. The random

subset of the PBC data set that we will be using has been saved as a Stata data format file (pbc.dta), which is

available on my website (given on the first page). The file contains N = 100 observations (rows) & the

following variables (columns):

Table: Description of the motivating PBC dataset

Variable Name Variable Description

id Case number
fudays Number of days between registration & the earlier of death, transplantion, or study analysis

time in July, 1986
status Status, where 0 = Censored, 1 = Censored due to liver treatment, & 2 = Death
drug Treatment, where 1 = D-penicillamine & 2 = Placebo
age Age in days
sex Gender, where 1 = Female & 2 = Male
ascites Presence of ascites, where 0 = No & 1 = Yes
bili Serum bilirubin in mg/dl
chol Serum cholesterol in mg/dl
album Albumin in gm/dl
stage Histological stage of disease

You’ll notice that all of the categorical variables in our dataset (status, drug, sex, ascites, & stage)

are coded with numeric values. Even though Stata can handle reading in character (string) values, such as “No”

& “Yes”, certain commands will have issues with such data. In the long run, it’s safer (and saner) to code

everything numerically & then define any categorical variables appropriately once the data has been read into

Stata.

Before going further, let’s discuss some good programming practices:

1. Create a directory (folder) where you will keep all your data, code, and output related to a particular

project. This can be thought of as your `working directory' whenever you use Stata for that particular

project.

→ Create a folder on your desktop named PBC_Analysis and save the pbc.dta data file to this

folder.

2. Conduct your Stata session from within the relevant working directory. To do this, change to the

directory before doing anything else in your Stata session (eg, before reading in a dataset). This will

allow you to easily reference the names of your data files without having to include long path names

(i.e., C:/MyDocuments/MyProjects/ProjectName/.../filename.dta). You can change

directories using the cd command.

→ Use the cd command to move to the created PBC_Analysis folder. On a Windows machine,

the command would look something like cd “C:\Desktop\PBC_Analysis”

Now, let’s open a log file. Even though the contents of the Results window can be printed, only the most recent

output is printed when the output becomes very long. Luckily, Stata can record your session into a log file, but

it does not start a log automatically; you must tell Stata to record your session. To start a log, we execute log

using filename. By default, the resulting log file contains what you type & what Stata produces in

response, recorded in a format called Stata Markup & Control Language (SMCL; has a .smcl extension).

 - 5 -

SMCL format is nice for viewing & printing within Stata. You can also create an unformatted log file, which is

simpler to use if you plan to insert & edit the output in a Word Processor, by executing set logtype text

before opening your log file. An unformatted log file is saved with a .log file extension. For our sample Stata

session, let’s open a (default) SMCL log file:

log using pbclog, replace

You’ll notice that I also specified the replace option, which overwrites the log file if it already exists. If you

do not specify replace & the log file already exists, you will receive an error message. You’ll also notice

that I did not specify any file pathname when I specified the file name. This is because I already changed to the

directory where my data files are located & where I wish to save my log file.

Now, let’s read in our PBC data set. The easiest data file to read in is a Stata data format .dta file:

use pbc.dta, clear

The clear option specifies that it is okay to replace any data in memory. NOTE, Stata only stores one dataset

in memory at a time.

Often, our dataset is not saved as a Stata .dta file, but as a Microsft Excel file. To read in such a file, we first

save the file as comma-delimited (.csv) or tab-delimited (.txt) ASCII (text) file using the Save as type…

drop-box within the Save As dialog box of the File drop-menu. We can then read in the text file using the

insheet command:

insheet using pbc.csv, comma clear

As with the use command, we can specify the clear option. We also specified the comma option, which

tells Stata the columns are comma-separated.

Irregardless of how you read in your data, Stata works with a copy of the data that it loads into memory. By

default, Stata/IMP & Stata/SE allocate 10 megabytes & Stata/IC allocates 1 megabyte to Stata’s data areas.

Most often, this is enough memory, but sometimes it is not. Luckily, you can easily increase the amount of

memory allocated to Stata by your operating system while Stata is running. You can do this by executing set

memory #[B|K|M|G], where # is the amount of memory specified in bytes, kilobytes, megabytes, or

gigabytes – B, K, M, or G is typed to distinguish the unit. For example, to set your memory to 1G execute set

memory 1G.

With that said, let’s get back to our motivating data set. It is always a good idea to explore your dataset after

you read it into Stata to (1) make sure it was read in correctly, & (2) get a better understanding of each variable.

To do so, we can first use the describe command, which shows us the basic information about our dataset –

the number of observations, the number of variables, the names of the variables, & more. Next, the codebook

command is a great tool for getting a quick overview of the variables in the dataset. Among other things, for

each variable it prints the type (eg, numeric), range, number of unique values, & number of missing values.

describe

codebook

You probably noticed that when you executed the codebook command, you were given a –more– “prompt”.

Seeing –more– at the bottom of the Results window is Stata’s way of telling you that it has something more to

 - 6 -

show you, but showing you that something more will cause the information on the screen to scroll off. When

you do see –more– at the bottom of the Results window,

Press … and Stata …

letter l or Enter displays the next line

letter q Acts as if you pressed Break

space bar or any other key displays the next screen

You can also press the “clear –more– condition button”, the button labeled Go with a circle around it. Lastly,

it is possible to “turn off” the printing of any additional output in your do-file – simplify specify set more

off. This is especially useful when you will be generating a log file of the desired output & you are not

interested in interactively watching the output.

Once a dataset is read into memory, we often wish to view (ie, list) all or a subset of the observations and

variables. In Stata, we can use the browse and list commands to do so. Specifically, the browse

command displays your dataset in a spreadsheet-style Data Editor window. In contrast, the list command

uses the Results window to displays the data. Typed by itself, list lists all the observations and variables in

the dataset. You can also execute list varlist, which lists only those variables specified in varlist.

You can also specify one or both of in range and if exp, which limit the observations listed – more to

come regarding if statements. Some examples follow the browse command.

browse

list

list id drug sex

list in 1/10

list if sex == 1

list id drug if sex == 1

The edit command is also available, which not only lists the full dataset using the Data Editor, but also allows

you to modify specific cell values and save the changes.

Let’s now discuss how to create new variables for the dataset in memory using the generate command. To

define a new continuous variable, we simply use a generate newvar = expression construct. For

example, the age variable in our PBC dataset has been collected in days. It would be more convenient to use

age in years. We also create a new variable representing follow-up in years.

generate ageyrs = age/365.25

generate fuyrs = fudays/365.25

The generate command can also incorporate if statements, which will conditionally define the new variable.

This is a good place to discuss how Stata defines missing values. In general, a missing value in Stata is

represented with a period, “.”. However, missing values of numeric variables are represented by large positive

values. Therefore, the expression age > 60 is true if the variable age is greater than 60 or is missing! To

exclude missing values from consideration, ask whether the value is less than “.”. For example, going back to

the list command: list if age > 60 & age < . . You can also use !missing(varname) – eg,

list if age > 60 & !missing(age).

We can also use the generate command to create a new categorical variable, but the steps are slightly

different. Specifically, we must give the new categorical variable an initial value when we create it. We then

use the replace command to overwrite the initial value for a new value in each sub-group of values. NOTE,

 - 7 -

we use the replace command because it is used to modify the contents of an existing variable. Lastly, we

often use if statements in our replace expression in order to properly break-down (ie, condition) the

observations into appropriate groups. As an example, let’s create a new censored variable, which will be the

(collapsed) 2-level version of the (3-level) status variable:

generate censored = .

replace censored = 1 if status == 0 | status == 1

replace censored = 2 if status == 2

You’ll notice that I specified the initial value of the newly created censored variable to be missing. This is quite

convenient when you might have missing values in your dataset. You’ll also notice that I used == rather than =

to specify equality. There are a few other conditional operators to know about: <, <=, >, >=, != (for “not equal

to”), & (and), and | (or).

Now that we’ve added a few more variables to our dataset, let’s look at the revised describe output.

describe

You’ll notice that all of the original variables have a “Label”, whereas the three new variables do not. Luckily,

it is easy to add a label (up to 80 characters) to a variable using the label command. Specifically, we use a

label variable varname “label” construct. As examples, let’s add variable labels to the three

newly created variables in our dataset:

label variable ageyrs "Age (yrs)"

label variable fuyrs "Follow-up (yrs)"

label variable censored "2-level survival status"

We’ll see these new variable labels listed if we look at the revised describe output using the describe

command.

We can also use the label command to define & apply (character string) labels to the (numeric) values of a

(categorical) variable. For example, for the sex variable, we can label the values of 1 as “Female” and the

values of 2 as “Male”. These value labels will be then be displayed in subsequent output pertaining to the sex

variable. This is much more useful than constantly having to remember what 1 and 2 represent. We first define

the label, which associates each value label with each value. We then assign the defined label to the appropriate

variable. As an example let’s add the value labels to the drug variable. Recall, a value of 1 represents the “D-

penicillamine” group, while a value of 2 represents the “Placebo” group.

label define druglabel 1 "D-penicillamine" 2 "Placebo"

label value drug druglabel

It should be noted that the name of each defined label must be unique – that is, you will get an error if you try to

re-define a label of the same name. However, you can assign an already defined label to several variables.

It should also be noted that the commands given in this sample Stata session have been saved to a do-file –

specifically, pbc.do, which is available on my website. The do-file contains additional expressions that define

& apply value labels to the remaining categorical variables in the dataset (status, censored, sex,

ascites, & stage). It is useful at this point in the lecture notes to save this do-file to your computer and to

execute the additional label define and label value expressions. After executing the commands,

let’s once again look at (1) the codebook command & (2) the first 10 observations of our dataset.

 - 8 -

codebook

list in 1/10

Now that we have our dataset revised and all of the variables appropriately defined, let’s generate some

summary (descriptive) statistics. Let’s first use the summarize command to calculate & display a variety of

(univariate) summary statistics. Executing the summarize command (with nothing else specified), causes

Stata to calculate summary statistics on all variables in the dataset, which might be inappropriate (eg,

calculating the mean on categorical variable). So, instead, we specify the (continuous) variables we would like

to summarize. For example

summarize fudays fuyrs age ageyrs bili chol album

You’ll notice from the output that, by default, the summarize command calculates & displays the number of

non-missing values, the mean, the standard deviation (SD), minimum, and maximum value for each variable.

Alternatively, we can specify the detail option (ie, summarize fuyrs ageyrs, detail), which

calculates & displays a series of percentiles (1, 5, 10, 25, 50, 75, 90, 95, and 99), the 4 smallest and 4 largest

values, the number of non-missing values, the mean, the SD, the variance, the skewness, and the kurtosis for

each variable. The summarize command can also incorporate if statements.

We have a lot more options for calculating & displaying a table of summary statistics with the tabstat

command. Specifically, there is a by option, which allows you to specify that the statistics be displayed

separately for each unique value of a (categorical) grouping variable. There is also a statistics option,

which allows you to specify the statistics to be displayed. The following are some examples.

tabstat ageyrs, by(sex) statistics(count mean sd p25 median p75) missing

tabstat ageyrs, by(drug) statistics(count mean sd p25 median p75) missing

Let’s now use the tabulate command to generate one- and two-way frequency (ie, contingency) tables of

categorical variables. Here are a few examples:

tabulate sex

tabulate drug, missing

tabulate sex drug, missing column

By default missing values are not counted in the generated table. However, specifying the missing option

causes missing values to be counted in the table as their own category. There are also additional options that

modify how the table is printed. For instance, specifying column reports the column relative frequencies (ie,

column proportions) in addition to the raw frequencies (counts).

Stata can also create a 3-way contingency table using the table command. The first variable specified

generates the rows of the table, the second the columns, and the third the “super” (ie, grouped) columns.

table stage sex drug, missing

Lastly, let’s close our log file.

log close

 - 9 -

MAKING Stata STOP WHAT IT IS DOING:

When you want to make Stata stop what it is doing & return you to the command prompt, press the Break

button (the button with the big red X on the toolbar below the drop-menus).

DO-FILES:

Rather than typing commands at the keyboard, you can create a text file containing Stata commands & instruct

Stata to execute the commands stored in that file. Such files are called do-files since the command that causes

them to be executed is do. Do-files are very useful if you have to modify & rerun lengthy manipulation &

analyses. Also they’re useful if you have to revisit an analysis, say 12 months, after the study is completed. On

a day-to-day basis, do-files allow you to “document” the commands you have executed so you don’t have to

remember them all.

To create a do-file: You can use any text editor (eg, WordPad) or the Do-file Editor within Stata (5th button in

Toolbar from right).

• Open a new text file.

• Type commands. For example:
* generate an indicator for any previous preterm labors

generate anyptl=0

replace anyptl=1 if ptl>0

label variable anyptl “Previous preterm labors?”

label define yesnolab 0 “no” 1 “yes”

label value anyptl yesnolab

tab ptl anyptl

• Save the file with a .do extension (most often in the same directory as your data file(s)).

The Stata code demonstrated in the sample Stata session has been extracted to a do-file and is available on my

website.

To execute a do-file: Type do filename at the command prompt at hit the Enter button on your keyboard.

NOTE, if you haven’t changed to the relevant working directory, the filename must specify the complete

path name – eg, “C:\analysis\project\data\analysis.do”.

� NOTE: There are several ways to include comments in a do-file:

• Begin the line with an asterisk (*), which prevents a single line of code from executing.

• To add comments or block multiple lines of code from executing, start the block with /* & end with */.

REFERENCES, RESOURCES & ONLINE HELP WITHIN Stata:

For these notes, I was lucky enough to have access to Patrick Arbogast’s, PhD, “Introduction to Stata” lecture

notes, which he covers in the MPH program’s Biostat I class. I also heavily referenced an indispensable

website for learning Stata: the UCLA Academic Technology Service’s (ATS) Stata website

(http://www.ats.ucla.edu/stat/stata/; specifically the class notes & learning modules covered in the Stata Starter

Kit).

There is also a full library of Stata manuals for purchase. These include a Getting Started manual, the User’s

Guide, & the Reference manual, which are the primary tools for learning Stata. Unfortunately, most of us do

not have the funds to purchase Stata manuals. Luckily, there are other sources of information, which include

 - 10 -

• The Stata website (http://www.stata.com): Much of the site is dedicated to user support.

• The Stata Press website (http://www.stata-press.com): This site contains the datasets used throughout the

Stata manuals.

• The Stata listserver: An active group of Stat users communicate over an Internet listserver, which you can

join for free.

And DON’T FORGET Stata itself. Stata has a subject table of contents online with links to the help system &

dialog boxes that make it easy to find & execute a Stata command – choose Contents from the Help drop-menu.

As mentioned in the “Fabulous Fifties” table, there are also two Stata commands that are useful: help

command and search word. For example, you can open the help file for the summarize command by

executing help summarize. NOTE, regardless of which command you use, results will be shown in a new

window (by default). Also, blue text indicates a hypertext link, so you can click to go to related entries.

