Topics in Regression Analysis

DDRC Academy of Investigators Workshop

Tatsuki Koyama, PhD
Department of Biostatistics
tatsuki.koyama@vumc.org
November 17, 2020

Disclaimer: The following example is fictitious, and many of the analytic strategies are for demonstrative purposes only, and do not reflect good analytic practice.

Example: CEASAR

Comparative Effectiveness Analysis of Surgery and Radiation (CEASAR) is an observational study that recruited men who were diagnosed with prostate cancer from 2011 to 2012.

- CEASAR enrolled more than 3,000 men.
- The primary outcome variable is based on a patient-reported quality-of-life, whose score ranges from 0 to 100 .
- The majority of patients underwent surgery (radical prostatectomy), and other treatment options included radiation (EBRT) and active surveillance.
- For this example, the data have been altered and truncated ($n=100$).
- The main outcome variable is postQoL: post-treatment Quality of Life score.
- The baseline score is preQoL.

| preQoL | postQoL | | Treatment | | PSA | | | Age |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Hypertension

1 Interaction vs Subgroup

1.1 Simple case

Question: Is the baseline PSA associated with postQoL?

Linear Regression Model

Residuals

Min	1Q	Median	3Q	Max
-50.713	-12.444	2.981	14.470	31.484

Coef S.E. t $\operatorname{Pr}(>|t|)$
Intercept $54.69115 .163410 .59<0.0001$
PSA $\quad-0.0468 \quad 0.4543-0.10 \quad 0.9181$

Question: Is the baseline PSA associated with the postQoL differently in the Surgery and Radiation groups?

```
###################### Surgery subgroup ##
(model1.Sur <- ols(postQoL ~ PSA, data = subset(ds, Treatment == "Surgery")))
Linear Regression Model
ols(formula = postQoL ~ PSA, data = subset(ds, Treatment == "Surgery"))
\begin{tabular}{lrlrlr} 
& \multicolumn{2}{c}{ Model Likelihood } & \multicolumn{2}{r}{ Discrimination } \\
& \multicolumn{2}{c}{ Ratio Test } & & Indexes \\
Obs & 63 & LR chi2 & 0.62 & R2 & 0.010 \\
sigma13.6662 & d.f. & 1 & R2 adj & -0.006 \\
d.f. & 61 & Pr (> chi2) & 0.4319 & g & 1.476
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-35.1311 & -6.5948 & 0.7103 & 10.5206 & 24.0136
\end{tabular}
Pr}(>|t|
Intercept 65.6238 5.3556 12.25<0.0001
PSA -0.3448 0.4447 -0.78 0.4412
```

```
######################## Radiation subgroup ##
(model1.Rad <- ols(postQoL ~ PSA, data = subset(ds, Treatment == "Radiation")))
Linear Regression Model
ols(formula = postQoL ~ PSA, data = subset(ds, Treatment == "Radiation"))
\begin{tabular}{|c|c|c|c|}
\hline & Model Likelihood Ratio Test & \multicolumn{2}{|l|}{Discrimination} \\
\hline Obs 37 & LR chi2 3.77 & R2 & 0.097 \\
\hline sigma15.8094 & d.f. & R2 adj & 0.071 \\
\hline d.f. 35 & \(\operatorname{Pr}(>\) chi2) 0.0522 & g & 5.834 \\
\hline
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-28.268 & -8.590 & -1.473 & 11.344 & 32.282
\end{tabular}
    Coef S.E. t Pr}(>|t|
Intercept 54.5228 7.2448 7.53<0.0001
PSA -1.3888 0.7167 -1.94 0.0608
```


Coefficients:

	Surgery Subgroup		Radiation Subgroup		Interaction	
	Coefficient	p	Coefficient	p	Coefficient	p
Intercept	65.62	0.000	54.52	0.000	54.52	0.000
PSA	-0.34	0.44	-1.39	0.061	-1.39	0.037
SURgery	-	-	-	-	11.10	0.21
\times Surgery	-	-	-	-	1.04	0.20

The interaction model:

$$
Y=\beta_{0}+\beta_{p} X_{p}+\beta_{s} X_{s}+\beta_{p s} X_{p} X_{s}
$$

where

$$
X_{s}= \begin{cases}1 & \text { if Surgery } \\ 0 & \text { if Radiation },\end{cases}
$$

and X_{p} is PSA value.

Then for Radiation group, we have

$$
Y=\beta_{0}+\beta_{p} X_{p}
$$

and for Surgery group, we have

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{p} X_{p}+\beta_{s}+\beta_{p s} X_{p} \\
& =\left(\beta_{0}+\beta_{s}\right)+\left(\beta_{p}+\beta_{p s}\right) X_{p}
\end{aligned}
$$

Thus, in this case, coefficient estimates in the interaction model and those in each sub-group model have simple algebraic relationship. But degrees of freedom and the standard error estimates are different.

One additional and very important advantage of the interaction model is its ability to formally test for differences of PSA effect between Treatment groups.

Question: Is PSA effect the same in Surgery and Radiation groups? (Are the slopes different?)

$$
\begin{aligned}
& H_{0}: \beta_{p s}=0 \\
& H_{1}: \beta_{p s} \neq 0
\end{aligned}
$$

confint(m1I)

	2.5%	97.5%
(Intercept)	41.35	67.698
PSA	-2.69	-0.085
TreatmentSurgery	-6.24	28.437
PSA:TreatmentSurgery	-0.56	2.649

1.2 With other covariates

What if we would like to examine the association between PSA and postQoL within each Treatment accounting for preQoL, age, and Hypertension.

```
## Surgery subgroup ##
## (model1.Sur <- ols( postQoL ~ PSA, data=subset(ds, Treatment=='Surgery') ) )
(model2.Sur <- ols(postQoL ~ PSA + preQoL + Age + Hypertension, data = subset(ds, Treatment == "Surgery")))
```

Linear Regression Model
ols(formula = postQoL ~ PSA + preQoL + Age + Hypertension, data = subset(ds,
Treatment == "Surgery"))

	Model Likelihood Ratio Test	Discrimination	
Obs 63	LR chi2 48.40	R2	0.536
sigma9.5917	d.f. 4	R2 adj	0.504
d.f. 58	$\operatorname{Pr}(>$ chi2) 0.0000	g	11.365

Residuals

Min	$1 Q$	Median	3Q	Max
-22.1258	-4.7737	-0.2537	5.6112	22.4852

	Coef	S.E.	t	$\operatorname{Pr}(>\|t\|)$
Intercept	51.1801	13.2827	3.85	0.0003
PSA	-1.1277	0.3309	-3.41	0.0012
preQoL	0.4356	0.0639	6.82	<0.0001
Age	-0.0383	0.1577	-0.24	0.8090
Hypertension=Yes	-0.2003	2.6580	-0.08	0.9402

```
## Radiation subgroup ##
## ( model1.Rad <- ols( postQoL ~ PSA, data=subset(ds, Treatment=='Radiation') ) )
(model2.Rad <- ols(postQoL ~ PSA + preQoL + Age + Hypertension, data = subset(ds, Treatment == "Radiation")))
Linear Regression Model
ols(formula = postQoL ~ PSA + preQoL + Age + Hypertension, data = subset(ds,
    Treatment == "Radiation"))
\begin{tabular}{lrlrlr} 
& \multicolumn{2}{c}{ Model Likelihood } & \multicolumn{2}{r}{ Discrimination } \\
& \multicolumn{2}{c}{ Ratio Test } & & Indexes \\
Obs & 37 & LR chi2 & 20.67 & R2 & 0.428 \\
sigma13.1585 & d.f. & 4 & R2 adj & 0.356 \\
d.f. & 32 & Pr (> chi2) & 0.0004 & g & 12.230
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-22.712 & -9.585 & -1.557 & 8.701 & 24.310
\end{tabular}
\begin{tabular}{lrrrr} 
& Coef & \multicolumn{1}{l}{ S.E. } & \multicolumn{1}{l}{ t } & \(\operatorname{Pr}(>|t|)\) \\
Intercept & 16.0469 & 22.7618 & 0.70 & 0.4859 \\
PSA & -2.0112 & 0.6371 & -3.16 & 0.0035 \\
preQoL & 0.5074 & 0.1183 & 4.29 & 0.0002 \\
Age & 0.2426 & 0.2733 & 0.89 & 0.3814 \\
Hypertension=Yes & 3.0653 & 4.9225 & 0.62 & 0.5379
\end{tabular}
```

```
## Interaction model ## ( model1.Int <- ols( postQoL ~ PSA * Treatment, data=ds) )
(model2.Int <- ols(postQoL ~ PSA * Treatment + preQoL + Age + Hypertension, data = ds))
```

Linear Regression Model
ols (formula $=$ postQoL ~ PSA * Treatment + preQoL + Age + Hypertension,
data $=\mathrm{ds})$

	Model Likelihood		Discrimination		
	Ratio Test			Indexes	
Obs	100	LR chi2	102.70	R2	0.642
sigma10.8848	d.f.	6	R2 adj	0.619	
d.f.	93	Pr $(>$ chi2)	0.0000	g	16.247

Residuals

Min	$1 Q$	Median	3Q	Max
-22.3830	-7.4809	-0.6394	6.2940	25.1030

	Coef	S.E.	t	$\operatorname{Pr}(>\|t\|)$
Intercept	30.6460	12.5304	2.45	0.0163
PSA	-2.0236	0.5055	-4.00	0.0001
Treatment=Surgery	10.7106	6.5753	1.63	0.1067
preQoL	0.4697	0.0573	8.20	<0.0001
Age	0.0742	0.1397	0.53	0.5967
Hypertension=Yes	1.1225	2.3926	0.47	0.6401
PSA * Treatment=Surgery	0.8945	0.6090	1.47	0.1453

Coefficients:

	Surgery Subgroup		Radiation Subgroup		Interaction	
	Coefficient	p	Coefficient	p	Coefficient	p
Intercept	51.18	0.000	16.05	0.49	30.65	0.016
PSA	-1.13	0.001	-2.01	0.003	-2.02	0.000
Surgery	-	-	-	-	10.71	0.11
PSA \times Surgery	-	-	-	-	0.89	0.15
preQoL	0.44	0.000	0.51	0.000	0.47	0.000
Age	-0.04	0.81	0.24	0.38	0.07	0.60
Hypertension	-0.20	0.94	3.07	0.54	1.12	0.64

Again, a clear advantage of the interaction model is the ability to test for differences of PSA effect between treatments.
And now, there doesn't seem any simple algebraic relationship between these coefficients. It is because the interaction model does not estimate preQoL, Age, or Hypertension effect separately for Surgery and Radiation groups.

If we want to estimate these secondary effects separately for the two groups, we must have treatments interacting with every single covariate.

```
########################### Big interaction model ##
(model3.Int <- ols(postQoL ~ Treatment * (PSA + preQoL + Age + Hypertension), data = ds))
Linear Regression Model
    ols(formula = postQoL ~ Treatment * (PSA + preQoL + Age + Hypertension),
        data = ds)
\begin{tabular}{lrlrlr} 
& \multicolumn{2}{c}{ Model Likelihood } & \multicolumn{2}{r}{ Discrimination } \\
& \multicolumn{2}{c}{ Ratio Test } & & Indexes \\
Obs & 100 & LR chi2 & 104.00 & R2 & 0.647 \\
sigma10.9933 & d.f. & 9 & R2 adj & 0.611 \\
d.f. & 90 & Pr (> chi2) & 0.0000 & g & 16.292
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-22.7119 & -7.5050 & -0.7648 & 5.8757 & 24.3096
\end{tabular}
\begin{tabular}{lrrrl} 
Intercept & 16.0469 & 19.0163 & 0.84 & 0.4010 \\
Treatment=Surgery & 35.1332 & 24.3594 & 1.44 & 0.1527 \\
PSA & -2.0112 & 0.5323 & -3.78 & 0.0003 \\
preQoL & 0.5074 & 0.0989 & 5.13 & \(<0.0001\) \\
Age & 0.2426 & 0.2284 & 1.06 & 0.2909 \\
Hypertension=Yes & 3.0653 & 4.1125 & 0.75 & 0.4580 \\
Treatment=Surgery * PSA & 0.8836 & 0.6536 & 1.35 & 0.1798 \\
Treatment=Surgery * preQoL & -0.0718 & 0.1230 & -0.58 & 0.5609 \\
Treatment=Surgery * Age & -0.2809 & 0.2913 & -0.96 & 0.3374 \\
Treatment=Surgery * Hypertension=Yes & -3.2656 & 5.1180 & -0.64 & 0.5250
\end{tabular}
```


Coefficients:

	Surgery Subgroup		Radiation Subgroup		Big Interaction	
	Coefficient	p	Coefficient	p	Coefficient	p
Intercept	51.18	0.000	16.05	0.49	16.05	0.40
PSA	-1.13	0.001	-2.01	0.003	-2.01	0.000
Surgery	-	-	-	-	35.13	0.15
PSA \times Surgery	-	-	-	-	0.88	0.18
preQoL	0.44	0.000	0.51	0.000	0.51	0.000
preQoL \times Surgery	-	-	-	-	-0.07	0.56
Age	-0.04	0.81	0.24	0.38	0.24	0.29
Age \times Surgery	-	-	-	-	-0.28	0.34
Hypertension	-0.20	0.94	3.07	0.54	3.07	0.46
Hypertension \times Surgery	-	-	-	-	-3.27	0.53

For this example, this means we must estimate 10 coefficients. With a sample size of 100 , perhaps, it is too much. But that's exactly what we are doing with these subgroup analyses.

Number of coefficients:

Surgery Subgroup	5
Radiation Subgroup	5
Total	10
Interaction Model (PSA and Treatment)	7
Big interaction Model	10

2 Baseline Adjustment vs Difference

Suppose we would like to compare the two treatments on postQoL. We know that postQoL is correlated with preQoL, so we will take that information into account.

Baseline preQoL

	N								Min
	Q1	Med	Q3	Max	Mean	SD	SE		
Radiation	37	19	36	48	67	86	51	20	3.2
Surgery	63	16	39	63	81	95	59	23	2.9
Combined	100	16	36	57	76	95	56	22	2.2

6 month postQoL

	N	Min	Q1	Med	Q3	Max	Mean	SD	SE
Radiation	37	3.2	29	40	52	75	41	16	2.7
Surgery	63	26.7	55	62	72	86	62	14	1.7
Combined	100	3.2	42	57	69	86	54	18	1.8

Change postQoL - preQoL

	N Min	Q1	Med	Q3	Max	Mean	SD	SE
Radiation	37	-56	-17	-6.6	5.0	25	-10.0	19
3.1								
Surgery	63	-33	-11	0.3	12.7	55	2.2	18
Combined	100	-56	-14	-2.9	9.2	55	-2.3	19
C	1.9							

One approach is to compute difference, postQoL - preQoL, to define QoL change.

```
## QoL Change 
Linear Regression Model
    ols(formula = (postQoL - preQoL) ~ Treatment, data = ds)
\begin{tabular}{|c|c|c|c|}
\hline & Model Likelihood Ratio Test & \multicolumn{2}{|l|}{Discrimination} \\
\hline Obs 100 & LR chi2 10.32 & R2 & 0.098 \\
\hline sigma18.0939 & d.f & R2 adj & 0.089 \\
\hline d.f. 98 & Pr(> chi2) 0.0013 & g & 5.761 \\
\hline
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-46.0081 & -11.9429 & -0.8255 & 12.7158 & 52.5571
\end{tabular}
\begin{tabular}{lrrrr} 
Intercept & -9.9919 & 2.9746 & -3.36 & 0.0011 \\
Treatment=Surgery & 12.2347 & 3.7477 & 3.26 & 0.0015
\end{tabular}
```

Mean change in QoL (6 month - baseline) is higher for Surgery group by 12.23. Also, the mean change in Radiation group is -9.99 .

Another approach is to regress postQoL on Treatment while accounting for preQoL.

```
## preQol adjustment
(b0 <- ols(postQoL ~ Treatment + preQoL, data = ds))
Linear Regression Model
ols(formula = postQoL ~ Treatment + preQoL, data = ds)
\begin{tabular}{lrlrlr} 
& \multicolumn{2}{c}{ Model Likelihood } & \multicolumn{2}{r}{ Discrimination } \\
& \multicolumn{2}{c}{ Ratio Test } & & Indexes \\
Obs & 100 & LR chi2 & 78.28 & R2 & 0.543 \\
sigma12.0420 & d.f. & 2 & R2 adj & 0.533 \\
d.f. & 97 & Pr (> chi2) & 0.0000 & g & 14.990
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-35.4737 & -7.3794 & -0.7145 & 8.1922 & 30.3027
\end{tabular}
\begin{tabular}{lllll} 
& \multicolumn{1}{l}{ Coef } & S.E. & t & \(\operatorname{Pr}(>|t|)\) \\
Intercept & 21.5708 & 3.4549 & 6.24 & \(<0.0001\) \\
Treatment=Surgery & 17.1698 & 2.5332 & 6.78 & \(<0.0001\) \\
preQoL & 0.3861 & 0.0551 & \(7.01<0.0001\)
\end{tabular}
```

"On average, postQoL is higher for Surgery group by 17.17 while adjusting for preQoL." (Please remember this number, 17.17.)

Let's compare the regression models of the two approaches.
Approach 1: (Take difference)

$$
\begin{aligned}
Y_{\text {post }}-Y_{\text {pre }} & =\beta_{0}+\beta_{s} X_{s} \\
Y_{\text {post }} & =\beta_{0}+\beta_{s} X_{s}+1 \cdot Y_{\text {pre }}
\end{aligned}
$$

Approach 2: (Regress $Y_{\text {post }}$ on $Y_{\text {pre }}$)

$$
Y_{\text {post }}=\beta_{0}^{\prime}+\beta_{s}^{\prime} X_{s}+\beta_{y}^{\prime} Y_{\text {pre }}
$$

Comparing these equations, we notice that approach 1 forces the coefficient on $Y_{p r e}$ to be 1, while approach 2 allows us to estimate the coefficient using the data.

3 Analyzing Difference with Baseine as a Covariate

I have seen regression models where the response is the difference and the baseline value is included as a covariate. The question may be: Does difference from baseline depend on the baseline values?

```
(m00 <- ols((postQoL - preQoL) ~ Treatment + preQoL, data = ds))
Linear Regression Model
    ols(formula = (postQoL - preQoL) ~ Treatment + preQoL, data = ds)
\begin{tabular}{lrlrlr} 
& \multicolumn{2}{c}{ Model Likelihood } & \multicolumn{2}{r}{ Discrimination } \\
& \multicolumn{2}{c}{ Ratio Test } & Indexes \\
Obs & 100 & LR chi2 & 92.78 & R2 & 0.605 \\
sigma12.0420 & d.f. & 2 & R2 adj & 0.596 \\
d.f. & 97 & Pr (> chi2) & 0.0000 & g & 16.927
\end{tabular}
Residuals
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-35.4737 & -7.3794 & -0.7145 & 8.1922 & 30.3027
\end{tabular}
\begin{tabular}{lllrl} 
& Coef & S.E. & \multicolumn{1}{c}{ t } & Pr \((>|t|)\) \\
Intercept & 21.5708 & 3.4549 & \(6.24<0.0001\) \\
Treatment=Surgery & 17.1698 & 2.5332 & \(6.78<0.0001\) \\
preQoL & -0.6139 & 0.0551 & \(-11.15<0.0001\)
\end{tabular}
```

You might want to say, "On average, Surgery group's postQoL - preQoL is 17.17 higher while adjusting for preQoL."

But we have seen this number, 17.17, before. It turns out this approach is closely related to our favorite approach, "Regress postQoL and use preQoL as covariate," only incorrect.

Coefficients:

Response	postQoL				postQoL-preQoL			
	Coefficient	$S E$	t	p	Coefficient	$S E$	t	p
Intercept	21.57	3.45	6.24	0.000	21.57	3.45	6.24	0.000
Surgery	17.17	2.53	6.78	0.000	17.17	2.53	6.78	0.000
preQoL	0.39	0.06	7.01	0.000	-0.61	0.06	-11.15	0.000

Let's compare the regression models:
Regress $Y_{\text {post }}$ on $Y_{\text {pre }}$

$$
Y_{\text {post }}=\beta_{0}+\beta_{s} X_{s}+\beta_{y} Y_{\text {pre }}
$$

Regress Difference on $Y_{\text {pre }}$

$$
\begin{aligned}
Y_{\text {post }}-Y_{\text {pre }} & =\beta_{0}^{\prime}+\beta_{s}^{\prime} X_{s}+\beta_{y}^{\prime} Y_{\text {pre }} \\
Y_{\text {post }} & =\beta_{0}^{\prime}+\beta_{s}^{\prime} X_{s}+\left(\beta_{y}^{\prime}+1\right) Y_{\text {pre }}
\end{aligned}
$$

Therefore, $\beta_{0}=\beta_{0}^{\prime}, \beta_{s}=\beta_{s}^{\prime}$, and $\beta_{y}=\beta_{y}^{\prime}+1$.
Is there a problem?

- If the question is regarding β_{s}, then probably yes, because interpretation is confusing.
- If the question is regarding β_{y}, then definitely yes,

$$
\begin{aligned}
& H_{0}: \beta_{y}^{\prime}=0 \\
& H_{1}: \beta_{y}^{\prime} \neq 0
\end{aligned}
$$

does not test what it seems to test. When there is no association between $Y_{\text {pre }}$ and $Y_{p o s t}, \beta_{y}^{\prime}=-1$, and the above null hypothesis is false.

Residuals

Min	1Q	Median	3Q	Max
-2.7525	-0.6859	0.0517	0.6644	2.5232

	Coef	S.E.	t	$\operatorname{Pr}(>\|t\|)$
Intercept	0.0370	0.0723	0.51	0.6093
y0	-0.9551	0.0719	-13.28	<0.0001

The take-home messages

- Interaction models are always better than the subgroup models.
- Baseline adjustment is almost always better than taking the difference.
- Baseline adjustment on top of taking the difference is never a good idea.

Topics in Regression Analysis CRC Research Skills Workshop

Tatsuki Koyama, PhD
Department of Biostatistics
tatsuki.koyama@vumc.org
October 12, 2018
March 24, 2017

