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Chapter 1

Overview

1.1 Observational Study: CEASAR

Prostate cancer is the second leading cause of cancer death among American men behind lung
cancer. The common treatment choices for localized disease are surgery, radiation, and observation
(active surveillance). For localized prostate cancer, 5-year survival is nearly 100%, and in compar-
ative effectiveness studies, patient-reported disease-specific functional outcomes are often used as
the primary endpoint. The Comparative Effectiveness Analysis of Surgery and Radiation (CEASAR)
study1 assessed patient-reported functional outcomes and health-related quality of life at 3 years
after treatment.
Suppose we are interested in comparing the Sexual Functional Score (QOL) 3 years after receiving
the treatment.

groupSum(d$Epic36, d$Treatment, Combined=FALSE)

N Min Q1 Med Q3 Max Mean SD SE
Surgery 1222 0 10.00 33.3 70 100 41.0 33.4 0.96
Radiation 691 0 6.67 38.3 70 100 40.4 33.5 1.27

with(d, t.test(Epic36 ~ Treatment))

Welch Two Sample t-test

data: Epic36 by Treatment

1Barocas et al., “Association between radiation therapy, surgery, or observation for localized prostate cancer and
patient-reported outcomes after 3 years” JAMA. 2017. 317(11):1126-1140.
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t = 0.4, df = 1000, p-value = 0.7
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.51 3.74

sample estimates:
mean in group Surgery mean in group Radiation

41.0 40.4

This shows there is no statistically significant difference in QOL. However, it is well-known that the
patient populations for Surgery and Radiation are very different. The baseline QOL is quite different
between the groups as shown below.

groupSum(d$Epic00, d$Treatment, Combined=FALSE)

N Min Q1 Med Q3 Max Mean SD SE
Surgery 1388 0 41.7 80 95 100 65.9 32.8 0.88
Radiation 853 0 23.3 60 85 100 54.5 33.1 1.13

with(d, t.test(Epic00 ~ Treatment))

Welch Two Sample t-test

data: Epic00 by Treatment
t = 8, df = 2000, p-value = 3e-15
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

8.61 14.24
sample estimates:

mean in group Surgery mean in group Radiation
65.9 54.4

As Table below shows that some of other baseline characteristics that are probably associated with
the post-treatment QOL are very different between groups.
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Table 1.1: CEASAR baseline characteristics

N Surgery Radiation Test Statistic
N = 1455 N = 908

Age at diagnosis 2363 57 62 66 63 68 73 F1,2361=417, P<0.0011

Race 2363 χ2
3 =10.4, P=0.0162

White 75% (1088) 73% ( 662)

Black 12% ( 175) 16% ( 148)

Hispanic 8% ( 113) 6% ( 57)

Others 5% ( 79) 5% ( 41)

TIBI cat 2279 χ2
3 =98.6, P<0.0012

0-2 33% (468) 20% (175)

3-5 55% (766) 55% (478)

6-8 10% (147) 19% (169)

9-15 2% ( 22) 6% ( 54)

DAmico Prostate Cancer Risk 2357 χ2
2 =17, P<0.0012

Low Risk 41% (597) 34% (307)

Intermediate Risk 42% (613) 44% (395)

High Risk 17% (243) 22% (202)

PSA at diagnosis, corrected 2363 4.2 5.1 6.9 4.5 5.9 8.5 F1,2361=49, P<0.0011

Marital Status 2262 χ2
1 =21.2, P<0.0012

Not married 17% ( 234) 25% ( 215)

Married 83% (1159) 75% ( 654)

Education 2266 χ2
4 =15, P=0.0052

Less than high school 9% (120) 13% (111)

High school graduate 21% (294) 21% (186)

Some college 22% (306) 24% (208)

College graduate 24% (336) 21% (185)

Graduate/professional school 24% (340) 21% (180)

Income 2132 χ2
3 =67.7, P<0.0012

Less than $30,000 17% (228) 28% (224)

$30,001 - $50,000 17% (223) 23% (187)

$50,001 - $100,000 33% (439) 29% (238)

More than $100,000 33% (432) 20% (161)

SF36 Physical Score 2287 85 100 100 75 90 100 F1,2285=87.4, P<0.0011

EPIC Sexual Function -Baseline 2241 41.7 80.0 95.0 23.3 60.0 85.0 F1,2239=76.9, P<0.0011

EPIC Sexual Function -3 years 1913 10.00 33.33 70.00 6.67 38.33 70.00 F1,1911=0.4, P=0.5281

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.
N is the number of non–missing values. Numbers after percents are frequencies. Tests used:
1Wilcoxon test; 2Pearson test
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In general, establishing a cause-and-effect association from an observational study is difficult due
to confounders.

Confounder A prognostic factor that is associated with both response (e.g., Quality of Life) and
explanatory variable (e.g., treatment choice).

We can analyze the data with a method that accounts for the baseline difference in the treatment
groups.

QOL ∼ Treatment × (Baseline QOL + Age + Race + TIBI + Risk + PSA)

How about comorbidities? sex? smoking?
Many statistical methods exist to establish causal relationships from an observation study such as
propensity scores and instrumental variables.

Can observational studies establish a cause-and-effect association?

Philip Morris International
https://www.pmi.com/our-business/about-us/our-views/health-effects-of-smoking-tobacco

• “Cigarette smoking causes serious disease and is addictive.”

• “All cigarettes are harmful and addictive.”

• “Public health authorities have concluded that secondhand smoke causes diseases, including
lung cancer and heart disease, ...”

JT
https://www.jti.co.jp/tobacco/responsibilities/guidelines/responsibility/index.html
https://www.jti.com/about-us/our-business/our-six-core-principles

• “Smoking is a cause of serious diseases including lung cancer, coronary heart disease, em-
physema and chronic bronchitis.”

• “All relevant risk factors need to be taken into consideration when investigating the cause or
causes of a disease in any smoker.”

1.2 Experiment

Observational study A study design in which the investigator does not control the assignment of
treatment of individual study subjects (Piantadosi2)

2Clinical Trials: A Methodologic Perspective
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Experiment A study in which the investigator makes a series of observations under controlled/arranged
conditions. In particular, the investigator controls the treatment applied to the subjects by de-
sign. (Piantadosi)

Clinical trial A prospective study comparing the effect and value of an intervention against a
control in human subjects (Friedman3)

Advantages of observational studies include:

• Lower cost.

• Greater timeliness.

• A broad range of patients.

• Greater application where experiments would be impossible or unethical.

The advantage of clinical trials is that they can establish a cause-and-effect association.

1.2.1 Example: PIVOT

In Prostate Cancer Intervention Versus Observation Trial4 (PIVOT), prostate cancer patients who
were good candidates for radical prostatectomy were enrolled from 1994 to 2002. The last obser-
vation was made in 2010. The results were presented at American Urological Association Annual
Meeting in May, 2011. The inclusion criteria for the study were:

• 75 years or younger.

• Localized disease.

• PSA ≤ 50mg/mg.

• Diagnosed with 12 months.

• Radical prostatectomy candidate.

With the all-cause mortality as the primary endpoint, the primary objective was to answer the follow-
ing question:

Among men with clinically localized prostate cancer detected during the early PSA era,
does the intent to treat with radical prostatectomy reduce all-cause & prostate cancer
mortality compared to observation?

3Fundamentals of Clinical Trials
4Wilt et al. (PIVOT Study Group). “Radical prostatectomy versus observation for localized prostate cancer”. N Engl J

Med. 2012. 367(3):203–213.
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• 13,022 men entered into screening registry.

• 5,023 were eligible.

• 4,292 declined to participate.

• 731 were randomized. (364 prostatectomy, 367 observation)

• Radical prostatectomy was performed on 281 (77%) of the prostatectomy group and 35 (10%) of
the observation group. The following table summarized the assigned and received treatments.

Actual Treatment
Assigned Treatment Surgery Observation Other

Surgery 281 (77%) 53 (15%) 30 ( 8%) 364
Observation 36 (10%) 292 (80%) 39 (11%) 367

317 (43%) 345 (47%) 69 ( 9%) 731

Intention-to-treat analysis compares 364 surgery patients and 367 observation patients based on
their assigned treatments.

As-treated analysis compares 317 surgery patients and 345 observation patients based on their
received treatments.

Per-protocol analysis compares 281 surgery patients and 292 observation patients who adhered to
the protocol.

Conclusions: “Among men with localized prostate cancer detected during the early era of PSA test-
ing, radical prostatectomy did not significantly reduce all-cause or prostate-cancer mortality, as com-
pared with observation, through at least 12 years of follow-up. Absolute differences were less than 3
percentage points.”
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Chapter 2

Multiplicity in Clinical Trials -FDA’s
Guidance-

2.1 Background

The problem When K hypothesis tests are conducted with type I error rate of α, the overall type I
error rate becomes higher than α.
The overall type I error rate = P[At least one type I error] = Family-wise error.

Suppose there are 8 hypothesis tests, and each is conducted at 5% level. Then

P[At least one type I error] = 1−P[no type I error]

= 1− (1−0.05)8

= 0.337

And to control the family-wise type I error rate at 5%, each test must be conducted at α = 0.00639
because

1− (1−0.00639)8 = 0.05

Recent development

2016.12 EMA: Guideline on multiplicity issues in clinical trials

2017.1 FDA: Draft guidance. Multiple endpoints in clinical trials

2017.8 Stat in Med: A Dmitrienko and RB D’Agostino. “Editorial: Multiplicity issues in clinical trials”

2018.1 Journal of Biopharm Stat: Special issue on multiplicity issues in clinical trials
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2018.5 NEJM: A Dmitrienko and RB D’Agostino. “Multiplicity considerations in clinical trials”

Guidelines

• EMA: Guideline on multiplicity issues in clinical trials (Draft)

– 15 pages

– Draft published on 12/15/2016

– Replaces “Points to consider on multiplicity issues in clinical trials” (Adopted 2002)

• FDA: Multiple endpoints in clinical trials: Guidance for industry

– 50 pages

– Draft published in January 2017

– Details on statistical methods in addition to general principles

Prespecification is necessary.
“An important principle for controlling multiplicity is to prospectively specify all planned endpoints,
time points, analysis populations, and analyses.”

Multiplicity topics / sources of multiplicity

• Multiple endpoints

– Primary endpoint family

– Secondary endpoint family

– (Exploratory endpoints)

– Co-primary endpoints

– Composite endpoints/multi-component

• Multiple looks

– Interim analyses (“outside the scope” (FDA))

• Multiple analyses

– Subgroup analyses

– Multiple analyses methods
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• Superiority/Non-inferiority (FDA)

• Safety variables (EMA)

• Multiple treatment arms (EMA)

• Dose-response studies (EMA)

• Estimation (EMA)

Endpoints

• Primary endpoints
“Success on any one alone could be considered sufficient to demonstrate the drug’s effective-
ness”

• Secondary endpoints
Provide additional evidence of efficacy.

• Exploratory endpoints
“All other endpoints” (Is adjustment necessary?)
“endpoints that are thought to be less likely to show an effect but are included to explore new
hypotheses”

Endpoints are frequently ordered by

– clinical importance (Mortality as primary)

– the likelihood of demonstrating an effect (PFS as primary, OS as secondary)

Composite endpoint
Combine clinical outcomes into a single variable.

• Cardiovascular death OR heart attack OR stroke. (coronary artery disease)

• MAKE 30 (Major Adverse Kidney Events: impaired renal function OR hemodialysis OR death
(AKI)

“Analyses of the components of the composite endpoint are important and can influence interpreta-
tion of the overall study results.”

Co-primary endpoints
Demonstration of treatment effects on more than one endpoint is necessary to conclude efficacy.
FDA requires each test be done at 5% level.

Relaxation of alpha ... would undermine the assurance of an effect on each disease
aspect considered essential to showing that the drug is effective.
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α = 0.22 (0.222 ≈ 0.05) if independent.
Type II error rate inflation may be severe. (0.052 = 0.0025)

• Co-endpoints are likely to be correlated, but the correlation is unknown.

• Contrast this to a group sequential design where the correlation of accumulated data can be
computed.
Cov(Z j, Zk) =

√
N j/Nk.

α1 = 0.030 and α2 = 0.030 for the Pocock boundary.

2.2 Statistical methods

Statistical methods to control family-wise type I error rate (FWER)

• “Two-arm trials that examine treatment versus control on multiple endpoints”

• “Similar considerations: different time points, different doses.

Two types

• Single-step procedures

• Multistep procedures (step-down, step-up, sequential procedures)

– Generally more efficient (power)

– Confidence interval not readily available

1. The Bonferroni Method

2. The Holm Method

3. The Hochberg Method

4. Prospective Alpha Allocation Scheme

5. The Fixed-Sequence Method

6. The Fallback Method

7. Gatekeeping Testing Strategies

8. The Truncated Holm and Hochberg Procedures for Parallel Gatekeeping

9. Multi-Branched Gatekeeping Procedures

Clinical Trials 11 Tatsuki Koyama, PhD



10. Resampling-Based, Multiple-Testing Procedures

Common Statistical Method

1. Bonferroni (Single step; assumption free)
Each hypothesis test is conducted at α/K level. α/K ≈ the solution, a, to α = 1− (1−a)K.

2. Holm (Multi-step step down; assumption free)
H1, · · · ,Hm is a family of m null hypotheses, and P1, · · · ,Pm are the corresponding P-values.
The ordered P-values, P[i] are compared to α/(m+1− k), and let k be the smallest index such
that P[i] > α/(m+1− i). Reject the null hypotheses H(1), · · · ,H(k−1).

Example:
α = 0.05. p1 = 0.015, p2 = 0.03, p3 = 0.04, p4 = 0.01.

Bonferroni method:
Each p-value is compared to α/4 = 0.013. Only H4 is rejected.

Holm method:
p[1] = 0.01, p[2] = 0.015, p[3] = 0.03, p[4] = 0.04.
The corresponding critical values are
0.05/4 = 0.013, 0.05/3 = 0.017, 0.05/2 = 0.025, and 0.05.

3. Hochberg (Multi-step step up; Positive correlation)
Similar to Holm but backwards. Start comparing the largest p-value to α and work the way
down to the smallest p-value. Reject all H0 once p[k] < α/(m+1− k).

4. Prospective Alpha Allocation Scheme (Single step; Positive correlation)

Similar to Bonferroni, but use α1, α2, · · · , αm such that

(1−α1)×·· ·× (1−αm) = (1−α).

Example: (1−0.00639)8 = 1−0.05

FDA on Hochberg:

· · · beyond the aforementioned cases where the Hochberg procedure is known to be
valid, its use is generally not recommended for the primary comparisons of confirmatory
clinical trials unless it can be shown that adequate control of Type I error rate is provided.

Sequential method

5. Fixed-Sequence Method
Tests endpoints in a predefined order, all at α = 0.05, moving to the next endpoint only after a
success on the previous endpoint.
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6. Fallback Method
Fixed-sequence method with some α “saved” for later use. (e.g., 0.03 on the first test, 0.02 on
the second.)

Suppose pA = 0.045, pB = 0.015, pC = 0.065, and the sequence is C, B, A.

A (0.045) B (0.015) C (0.065)
Bonferroni not Reject Reject not Reject
Holm not Reject Reject not Reject
FSM (C,B,A) not Reject not Reject not Reject
FSM (A,B,C) Reject Reject not Reject
Fallback (C,B,A) not Reject Reject not Reject

Gatekeeping testing strategy
The gatekeeping testing strategy tests the primary and secondary families sequentially with α = 0.05
for the primary family and with some α passed on to the secondary family.

Serial gatekeeping strategy The primary family are tested as co-primary endpoints (α = 0.05).
The secondary family is tested only if all primary null hypotheses are rejected (at α = 0.05).

Parallel gatekeeping strategy The primary family uses a strategy that allows passing of an individ-
ual α, and the secondary family allocates the passed-on (accumulated) amount.

Parallel gatekeeping strategy

• Primary endpoints (A, B)
α = 0.05
Bonferroni with 0.04 for A and 0.01 for B.

• Secondary endpoints (C, D, E)
α = 0
Holm.

Suppose pA = 0.035, pB = 0.055, pC = 0.010, pD = 0.045, pE = 0.019.

A (0.035) B (0.055) C (0.010) D (0.045) E (0.019)
Reject not Reject

0.04 is passed to (C, D, E)
Critical values:

0.0133, 0.02, 0.04
Reject not Reject Reject
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2.3 Graphical approach

Using gMCP package in R.

• K Rohmeyer, F Klinglmueller (2018). gMCP: Graph Based Multiple Test Procedures. R pack-
age version 0.8-14.

• F Bretz, M Posch, EGlimm, FKlinglmueller, W Maurer, K Rohmeyer (2011), Graphical ap-
proaches for multiple comparison procedures using weighted Bonferroni, Simes or parametric
tests. Biometrical Journal 53(6), pages:894-913.

Bonferroni

H1

0.025

H2

0.025
p1 = 0.04 p2 = 0.02

Holm

H1

0.025

H2

0.025

1

1

p1 = 0.04 p2 = 0.02

Holm procedure with 3 hypotheses
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H1

α/3

H2

α/3

H3

α/3

1
2

1
2

1
2

1
2

1
2

1
2

Holm using gMCP Package: Step 1

Holm using gMCP Package: Step 2
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Fixed sequence method
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Improved fall back with gMCP package: Step 1

Improved fall back with gMCP package: Step 2

Improved fall back with gMCP package: Step 3
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A Parallel gatekeeping procedure
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Chapter 3

Randomization

3.1 Example: Polio vaccine trial (1954)

In 1954, 1.8 million children participated in the largest clinical trial to date to assess the effectiveness
of the vaccine developed by Jonas Salk in preventing paralysis or death from poliomyelitis.

• 1.8 million children in selected school districts throughout the US were involved in this placebo-
controlled trial.

– Why was placebo necessary?

– 60,000 cases in 1952; about half of that in 1953.

• Randomized trial.

– 750,000 children participated.

– They required parents’ consent.

– Half of the children with consent were randomized into the vaccine group.

• NFIP design.

– The National Foundation for Infantile Paralysis (NFIP) conducted a study in which all 2nd
graders with consent received the vaccine with 1st and 3rd graders acting as control.

– 1,125,000 children participated.

– The control children did not require consent.
Systematic difference between groups.

– No blinding.

– Polio is a contagious disease!
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The results of the SVF trial are tabulated below1.

The randomized double-blind design
Size Rate∗

Treatment 200,000 26
Control 200,000 71
No consent 350,000 46

(∗Rate of polio cases per 100,000)

The NFIP design
Size Rate∗

Treatment 225,000 25
Control 725,000 54
No consent 125,000 44

(∗Rate of polio cases per 100,000)

3.2 Introduction

Randomization Assignment of patients or experimental subjects to two or more treatments by
chance alone.

Main advantages of randomization

• It removes the potential of bias in the allocation of participants to the intervention group or to
the control group (allocation bias).

• It tends to produce similar (compatible) groups in terms of measured as well as unmeasured
confounders
confounding by indication in observational studies.

Randomization is considered so important that the intention-to-treat principle considered sacrosanct:
“Analyze by assigned treatments irrespective of actual treatment received.”
Perceived disadvantages of randomization are often about emotional and ethical issues.
→ randomization before consent
Predecessors to randomization:

• Alternating assignments (TCTCTCTC...).
1Freedman et al. Statistics, second edition
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• Treatment assignment based on birthday / day of the week.

The primary problems with these non-random assignment are the lack of assurance of comparability
(baseline balance). An additional issue with the “alternating assignments” is that if one is unblinded,
all the rest are unblinded, too.

3.3 Simple randomization

For each subject, flip a coin to determine treatment assignment. P[treatment 1] = · · ·= P[treatment
k] = 1/k.
Problems with simple randomization and how to deal with them.

• Imbalance in treatment allocation.

– Replacement randomization.

– Block randomization.

– Adaptive randomization. (Biased coin / Urn model etc.)

• Imbalance in baseline patient characteristics.

– Stratified randomization. (Stratified permuted block randomization)

– Covariate adaptive randomization. (Minimization randomization)

3.4 Imbalance in treatment allocation

If the number of patients, N is 20, P[10 and 10] = 0.18. The probability of 7 to 13 split or worse is 26%.
The treatment effect variance for 7−13 split relative to 10−10 split is(

1
7
+

1
13

)
/

(
1

10
+

1
10

)
= 1.098.

7-13 split is only 1/1.098 = 0.92 as efficient as 10-10 split.
Even if treatment allocation is balanced at the end of trial, there may be a (severe) imbalance at
some point. Because we may monitor trials over time, we prefer to have balance over time.

3.4.1 Block randomization

To ensure a better balance (in terms of number of patients) across groups over time, consider a block
randomization (random permuted blocks).
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Block randomization ensures approximate balance between treatments by forcing balance after a
small number of patients (say 4 or 6). For example, the first 4 patients are allocated to treatment A
or B sequentially based on AABB.
There are 6 sequences of A, A, B, B, and let each sequence have 1/6 chance of being selected.

AABB ABAB ABBA BAAB BABA BBAA

for(i in 1:5){
cat(i, sample(rep(LETTERS[1:2],each=2), 4, replace=FALSE), '\n')
}

1 B A B A
2 B A A B
3 A B A B
4 A A B B
5 B A A B

What’s wrong with block size of 2? Block size of 200?
Easily applicable to more than 2 groups (A, B, C)

for(i in 1:5){
cat(i, sample(rep(LETTERS[1:3],each=2), 6, replace=FALSE), '\n')
}

1 A B C C B A
2 A B C B C A
3 A A B C B C
4 C C B A A B
5 B C A B A C

Easily applicable to unequal group sizes (Na = 40 and Nb = 20).

for(i in 1:5){
cat(i, sample(rep(LETTERS[1:2],c(4,2)), 6, replace=FALSE), '\n')
}

1 B A A A B A
2 A B A A A B
3 A A A B B A
4 A A B A B A
5 A B B A A A
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Why might we want unequal group sizes?

• We may want to have a better estimate of the effect for the new treatment.

• Treatment costs may be very different.
Given the total sample size and the relative cost of treatment 2 to treatment 1, we can find the
optimal allocation ratio to minimize the total cost.

• Variances may be different.
Suppose the means, µ1 and µ2, of treatment groups are being compared using

Z =
(X̄1− X̄2)− (µ1−µ2)√

σ2
1/n1 +σ2

2/n2

.

For a given N = n1 + n2, the test statistic is maximized when the denominator is minimized.
Solving

∂

∂n1

(
σ2

1
n1

+
σ2

2
N−n1

)
= 0

we get

n1

N
=

σ1

σ1 +σ2
.

Therefore, the optimal allocation ratio is r = n1/n2 = σ1/σ2.

Analysis should account for the randomization scheme but often does not. Matts and McHugh (1978
J Chronic Dis) point out that

• because blocking guarantees balance between groups and increases the power of a study,
blocked randomization with the appropriate analysis is more powerful than not blocking at all or
blocking and ignoring it in the analysis.

• not accounting for blocking in analysis is conservative.

3.4.2 Biased coin and urn model

These techniques are sometimes classified as “adaptive randomization”.
Allocation of i-th patient depends on how many have been randomized to group A (na) and group B
(nb).
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Any given time, the probability of allocation to group A may be

P[A] =
nb

na +nb
.

Or the rule may be to use P[A] = 2/3 when nb−na > 5, and P[B] = 2/3 when na−nb > 5. Characteristics
of such a randomization scheme are usually studied by simulations.
An urn model is one type of biased coin randomization.

• Prepare an urn with one Amber ball and one Blue ball.

• Pick one ball and make the corresponding treatment assignment (A/B).

• Put a ball of the opposite color in the urn.

urn1 <- function(n){
# randomize n patients into A or B.
# At any time P[A] = (#B so far + 1) / (#A so far + 1 + #B so far + 1).
out <- data.frame(matrix(0, ncol=4, nrow=n+1))

out[1,1] <- 1 ; out[1,2] <- 1
for(i in 1:n){

out[i,3] <- out[i,2] / (out[i,1]+out[i,2])
out[i,4] <- sample( c('A','B'), 1, prob=out[i,2:1] )
out[i+1,1] <- out[i,1] + (out[i,4] == 'A')
out[i+1,2] <- out[i,2] + (out[i,4] == 'B')

}
out[,1] <- out[,1] - 1
out[,2] <- out[,2] - 1
names(out) <- c('A so far', 'B so far', 'P[A next]', 'Next')
out[1:n,]

}

urn1(n=10)

A so far B so far P[A next] Next
1 0 0 0.500 A
2 1 0 0.333 A
3 2 0 0.250 B
4 2 1 0.400 B
5 2 2 0.500 A
6 3 2 0.429 A
7 4 2 0.375 B
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8 4 3 0.444 B
9 4 4 0.500 B
10 4 5 0.545 A

3.5 Imbalance in baseline patient characteristics

Block randomization and biased coin model ensure that the group sizes are reasonably balanced.
In order to facilitate the comparison of treatment effects, balance on important baseline variables is
sometimes desired.

• Randomization does not guarantee all the measured variables will be balanced. And imbalance
does not mean randomization did not work.

Senn (1994) It is argued that this practice [testing baseline homogeneity] is philosophically unsound,
of no practical value and potentially misleading. Instead it is recommended that prognostic
variables be identified in the trial plan and fitted in an analysis of covariance regardless of their
baseline distribution (statistical significance).

Piantadosi These methods, while theoretically unnecessary, encourage covariate balance in the
treatment groups, which tends to enhance the credibility of trial results.

An annonymous reviewer Since this is a randomized controlled trial, comparison of baseline char-
acteristics (Table 1) is not necessary. The problem with this approach is that when comparing
baseline characteristics we already know that the null hypothesis is true if the randomization
was done correctly. Thus, we would expect 1 test in 20 to give a ‘significant’ result with p < 0.05
by chance alone. The best approach is to specify key prognostic factors to include in multivari-
able models irrespective of their significance between treatment groups.

3.5.1 Stratified randomization

Stratified randomization is applied to ensure that the groups are balanced on baseline variables that
are thought to be significant.

• Create strata based on the variables for which balance is sought.
e.g., (Male, 65 or younger), (Male, older), (Female, younger), (Female older)

• Randomize to treatments within each stratum. Use block randomization!
What’s wrong with

– using simple randomization within a stratum?
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– using too many strata?

• Stratification should be accounted for in analysis.

– Pre-randomization stratification and post-randomization stratification (at time of analysis)
has no clear winner.

• If trial is large, stratification may not be necessary

• Stratification by center is a good idea from practical viewpoints.

– Allows randomization to be hosted at each site

– Allows sites to be removed and still maintains balance

• Block randomization is a special type of stratified randomization where strata are defined by ...
.

• If each stratum has a target size, plans need to be in place to close down recruitment based on
the baseline characteristics. e.g., “We do not need any more (Male, older)”.

3.5.2 Adaptive and minimization randomization

Adaptive randomization can be used to reduce baseline imbalance:

• Define an imbalance function based on factors thought to be important

• Then use a rule to define P[treatment A] so that the next assignment is more likely to reduce
imbalance.

For example, the factors to balance are sex (male/female) and hypertension (yes/no), and let the
imbalance function be

I = 2× (sex imbalance)+3× (hypertension imbalance).

The patients randomized so far are

Sex Hypertension
Male Female Yes No

Group 1 10 3 8 5
Group 2 8 3 6 5
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The next patient is male-non hypertensive. The imbalance will be

I = 2× (11−8)+3× (6−5) = 9 if Group 1,
I = 2× (10−9)+3× (6−5) = 5 if Group 2.

Thus let P[Group 2] = 2/3.
Minimization randomization uses the same idea but use P[Group 2] = 1, to eliminate randomness
when there is some imbalance. Randomize only when to assign the next patient to either group gives
the same value of I.

3.6 Response adaptive randomization

As the name suggests, response adaptive randomization methods use the information about the
response so far to allocate the next patient.
Play the winner: The idea is to allocate more patients in the treatment that seems to be working
better. To apply these methods, it is necessary to have a response quickly. Urn model can be used
to make treatment assignment imbalance based on the results (success/failure) of each treatment
so far. (e.g., put one blue ball if the treatment B yields success.)
Instead of updating the probabilities of treatment assignment after each patient, we can update them
after a group of patients’ results are available to reduce administrative burden. In a phase II clinical
trial, play the winner design may be used to reduce the number of treatments in consideration. (e.g.,
Only retain the treatment arms that have P[positive response] > 0.4.)

3.6.1 Example: ECMO

Bartlett et al.2 conducted a randomized study of the use of extracorporeal membrane oxygenation
(ECMO) to treat newborns with respiratory failure. A play-the-winner design3 was used because

• the outcome is known soon after randomization.

• most ECMO patients were expected to survive and most control patients were expected to die.

– Ethically, the investigators felt obligated not to withhold the lifesaving treatment.

– Scientifically, they felt obligated to perform a randomized study.

The randomization plan:

• The first patient will be randomized to ECMO or the conventional treatment (CT) with equal
probability.

2“Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study”. (1985) Pediatrics
3Zelen (1969) JASA; Wei and Durham (1978) JASA
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• For each patient who survives on ECMO or dies on CT, one ECMO ball is added to the urn.

• For each patient who survives on CT or dies on ECMO, one CT ball is added to the urn.

• The trial will be terminated when 10 balls of one kind have been added, and that treatment will
be chosen as the winner.

What actually happened:

P(ECMO)=1/2 Patient 1 was randomized to ECMO and survived.

P(ECMO)=2/3 Patient 2 was randomized to CT and died.

P(ECMO)=3/4 Patient 3 was randomized to ECMO and survived

P(ECMO)=4/5 Patient 4 was randomized to ECMO and survived

P(ECMO)=5/6 Patient 5 was randomized to ECMO and survived

P(ECMO)=6/7 Patient 6 was randomized to ECMO and survived

P(ECMO)=7/8 Patient 7 was randomized to ECMO and survived

P(ECMO)=8/9 Patient 8 was randomized to ECMO and survived

P(ECMO)=9/10 Patient 9 was randomized to ECMO and survived

P(ECMO)=10/11 Patient 10 was randomized to ECMO and survived

Randomization was stopped when there were 11 ECMO patients who survived and 1 CT patient who
died.
Controversies followed because ...

fisher.test( cbind(c(11,0),c(0,1)) )

Fisher's Exact Test for Count Data

data: cbind(c(11, 0), c(0, 1))
p-value = 0.08
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.282 Inf

sample estimates:
odds ratio

Inf
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“In retrospect it would have been better to begin with two or three pairs of balls, which probably would
have resulted in more than one control patient.”

3.7 Nonbipartite matching in clinical trials

• Reference: Lu B, Greevy R, Xu X, Beck C. “Optimal nonbipartite matching and its statistical
applications”. 2011. 65(1):21-30.

• R package “nbpMatching”
http://biostat.mc.vanderbilt.edu/wiki/Main/MatchedRandomization

When baseline data on all the subjects are available, the subjects can be matched, and treatments
are randomly assigned within each pair. Matching is done to minimize some form of multidimensional
(multivariate) distance, e.g., Mahalanobis distance.

3.7.1 Example

The human papillomavirus (HPV) vaccine will prevent a high proportion of vaginal, oropharyngeal,
vulvar, and penile cancers. Yet the proportion of 11- and 12-year old girls who receive this vaccine is
not very high. The investigators would like to test effectiveness of the tailored coaching intervention
to educate the health-care providers. For this study, 18 community-based, private pediatric practices
have been recruited.
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Chapter 4

Superiority, Non-inferiority, and equivalence

4.1 Superiority and non-inferiority

In a phase 3 clinical trial, the objective is often to show the new treatment is better than the con-
ventional treatment. This is called a superiority clinical trial, in which the following hypotheses are
tested:

HS0 : δ = 0
HS1 : δ > 0

where δ is the difference of the treatment effects. Here we assume larger values of δ indicate a
favorable result. We generally do not conduct a two-sided hypothesis test in a clinical trial. Type I
error rate is usually set at 2.5%, and power is usually set at 80% or 90% at some clinically meaningful
value, δS.
When there is a conventional treatment that is known to be effective, it may be of interest to show
non-inferiority of the new treatment to the control.

HN0 : δ =−δI

HN1 : δ >−δI

Here, δI is a pre-specified positive number, which is referred to as the non-inferiority margin. It is
customary to set the power of non-inferiority test at 0. Mathematically, superiority testing and non-
inferiority testing are very similar; one is a location shift of the other.
After observing the data, δ̂ , it is always possible to compute δI such that H0 for the non-inferiority test
is rejected. Therefore, it is necessary to define the non-inferiority margin a priori.
A non-inferiority trial usually requires a bigger sample size than a superiority trial does. That is,
δI < δS. δI needs to be small enough to be clinically indifferent, and δS needs to be large enough to
be clinically meaningful.
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Because when the data from the control and treatment groups are similar, it biases towards no
difference, the intention-to-treat analysis biases towards positive results in a non-inferiority trial. This
can be seen in the following small simulation study.

sig <- 4
del <- 1
alp <- 0.025
bet <- 0.10

( n <- ceiling(2 * (qnorm(alp) + qnorm(bet))^2 * sig^2 / del^2) )

[1] 337

supSim <- function(B, n, mu0, mu1, sig, pSwitch=0){
# pSwitch is the proportion of patients switching the group
# (T -> C and C -> T are the same.)

nSwitch <- ceiling(n * pSwitch)
toSwitch <- sample(1:n, nSwitch)

X0 <- Y0 <- matrix( rnorm(B*n, mu0, sig), ncol=B)
X1 <- Y1 <- matrix( rnorm(B*n, mu1, sig), ncol=B)

for(i in toSwitch){
X0[i,] <- Y1[i,]
X1[i,] <- Y0[i,]

}
XBar0 <- apply(X0, 2, mean)
XBar1 <- apply(X1, 2, mean)

zVal <- sqrt(n) * (XBar1-XBar0) / (sqrt(2)*sig)
pVal <- 1-pnorm(zVal)
table( pVal < 0.025 )

}
( supSim0.0 <- supSim(B=10000, n=n, mu0=0, mu1=0, sig=4) )

FALSE TRUE
9786 214

( supSim1.0 <- supSim(B=10000, n=n, mu0=0, mu1=1, sig=4) )

FALSE TRUE
1077 8923
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( supSim0.1 <- supSim(B=10000, n=n, mu0=0, mu1=0, sig=4, pSwitch=0.2) )

FALSE TRUE
9743 257

( supSim1.1 <- supSim(B=10000, n=n, mu0=0, mu1=1, sig=4, pSwitch=0.2) )

FALSE TRUE
5163 4837

niSim <- function(B, n, del, niMargin=1, sig, pSwitch=0){
# del is the true difference (>0).
# Under null, del=-niMargin; under alternative, del=0.
# pSwitch is the proportion of patients switching the group
# (T -> C and C -> T are the same.)

nSwitch <- ceiling(n * pSwitch)
toSwitch <- sample(1:n, nSwitch)

X0 <- Y0 <- matrix( rnorm(B*n, 0, sig), ncol=B) # control
X1 <- Y1 <- matrix( rnorm(B*n, -del, sig), ncol=B) # new treatment

for(i in toSwitch){
X0[i,] <- Y1[i,]
X1[i,] <- Y0[i,]

}
XBar0 <- apply(X0, 2, mean)
XBar1 <- apply(X1, 2, mean)

zVal <- sqrt(n) * (XBar1-XBar0+niMargin) / (sqrt(2)*sig)
pVal <- 1-pnorm(zVal)
table( pVal < 0.025 )

}
( niSim0.0 <- niSim(B=10000, n=n, del=1, niMargin=1, sig=4) )

FALSE TRUE
9764 236

( niSim1.0 <- niSim(B=10000, n=n, del=0, niMargin=1, sig=4) )
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FALSE TRUE
984 9016

( niSim0.1 <- niSim(B=10000, n=n, del=1, niMargin=1, sig=4, pSwitch=.2) )

FALSE TRUE
7397 2603

( niSim1.1 <- niSim(B=10000, n=n, del=0, niMargin=1, sig=4, pSwitch=.2) )

FALSE TRUE
1021 8979

In a superiority trial, subjects’ switching treatment groups does not cause type I error inflation even
though power reduces. In a non-inferiority trial, when 20% of the subjects switch groups, type I error
rate was inflated to about 25%; however, the power is remained at 90% because, the centers of
distributions coincide under the alternative.
There is no multiplicity penalty for testing superiority and non-inferiority in the same clinical trial. It is
because these hypotheses are nested in the sense that if HS0 is rejected, HN0 is always rejected, and
if HN0 is not rejected, HS0 is not rejected. We can test for both sets of hypotheses with one confidence
interval.

4.2 Equivalence

In the statistical hypothesis testing paradigm, no conclusion can be reached by failing to reject H0,
and equivalence can not be concluded by failing to reject a superiority null hypothesis. In an equiva-
lence trial, the following hypotheses are tested:

HE0 : |δ | ≤ δe

HE1 : |δ |> δe

In the clinical trial literature, non-inferiority trials are often referred to as equivalence trials. There
are seldom any therapeutic equivalence trial; most of the equivalence trials are early phase bioe-
quivalence trials in the pharmacokinetics/pharmacodinamics arena. In bioequivalence trials, several
pharmacokinetic (PK) parameters, such as, Cmax, Cmin, and AUC for a generic drug are compared to
those for the marketed drug.
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An example of clinical equivalence trial
Pri et. al “Leukotriene antagonists as first-line or add-on asthma-controller therapy”. New Eng-
land Journal of Medicine (2011). In this pragmatic clinical trial, the investigators aimed to show
leukotrine-receptor antagonist (LTRA) is equivalent to either an inhaled glucocorticoid for first-line
asthma-controller therapy or a long-acting beta agonist (LABA) as add-on therapy in patients already
receiving inhaled glucocorticoid therapy. This is a pragmatic trial, as well. As with non-inferiority
trials, the intention-to-treat analysis biases towards equivalence, making it challenging to handle
dropouts and non-compliances (switching treatment arms).
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Chapter 5

Phase II Oncology Clinical Trials

5.1 Introduction

Phase II clinical trial A clinical trial designed to test the feasibility of, and level of activity of, a new
agent or procedure. (safety and activity)

Some typical characteristics of a typical phase II clinical trial include:

• It includes a placebo and two to four doses of the test drug.

• When the response is observed quickly, adaptive designs may be beneficial and used because
they may

– improve quality of estimation of the MED (minimum effective dose (lowest dose of a drug
that produces the desired clinical effect).

– increase number of patients allocated to MED.

– allow for early stopping for futility.

The primary objectives of phase II trials are:

• To determine whether the drug is worthy of further study in phase III trial. Significant treatment
effect? / dose-response relationship?

• To gather information to help design phase III trial.

– Determine dose(s) to carry forward

– Determine the primary and secondary endpoints

– Estimate treatment effects for power/sample size analysis

– Estimate recruitment rate
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– Examine feasibility of treatment (logistics of administration and cost)
– Learn about side effects and toxicity

In phase II clinical trials, parallel group designs, crossover designs, and factorial designs are often
used.

5.2 Phase II trials in oncology

A phase II clinical trial in oncology generally uses a fixed dose chosen in a phase I trial. The primary
objective is to assess therapeutic response to treatment. In the simplest case, a single treatment
arm is compared to a historical control. In other cases, a control group and/or multiple doses are
included.
The treatment efficacy is often evaluated on surrogate markers for a timely (quick) evaluation of
efficacy.

Surrogate outcome An outcome measurement in a clinical trial that substitutes for a definitive clin-
ical outcome or disease status.

• CD4 counts in AIDS study.
• PSA (prostatic specific antigen) in prostate cancer study.
• Blood pressure in cardiovascular disease.
• 3 months survival (binary) for survival.
• Tumor shrinkage for survival.

Tumor response to treatment is evaluated according to Response Evaluation Criteria in Solid Tumors
(RECIST)

Complete response (CR) Disappearance of all target lesions.

Partial response (PR) At least a 30% decrease in the sum of the longest diameter (LD) of target
lesions, taking as reference the baseline sum LD.

Stable disease (SD) Neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify
for PD, taking as reference the smallest sum LD since the treatment started.

Progressive disease (PD) At least a 20% increase in the sum of the LD of target lesions, taking as
reference the smallest sum LD recorded since the treatment started or the appearance of one
or more new lesions.

Generally, objective tumor response is defined as CR or PR in RECIST so that the response variable
has a binary endpoint. In the rest of chapter, we will consider a single arm trial with a binary response.
The hypothesis of interest is one-sided H1 : p > p0, and the type I error rate is usually 5 to 10%. The
power is usually 80 to 90%.
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5.3 Classical (old) two-stage designs

It is crucial that these phase II studies have an opportunity to stop early for toxicity, and that is ac-
complished by Data Monitoring Committee (DMC), aka, Data and Safety Monitoring Board (DSMB).
It is also desired to discard ineffective treatment early, and two-stage designs with a futility stop has
been popular.
We will discuss the designs proposed by Gehan (1961), Fleming (1982), and Simon (1989), using
the following unified notation:

• stage I sample size · · ·n1.

• stage I data · · ·X1 ∼ Binomial(n1, p).

• stage I critical value · · ·r1 so that if X1 ≤ r1 then terminate the study for futility.

• stage II sample size · · ·n2.

• stage II data · · ·X2 ∼ Binomial(n2, p).

• total sample size · · ·nt = n1 +n2.

• total data · · ·Xt ≡ X1 +X2.

• stage II critical value · · ·rt so that if Xt ≤ rt then terminate the study for futility, otherwise conclude
efficacy.

5.3.1 Gehan’s design

It is old (1961) and outdated but may be ok to use in limited situations. The design calls for the first
stage with n1 = 14 and r1 = 0, i.e., if no positive response is observed in 14, then stop for futility. The
rational is that if true response rate is at least 20%, then X1 = 0 is unlikely. In fact, it is 0.044. The
second stage sample size depends on the desired precision for estimating p, and it ranges between
1 and 86. A typical n2 is 14 so that nt = 28.

5.3.2 Fleming’s design

Fleming (1982) proposed a multistage design for phase II clinical trials. One of its key characteristics
is stopping early for efficacy.
Example
H0 : p = 0.15, H1 : p = 0.30. (powered at 0.30)
α = .05, β = .2
(Reject H0 in stage 1 if X1 ≥ s1.
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n1 r1 s1 nt rt α 1−β E0[N] E1[N]
29 4 9 47 10 0.0490 0.8013 36.6 36.9

5.4 Simon’s design

In his 1989 paper, Simon introduced two criteria to choose a 2 stage design for single arm and one
sided test. The optimal design has the smallest expected sample size under H0 (n1 +Ep0[n2]), and
the minimax design has the smallest total sample size (n1 +n2). For p0 = 0.15 and p1 = 0.30,

n1 r1 nt rt α 1−β E0[N] pet0 E1[N] pet1
optimal 19 3 55 12 0.048 0.801 30.4 0.68 50.2 0.13

minimax 23 3 48 11 0.046 0.804 34.5 0.54 46.7 0.05
single stage −− −− 48 11 0.048 0.819 48.0 0.00 48.0 0.00

5.4.1 Conditional power

To find a good design (sample sizes and critical values), we need to understand the conditional
power of a design. The conditional power is the probability of rejecting H0 (in stage 2) given the
stage 1 result, i.e., conditioned on X1 = x1. Clearly, when X1 > rt , conditional power is 1, and when
X1 ≤ r1 (futility stop), conditional power is 0.

CP(x1) = P[Reject in stage 2|x1] = P[x1 +X2 > rt |x1]

= P[X2 > rt− x1|x1]

=
n2

∑
x2=rt−x1+1

(
n2

x2

)
px2(1− p)n2−x2

Conditional power is a function of p, x1 and n2 as well as rt
To obtain the unconditional power, we need to integrate (sum) the conditional power over all possible
x1 values.

ρ(p) =
n1

∑
x1=0

CP(x1)Pp[X1 = x1]

ρ(p) =
n1

∑
x1=r1+1

CP(x1)

(
n1

x1

)
px1(1− p)n1−x1.

Given α and β a design is chosen so that ρ(p0)≤ α and ρ(p1)≥ 1−β .
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Unlike in a single-stage situation, there may be more than one good design. Simon used the optimal
and minimax to choose two reasonable designs among many satisfying the type I error rate and
power constraints.
Expected sample size under the null can be written as

Ep0[nt ] = n1 +n2P[continue to stage 2|p0]

= n1 +n2×P[X1 > r1|p0]

= n1 +n2×
n1

∑
x1=r1+1

(
n1

x1

)
px1

0 (1− p0)
n1−x1.

5.4.2 Computing design characteristics

simon.d <- function(n1,r1,nt,rt,p0,p1, pl=TRUE, simple=FALSE){
# x1 <= r1 stop for futility
# xt <= rt conclude futility
R4 <- function(x){ round(x,4) } ; R1 <- function(x){ round(x,1) }

x1 <- 0:n1
pst1.0 <- dbinom(x1,n1,p0) ; pst1.1 <- dbinom(x1,n1,p1)

cp0 <- 1-pbinom(rt-x1,nt-n1,p0) ; cp1 <- 1-pbinom(rt-x1,nt-n1,p1)
cp0[x1 <= r1] <- 0 ; cp1[x1 <= r1] <- 0
cp0[x1 > rt ] <- 1 ; cp1[x1 > rt ] <- 1

pow0 <- sum( pst1.0 * cp0 ) ; pow1 <- sum( pst1.1 * cp1 )

keep <- pmax(pst1.0,pst1.1) > .00009
out1 <- data.frame(x1=R4(x1), pst1.0=R4(pst1.0), pst1.1=R4(pst1.1),

cp0=R4(cp0), cp1=R4(cp1))[keep,]

pet0 <- pbinom(r1, n1, p0) ; pet1 <- pbinom(r1, n1, p1)
en0 <- n1 + (1-pet0)*(nt-n1) ; en1 <- n1 + (1-pet1)*(nt-n1)

out2 <- data.frame(n1,r1,nt,rt, p0=formatC(p0,digit=2,format='f'),
p1=formatC(p1,digit=2,format='f'))

out3 <- data.frame(pow0=R4(pow0), pow1=R4(pow1), en0=R1(en0), en1=R1(en1),
pet0=R4(pet0), pet1=R4(pet1))

if(pl){
plot(out1$x1, out1$x1, type='n', las=1, ylim=c(0,1), bty='L',
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xlab=expression(x[1]), ylab='conditional power' )
lines(out1$x1, out1$cp0, col=1, type='b')
lines(out1$x1, out1$cp1, col=2, type='b')
}
out <- list(out1, out2, out3)
if(simple) out <- list(out2, out3)

out
}

simon.d(n1=23,r1=3,nt=48,rt=11,p0=.15,p1=.30)

[[1]]
x1 pst1.0 pst1.1 cp0 cp1

1 0 0.0238 0.0003 0.0000 0.000
2 1 0.0966 0.0027 0.0000 0.000
3 2 0.1875 0.0127 0.0000 0.000
4 3 0.2317 0.0382 0.0000 0.000
5 4 0.2044 0.0818 0.0255 0.488
6 5 0.1371 0.1332 0.0695 0.659
7 6 0.0726 0.1712 0.1615 0.806
8 7 0.0311 0.1782 0.3179 0.909
9 8 0.0110 0.1527 0.5289 0.967
10 9 0.0032 0.1091 0.7463 0.991
11 10 0.0008 0.0655 0.9069 0.998
12 11 0.0002 0.0332 0.9828 1.000
13 12 0.0000 0.0142 1.0000 1.000
14 13 0.0000 0.0052 1.0000 1.000
15 14 0.0000 0.0016 1.0000 1.000
16 15 0.0000 0.0004 1.0000 1.000

[[2]]
n1 r1 nt rt p0 p1

1 23 3 48 11 0.15 0.30

[[3]]
pow0 pow1 en0 en1 pet0 pet1

1 0.0455 0.803 34.5 46.7 0.54 0.0538
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Given a design, computing operational characteristics such as type I error rate, power, expected
sample size is not difficult; however, solving for the optimal, minimax, and other preferable designs
is not trivial. Simon’s original papers show how to do this.
A very good webpage by Anastasia Ivanova at UNC is at http://cancer.unc.edu/biostatistics/
program/ivanova/SimonsTwoStageDesign.aspx.

5.4.3 Something in between

The two criteria, optimal and minimax, give two designs that are extreme, and neither may fit the
investigators’ needs. For example, for testing H0 : p = 0.3 with α = 0.05 and β = 0.10 at p1 = 0.45, the
optimal design and minimax designs are:

n1 r1 nt rt α 1−β E0[N] pet0
optimal 40 13 110 40 0.048 0.901 60.8 0.70

balanced 53 18 106 39 0.043 0.903 64.4 0.78
minimax 77 27 88 33 0.050 0.901 78.5 0.86

The optimal design tends to have a small n1 and the minimax design tends to have a large n1.
Therefore, a simple approach to find a good alternative design is to force n1 = n2. (balanced design
of Ye and Shyr, 2007)
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simon.d(n1=40,r1=13,nt=110,rt=40,p0=.30,p1=.45, pl=FALSE, simple=TRUE)

[[1]]
n1 r1 nt rt p0 p1

1 40 13 110 40 0.30 0.45

[[2]]
pow0 pow1 en0 en1 pet0 pet1

1 0.0482 0.901 60.8 105 0.703 0.0751

simon.d(n1=53,r1=18,nt=106,rt=39,p0=.30,p1=.45, pl=FALSE, simple=TRUE)

[[1]]
n1 r1 nt rt p0 p1

1 53 18 106 39 0.30 0.45

[[2]]
pow0 pow1 en0 en1 pet0 pet1

1 0.0431 0.903 64.4 102 0.784 0.0687

A more systematic approach is to express the criteria for optimization as

q(w) = w× (nt)+(1−w)×E0[N],

where 0 ≤ w ≤ 1. q(0) and q(1) correspond to the optimal and minimax designs, respectively. Com-
putation shows that the minimax design is the best design with respect to q(w) for w ∈ (0.827,1]. In
between the optimal and minimax designs, the following “admissible” designs exist that optimize q(w)
for certain ranges of w. (Jung, Lee, Kim, George, 2004)

n1 r1 nt rt α 1−β E0[N] pet0 w
optimal 40 13 110 40 0.048 0.901 60.8 0.70 (0,0.006)

admissible 1 43 14 104 38 0.050 0.903 60.8 0.70 (0.006,0.136)
admissible 2 48 16 101 37 0.050 0.901 61.3 0.75 (0.136,0.182)
admissible 3 40 12 94 35 0.048 0.902 62.8 0.58 (0.182,0.303)
admissible 4 46 14 91 34 0.049 0.902 64.1 0.60 (0.304,0.827)

minimax 77 27 88 33 0.050 0.901 78.5 0.86 (0.827,1)
single stage −− −− 90 34 0.045 0.900 90.0 0.00
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5.5 Data analysis following a two-stage design in phase II clini-
cal trials

The primary objective of a (cancer) phase II clinical trial is to make a correct “go/no-go” decision;
however, making a good inference for p is advantageous for planning the following phase III trial.
We have seen before that when we terminate a study based on an interim summary of the data,
a usual statistic that we often compute may be biased. In this section, we will look at the issue of
bias in two-stage design in phase II clinical trial in detail. Simon’s design will be our focus, but many
general discussions can be applied to other designs as well.

5.5.1 p-value

If we ignore the fact that the data were gathered in a two-stage design and compute a p-value as if
X ∼ Binomial(nt , p), it is bigger than the true p-value with the following definition/interpretation.

p-value the probability under the null hypothesis that we would observe the data as or more extreme
than what we have observed

The term “as or more extreme” can be interpreted as “as big or bigger evidence against H0”. In
a simple single-stage design, the meaning of this is usually straightforward. We can all agree that
Z = 2.0 is more extreme (more evidence against H0) than Z = 1.9. However, in two-stage designs,
understanding the definition of p-value sometimes gets tricky.
Example:
H0 : p= 0.3, H1 : p> 0.3; α = 0.05 and the power is 0.80 at p= 0.5. Then the optimal design is: n1 = 15,
r1 = 5, nt = 46, rt = 18.

simon.d(n1=15,r1=5,nt=46,rt=18,p0=.30,p1=.50, pl=FALSE, simple=TRUE)

[[1]]
n1 r1 nt rt p0 p1

1 15 5 46 18 0.30 0.50

[[2]]
pow0 pow1 en0 en1 pet0 pet1

1 0.0499 0.803 23.6 41.3 0.722 0.151

Now suppose we observe X1 = 7 in stage 1 so that we move on to the second stage. And in stage 2,
we observe additional 12 positive responses in n2 = 31 patients (19 in 46 total) so that H0 is rejected
because Xt = 19 > rt .
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If we compute a p-value without taking into account the study design, we might use X ∼Binomial(46,0.3)
and compute

pc = P0[X ≥ 19] =
46

∑
i=19

(
46
i

)
0.3i(1−0.3)46−i

where pc is a conventional p-value. H0 is rejected but this p-value is greater than α as shown below:

1-pbinom(18,46,0.3)

[1] 0.0681

To see this inconsistency clearly, we will rewrite above as

pc = P0[X ≥ 19]

=
15

∑
x1=0

P0[X2 ≥ 19− x1|X1 = x1]P0[X1 = x1].

From this expression we see that in computing pc, we include sample paths that can not be realized
with this Simon’s design, namely, X1 = 0, X2 ≥ 19; X1 = 1, X2 ≥ 18; · · · ; X2 = 5, X2 ≥ 14. A proper
p-value that takes into account the actual sampling scheme used may be

pp =
15

∑
x1=6

P0[X2 ≥ 19− x1|X1 = x1]P0[X1 = x1].

In general, for Simon-like two-stage designs, p-value should be calculated

pp =
n1

∑
x1=r1+1

P0[X2 ≥ xt− x1|X1 = x1]P0[X1 = x1],

if x1 > r1 (i.e., if there is a second stage).
The following simple R script computes this p-value:

pp <- function(n1,r1,nt,rt,x1,xt,p0){
x1v <- (r1+1):n1
p.val <-sum( (1-pbinom(xt-x1v-1, (nt-n1), p0)) * dbinom(x1v, n1, p0) )
pc <- 1-pbinom(xt-1, nt, p0)

if(x1 <= r1){ p.val <- pc <- 1-pbinom(x1-1, n1, p0) }
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c(p.val=p.val, pc=pc)
}

pp(n1=15, r1=5, nt=46, rt=18, x1=7, xt=19, p0=.3)

p.val pc
0.0499 0.0681

When x1 ≤ r1 so that the trial is terminated in stage 1, we can define

pp = P0[X1 ≥ x1].

Thus we think that “moving on to the second stage” has more evidence against H0 than “terminating
in the first stage for futility”, which makes sense.
The proper p-value (pp) has the following characteristics:

• It is always smaller than or equal to pc.

• It is consistent with the hypothesis testing, i.e., pp ≤ α if and only if H0 is rejected.

• If Xt = rt +1, then pp is equal to the level of the test (so-called the actual type I error rate).

• It does not distinguish different sample paths that lead to the same Xt . That is, evidence against
H0 is identical if xt is the same regardless of x1.
For example, X1 = 8, X2 = 12 and X1 = 10, X2 = 10 yield the same p-values.

When does this (pp) break down?
It breaks down when we allow n2 to be different for various values of X1. In some modifications of
Simon’s design (e.g., Banerjee A, Tsiatis AA. Stat Med 2006), the stage 2 sample size varies with
x1. Then, pp can not be computed because we cannot order the sample paths simply based on Xt .
A bigger concern is that this pp cannot be used when n2 is changed from that planned. An even
bigger concern is if the actual n2 is different from that planned, how can we re-compute the critical
value, rt , to control type I error rate? The answer is not simple!

5.5.2 Point estimate

Because the results from a phase II clinical trial are often used in planning a phase III clinical trial, a
good estimate of p is often of interest.
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MLE

In a single stage design, the MLE of p is p̂ = x/n. For a Simon’s design, we can write the likelihood,
letting Yi denote the individual datum from a Bernoulli(p) population, as follows:

L(p|Y ) =

{
Π

n1
i=1 pyi(1− p)1−yi if ∑

n1
i yi ≤ r1

Π
nt
i=1 pyi(1− p)1−yi if ∑

n1
i y1 > r1

l(p|X) =

{
x1log(p)+(n1− x1)log(1− p) if x1 ≤ r1

xt log(p)+(nt− xt)log(1− p) if x1 > r1

Therefore, the MLE for π is

p̂(x) =

{
x1/n1 if x1 ≤ r1

xt/nt if x1 > r1

We have seen before that this p̂(x) has a downward bias, i.e., Ep[p̂(x)] ≤ p. A simple explanation is
that when p̂ is small at the end of stage 1, we tend to terminate the study, and this downward bias
tends to remain; however when p̂ is large at the end of stage 1, more data are gathered and the
upward bias of stage 1 tends to be corrected.
Example: p0 = 0.3, p1 = 0.5, α = 0.05, β = 0.2. Then the minimax design is (n1 = 19, r1 = 6, nt = 39,
rt = 16). Further suppose X1 = 8 and X2 = 12 so that Xt = 20.

p̂ =
20
39

= 0.513.

Whitehead

We can write the bias of the MLE estimator as:

B(p) = Ep[p̂(x)]− p.

So a good estimator would be

p̆ = p̂−B(p).

However, B(p) is unknown, so we need to estimate it. Let’s use the current estimate of p in B(p).
That is

p̂w = p̂−B(p̂w).
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This is Whitehead’s estimator (1986 Biometrika). We can write

p̂w = p̂−Ep̂w [p̂(x)]+ p̂w,

which leads to

Ep̂w [p̂(x)] = p̂.

To find p̂w, we need to numerically solve for p̂w that satisfies

Ep̂w [p̂(x)] =
r1

∑
x1=0

x1

n1
P[X1 = x1|p = p̂w]+

n1

∑
x1=r1+1

n2

∑
x2=0

x1 + x2

nt
P[X1 = x1|p = p̂w]P[X2 = x2|p = p̂w]

= p̂

In the current example, p̂w = 0.520.

Koyama

We can write the bias of the MLE estimator as:

B(p) = Ep[p̂(x)]− p.

So a good estimator would be

p̆ = p̂−B(p).

However, B(p) is unknown, so let’s use B(p̂), that is

p̂k = p̂−B(p̂).

This is simpler and more straightforward than Whitehead’s estimator. We can write

p̂k = p̂−Ep̂[p̂(x)]+ p̂
= 2p̂−Ep̂[p̂(x)].

Solving for p̂k is considerably easier. First compute

Ep̂[p̂(x)] =
r1

∑
x1=0

x1

n1
P[X1 = x1|p = p̂]+

n1

∑
x1=r1+1

n2

∑
x2=0

x1 + x2

nt
P[X1 = x1|p = p̂]P[X2 = x2|p = p̂],
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then subtract it from 2 p̂. In the current example, p̂k = 0.521.

Unbiased estimator

For a general multistage design with early stopping for futility and efficacy, Jung and Kim (2004 Stat
Med) found the unbiased estimator of p. They showed that the pair (M,S), where M is the number
of stage (when terminated) and S the number of successes, is complete and sufficient for p. And
clearly x1/n1 is unbiased for p, the uniformly minimum variance unbiased estimator (UMVUE) is found
through Rao-Blackwell theorem.
The expression for p̂ub is complex, but for Simon’s two-stage design (two-stage with only futility stop),
it can be written as

p̂ub =
∑

n1∧xt
x1=(r1+1)∨(xt−n2)

(n1−1
x1−1

)( n2
xt−x1

)
∑

n1∧xt
x1=(r1+1)∨(xt−n2)

(n1
x1

)( n2
xt−x1

) ,

where a∧b = min(a,b) and a∨b = max(a,b).
For the current example, max(r1 +1, xt−n2) = max(6+1, 20−20) = 7, and min(n1, xt) = min(19,20) =
19, and

p̂ub =
∑

19
x1=7

( 18
x1−1

)( 20
20−x1

)
∑

19
x1=7

(19
x1

)( 20
20−x1

)
= 0.517.

Median estimator

Another simple estimator is the value, p∗0 such that the p-value for testing H0 : p = p∗0 is 0.5 by the
realized sample path. Many adaptive designs for phase II clinical trials were originally motivated as a
hypothesis testing procedure, and computing this estimator should be fairly simple in many designs.
If the test statistic is continuous, this estimator is known as the median unbiased estimator (Cox
and Hinkley 1974). It is unbiased for the true median. The proof uses the fact that the p-value is
distributed Uni f (0,1) under H0.
We need to find p∗0 such that

pp =
n1

∑
x1=r1+1

Pp∗0[X2 ≥ xt− x1|X1 = x1]Pp∗0[X1 = x1]

=
19

∑
x1=7

Pp∗0[X2 ≥ 20− x1|X1 = x1]Pp∗0[X1 = x1]

= 0.5.
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p∗0 = 0.500.

Comparisons

To compare these methods, we compute the bias of each estimator for various true values of p. Use
bias and mean squared error = var + bias2 to compare them. For each estimator, compute p̂(X) for
every sample path (defined by X in [0,nt ]) and compute

Ep[p̂(X)] =
nt

∑
x=0

p̂(x)Pp[X = x].

Mean squared errors can be computed by

MSEp[p̂(X)] = Ep[(p̂(X)− p)2]

=
nt

∑
x=0

(p̂(x)− p)2Pp[X = x].

The following two plots show bias and MSE for the current example.
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Chapter 6

Factorial design

6.1 Introduction

Factorial clinical trials (Piantadosi) Experiments that test the effect of more than one treatment
using a design that permits an assessment of interactions among the treatments

The simplest example of a factorial design is 2 treatment, 2 treatment groups (2 by 2) designs. With
this design, one group receives both treatment, a second group receives neither, and the other two
groups receive one of A or B.

Treatment B
Treatment A No Yes Total

No n n 2n
Yes n n 2n

Total 2n 2n 4n

Four treatment groups and sample sizes in a 2×2 balanced factorial design.
Alternatives to a 2×2 factorial design

• Two separate trials (for A and for B)

• Three arm trial (A, B, neither)

Two major advantages of factorial design (but not simultaneously):

• Allows investigation of interactions (drug synergy).

Drug synergy occurs when drugs interact in ways that enhance effects or side-effects of those
drugs.

• Reduces the cost (sample size) if the drugs do not interact.
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Some requirements for conducting a clinical trial with factorial design:

• The side effects of two drugs are not cumulative to make the combination unsafe to administer.

• The treatments need to be administered in combination without changing dosage of the indi-
vidual drugs.

• It is ethical not to administer the individual drugs. A and B may be given in addition to a standard
drug so all groups receive some treatment.

• We need to be genuinely interested in studying drug combination, otherwise some treatment
combinations are unnecessary.

Some terminology

• Factors (how many different treatments are in consideration)

• Levels (2 if yes/no)

• 2k factorial studies have k factors, each with two levels (presence/absence)

• Full factorial design has no empty cells.

• Unreplicated study has one sample per cell (obviously not very common in clinical studies)

• Fractional factorial designs (some cells are left empty by design)

• Complete block designs / Incomplete block designs

• Latin squares

6.2 Notation using cell means

Treatment B
Treatment A No Yes

No η00 η01
Yes η10 η11

Here, η represents the mean of each treatment group. Consider a saturated model:

ηi j = µ +αi +β j + γi j,

where i = 0,1, and j = 0,1.
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Treatment B
Treatment A No Yes

No µ +α0 +β0 + γ00 µ +α0 +β1 + γ01
Yes µ +α1 +β0 + γ10 µ +α1 +β1 + γ11

Then we have 8 parameters to estimate from 4 data points; we need to propose some restrictions so
that the parameters are estimable. One such restriction, α0 = 0, β0 = 0, γ00 = γ01 = γ10 = 0, leads to:

Treatment B
Treatment A No Yes

No µ µ +β1
Yes µ +α1 µ +α1 +β1 + γ11

and α1, β1, and γ11 are estimable because we can write

µ = η00

α1 = η10−η00

β1 = η01−η00

γ11 = η11−η01−η10 +η00

With this formulation, α1 is the effect of treatment A, β1 is the effect of treatment B, and γ11 is the
interaction effect. (If the effects of A and B are additive with no interaction, γ11 = 0.)
For each cell, the observations are

Y0i = µ + ε0i

YAi = µ +α1 + εAi

YBi = µ +β1 + εBi

YABi = µ +α1 +β1 + γ11 + εABi

and we assume Var(ε0i) =Var(εAi) =Var(εBi) =Var(εABi) = σ2. We can test for any treatment effect
by testing H0 = α1 = β1 = γ11 = 0.

6.3 Efficiency when no interaction

The observed mean responses are:

Treatment B

Treatment A No Yes

No Ȳ0 ȲB

Yes ȲA ȲAB
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Note if we assume the sample size in each cell is n,

Var(Ȳ0) =Var(ȲA) =Var(ȲB) =Var(ȲAB) =
σ2

n

Then the interaction effect may be estimated by

γ̂11 = (ȲAB− ȲB)− (ȲA− Ȳ0),

and

Var(γ̂11) =
4σ2

n

The treatment A effect can be estimated as

α̂1 = ȲA− Ȳ0,

and its variance is

Var(α̂1) =
2σ2

n
.

If no interaction is present then γ11 = 0, and α̃1 = ȲAB− ȲB can also be used to estimate α1. If we use
the average of α̂1 and α̃1 to estimate α, this estimator has a smaller variance.

α̌1 =
α̂1 + α̃1

2
=

(ȲA− Ȳ0)+(ȲAB− ȲB)

2

β̌1 =
β̂1 + β̃1

2
=

(ȲB− Ȳ0)+(ȲAB− ȲA)

2

Var(α̌1) =
1
4

Var (ȲA− Ȳ0 + ȲAB− ȲB) =
σ2

n

In order to have the same efficiency in a two-arm trial (A vs placebo), we would need 2n patients in
each treatment arm.

var (α̂1) =
2σ2

2n
=

σ2

n
.

So if we were to test A and B in two separate experiments we would need 2n per arm × 4 arms (A
and placebo, B and placebo), totaling 8n subjects. Noticing we are repeating the placebo in these
hypothetical experiments, we decide to use a 3-arm experiment with A, B, and placebo arms. Then
we would require a total of 6n subjects for the same precision.
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Example:
The group means are:

Treatment B
Treatment A No Yes

No 10 40
Yes 30 60

If there is a synergistic effect, then η11 > 60.

Treatment B
Treatment A No Yes

No 10 40
Yes 30 80

Treatment B
Treatment A No Yes

No 10 40
Yes 30 120

In the last situation, the treatment effects may be multiplicative.

Treatment B
Treatment A No Yes

No log(10) = 1 log(40) = 1.60
Yes log(30) = 1.48 log(120) = 2.08

Suppose the samples of size 20 yield the following estimates of the cell means.

Treatment B
Treatment A No Yes

No 9.83 40.05
Yes 28.94 59.76

Assuming no interaction, to estimate the drug A effect we compute either

α̂1 = ȲA− Ȳ0 = 28.94−9.83 = 19.11

or

α̃1 = ȲAB− ȲB = 59.76−40.05 = 19.71

or their average (19.11+19.71)/2 = 19.41.
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How bad is it to estimate α1 this way when there is actually a significant interaction?

E[(α̂1 + α̃1)/2] =
1
2

E[(ȲA− Ȳ0)+(ȲAB− ȲB)]

=
1
2
((µ +α1)−µ +(µ +α1 +β1 + γ11)− (µ +β1))

= α1 +
γ11

2

6.4 Example: the Physician’s Health Study I (1989)

Read all about it on http://phs.bwh.harvard.edu/.
The Physician’s Health Study was a randomized clinical trial designed to test the following two theo-
ries:

• Daily low-dose aspirin use reduces the risk of cardiovascular disease.

• Beta carotene reduces the risk of cancer.

Population hierarchy:

• 261,248 US male MDs aged 40 to 84.

• 112,528 responded to questionnaires.

• 59,285 willing to participate.

• 33,332 willing and eligible MDs enrolled in run-in (18 weeks of active aspirin and beta-carotene
placebo).

Run-in period Eligible patients are monitored for treatment compliance.

• 22,071 randomized

Beta-carotene
Aspirin Active Placebo Total
Active 5,517 5,520 11,037

Placebo 5,519 5,515 11,034
Total 11,036 11,035 22,071

Major findings:

• The trial’s DSMB stopped the aspirin arm several years ahead of schedule on 1988/1/25 be-
cause it was clear that aspirin had a significant effect on the risk of a first myocardial infarction.
(It reduced the risk by 44%.)
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– Did it change the sample sizes for the Beta-carotene components?

• There were too few strokes or deaths to base sound clinical judgement regarding aspirin and
stroke or mortality.

• The beta-carotene arm terminated as scheduled on 1995/12/12 with the conclusion that 13
years of supplementation with beta-carotene produced neither benefit nor harm. Beta-carotene
alone was not responsible for the health benefit seen among people who ate plenty of fruits and
vegetables.

• Over 300 other findings have emerged from the trial so far.

6.5 Treatment interactions

Factorial designs are the only way to study treatment interactions. Recall the interaction term is
estimated by γ̂11 = (ȲAB− ȲB)− (ȲA− Ȳ0), and its variance is Var(γ̂11) = 4σ2/n. This variance is 4
times as large as that of A and B main effects, and to have the same precision for an estimate of an
interaction effect, the sample size has to be 4 times as large. This means, the two main advantages
of the factorial designs (efficiency and interaction objectives) cannot be satisfied simultaneously.
When there is an AB interaction, we cannot use the estimators, α̌1 and β̌1, which are only valid
with no interaction effect. In fact, we cannot talk about an overall main effect in the presence of an
interaction. Instead, we can talk about the effect of A in the absent of B,

α1 = ȲA− Ȳ0,

or the effect of A in the presence of B

α
′
1 = α1 + γ11 = ȲAB− ȲB.

Some additional notes

• In the 2× 2× 2 design (23 design), there are 3 main effects and 4 interactions possible. The
number of high order interactions will grow quickly with k, but oftentimes, they are (assumed to
be) 0.

• A “quantitative” interaction does not affect the direction of the treatment effect. For example
when treatment B is effective either with or without treatment A, but the magnitude of its effec-
tiveness changes.

• With a “qualitative” interaction, the effects of A are reversed with the presence of B. In this case,
an overall treatment A effect does not make sense.
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• The factorial design can be analyzed with linear models (analysis of variance models).

Limitations of factorial designs

• A higher level design can get complex quickly.

• Test for interaction requires a large sample size (or have a very low power if the study is pow-
ered for the main effects).

• Combination therapy may be considered as a treatment in its own right.

Of further interest...

• Partial (fractional) factorial designs have missing cells by design (especially when higher order
interactions are assumed to be zero)
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Chapter 7

Crossover design

Crossover trials are those in which each patient is given more than one treatment, each at different
times in the study, with the intent of estimating differences between them.
In a simple 2×2 design (or AB/BA design), patients are randomized to either “A then B” group or “B
then A” group.

Period
Group I II

AB Treatment A Treatment B
BA Treatment B Treatment A

2 Treatments / 2 Periods / 2 Sequences

P1 P2
S1 A B n1
S2 B A n2

2 Treatments / 2 Periods / 4 Sequences

P1 P2
S1 A B n1
S2 B A n2
S3 A A n3
S4 B B n4

2 Treatments / 4 Periods / 2 Sequences

P1 P2 P3 P4
S1 A B A B n1
S2 B A B A n2

7.1 Some characteristics of crossover design

• All subjects receive more than one treatment (not simultaneously).

Clinical Trials 63 Tatsuki Koyama, PhD



• Each subject acts as own control. Therefore, the treatment groups are comparable without
relying on randomization.

– Treatment periods (order of A and B) are often randomly assigned.

– Baseline characteristics are identical with regard to many patient characteristics, but not
with regard to their recent history of exposure to other potentially effective treatments.
carryover effects

– The comparability of the treatment groups is not guaranteed by the structure of the trial
alone. The investigators need to estimate the carryover effects.

• Crossover designs are not used ...

– with any condition that treatment could effect considerable change.

– for acute illness.

• Crossover designs are most suitable for treatments intended for rapid relief of symptoms in
chronic diseases, where the long-term condition of the patient remains fairly stable.

Precision
The primary strength of crossover trials is increased efficiency. Suppose the treatment effects are

Yt ∼ Normal(µt ,σ
2),

Yc ∼ Normal(µc,σ
2),

and we are interested in µt−µc. In a parallel design (with per group sample size of n), we have

∆̂ = Ȳt− Ȳc ∼ Normal
(

µt−µc,
2σ2

n

)
.

With a TC/CT crossover design with sample size of n,

var(∆̂) =
2σ2

n
−2cov(Ȳt ,Ȳc)

=
2σ2

n
(1−ρtc) ,

where ρtc is the within-subject correlation of responses on treatments T and C. Therefore, a crossover
design is more efficient than a parallel design given ρtc > 0.
Recruitment
Some patients may hesitate to participate in a clinical trial if there is a 50% probability of not receiving
any effective treatment. With a crossover design, everyone is guaranteed to receive the test drug.
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On the other hand, the patients may hesitate to participate in a crossover trial because they will go
through more than one treatment, especially when outcomes are assessed with diagnostic proce-
dures such as X-ray, blood drawing, lengthy questionnaires.

Carryover effects
The biggest concern is the possibility that the treatment effect from one period might continue to
be present during the following period. A sufficiently long “washout” period between the treatments
may prevent significant carryover effects (but how long is sufficiently long?). If there are baseline
measurements that represent patient’s disease status, this can be checked against their baseline
levels.

If the treatment effects a permanent change or cure in the underlying condition, the treatment given
after could look artificially superior.

Dropouts
In a crossover design, the trial duration tends to be longer than a comparable study using inde-
pendent groups, which may cause more dropouts. Also because every patient take more than one
treatment, dropouts due to severe side effects may also increase. The consequences of dropouts
are more severe in crossover trial; a simple analysis cannot use only the data from the first period.

7.2 Analysis of 2×2 crossover design

P1 P2

S1 = AB ȲA1 = β0 ȲB2 = β0 +β1 +β2

S2 = BA ȲB1 = β0 +β1 ȲA2 = β0 +β2 +β3

β0 · · · Treatment A effect
β1 · · · Increment of treatment effect due to B.
β2 · · · Carryover effect of treatment A
β3 · · · Increment carryover effect of treatment B

Treatment B effect is β0+β1. We cannot estimate the treatment-period interaction because that term
would only appear in ȲA2 cell and would not be separately estimable from β3.

Suppose no treatment by period interaction, i.e., the carryover effects are the same for both
sequences. This means that β3 = 0. We can then estimate β2 (carryover effect) by
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β̂2 =
1
2
(ȲB2− ȲB1 + ȲA2− ȲA1) .

Var(β̂2) =
1
4

Var{(ȲB2− ȲA1)+(ȲB1− ȲA2)}

=
1
4

(
2

σ2

n
(1−ρ)×2

)
=

σ2

n
(1−ρ).

There are two estimates of the increment of treatment effect (or B-effect − A-effect), one from each
period. We use their average to estimate β1.

β̂1 =
1
2
(ȲB2− ȲA2 + ȲB1− ȲA1) .

Var(β̂1) =
1
4

Var((ȲB2− ȲA1)+(ȲB1− ȲA2))

=
1
4

(
2

σ2

n
(1−ρ)×2

)
=

σ2

n
(1−ρ).

Similarly, there are two estimates for β0, which we can take average of to get

β̂0 =
1
2
(ȲA1 +(ȲB1 + ȲA2− ȲB2)) .

Var(β̂0) =
1
4

Var((ȲA1− ȲB2)+(ȲB1 + ȲA2))

=
1
4

(
2

σ2

n
(1−ρ +1+ρ)

)
=

σ2

n

More generally, we need to consider the case when carryover effects are not equal.
The carryover effects are different for treatment A and for B. We can estimate β3 by

β̂3 = ȲA2− ȲB2 + ȲB1− ȲA1
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If β3 is not 0, then we must estimate the treatment difference (β1) as

β̂1 = ȲB1− ȲA1,

using only the data from the first period. Obviously, β0 is estimated by ȲA1. And the carryover effect
is estimated by

β̂2 = ȲB2− ȲB1.

Variances
Suppose that each Ȳ is estimated with variance σ2/n and that the within-person correlation of re-
sponse is ρ. Show, when β3 6= 0,

Var{β̂0}=
σ2

n

Var{β̂1}=
2σ2

n

Var{β̂2}=
2σ2

n
.

Var{β̂3}=
4σ2

n
(1+ρ)

Var{β̂3} is at least twice as large as Var{β̂2} for ρ ≥ 0. Therefore, any crossover trial designed
to detect the main effects of treatment will have lower power for carryover effect, which is critical
to detect because its presence affects both the analysis and interpretation of the trial. With the
presence of a clinically important carryover effects, a crossover design is no more efficient than an
independent-groups trial.
A two-stage procedure may be used: the presence of carryover effects is tested first with a type I
error rate of 5 ∼ 10% before moving on to the primary hypothesis testing of the treatment effects.
Estimates will be different depending on the conclusion from the first stage.

7.3 Examples

Capecitabine/Erlotinib Followed of Gemcitabine Versus Gemcitabine/Erlotinib Followed of
Capecitabine
http://clinicaltrials.gov/ct2/show/NCT00440167
This crossover trial is performed in advanced and metastatic pancreatic cancer not previously ex-
posed to chemotherapy. The study compares a standard arm with gemcitabine plus erlotinib to
an experimental arm with capecitabine plus erlotinib. It is the first trial of its kind to incorporate
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second-line treatment into the study design. Patient who fail on first-line therapy are switched to
the comparator chemotherapy without erlotinib. The trial therefore not only compares two different
regimens of first-line treatment, it also compares two sequential treatment strategies.

Colchicine Randomized Double-Blind Controlled Crossover Study in Behcet’s Disease
http://clinicaltrials.gov/ct2/show/study/NCT00700297
Method: patients were randomized at the study entry to take either colchicine or placebo. At 4
months, they were crossed over. Those who were taking colchicine went on placebo and those
on placebo went on colchicine. Each patient tried therefore, both colchicine and placebo. The
primary outcome was the effect of colchicine on the disease activity index, the IBDDAM (16-17). To
calculate the overall IBDDAM of the baseline, the IBDDAM of the last 12 months (prior to the study) of
each manifestation was calculated and added together. The overall disease activity index was then
divided to the number of months (12 months) to have the mean activity index per month. IBDDAM
was then measured every 2 months (in the middle and at the end, in each arm of the study). The
total IBDDAM of the 4 months was then divided by 4 to have the mean activity index per month. The
secondary outcome was to see how the individual symptoms responded to colchicine (IBDDAM of
each manifestation).
Statistical analysis: The analysis was done by the intention to treat method. As the difference be-
tween IBDDAM before and after treatment had normal distribution Student T test for paired samples
were used to evaluate the outcome in the colchicine and the placebo group. As the Levene’s test
showed the homogeneity of variance, ANOVA (one way) was used to test the effect of treatment
(colchicine and placebo) and gender on patients’ outcome. The dependent variable was the dif-
ference between IBDDAM (before and after the treatment). The independent variables were the
treatment, and the gender. SPSS 15 was used for all statistical calculations.

A Placebo-Controlled, Cross-Over Trial of Aripiprazole
http://clinicaltrials.gov/ct2/show/record/NCT00351936
Primary endpoint: Evaluate the effects of aripiprazole on weight, Body Mass Index (BMI), and
waist/hip circumference.
This study is a ten-week, placebo-controlled, double-blind, cross-over, randomized trial of the novel
antipsychotic agent, aripiprazole, added to 20 obese stable olanzapine-treated patients with schizophre-
nia or schizoaffective disorder. The advantage of the crossover design is that each subject will act
as their own control and fewer subjects will be required.
The double-blind, placebo-controlled, crossover study will consist of two random order 4-week treat-
ment arms (aripiprazole 15 mg or placebo) separated by a 2-week adjuvant treatment washout.
Following baseline, subjects will be randomized, double-blind, to either aripiprazole or placebo for 4
weeks. After the initial 4 weeks of medication patients will be reassessed, have a 2-week washout
period and then crossover to the other treatment for another 4 weeks.
Data management and statistical analysis will be provided by Dr. David Schoenfeld from the Mas-
sachusetts General Hospital, Biostatistics Center.
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7.4 Examples

7.4.1 Hills and Armitage

Hills M, Armitage P (1979) “The two-period cross-over clinical trial”. Br J Clin Pharmacol. 8: 7-20.

• Children with enuresis were treated with a new drug or placebo for 14 days

• The primary data are number of dry nights out of 14.

An estimate of within-subject differences (treatment effects) is δ =YA−YB. The carryover effects may
be estimated by

Z1 =
δ̄1− δ̄2√

var(δ̄1)+ var(δ̄2)
,

and Z is approximately normally distributed under H0. Similarly the overall treatment effect can be
estimated by

Z2 =
δ̄1 + δ̄2√

var(δ̄1)+ var(δ̄2)
,

and this is approximately normal under H0.

d0 <- c(8,5,12,11,14,10,8,0,6,8,9,7,11,6,13,9,3,5,8,8,6,0,8,9,
0,0,4,8,8,14,13,12,2,4,10,2,7,5,8,13,13,13,8,10,9,7,7,7,9,0,
7,10,10,6,2,2,7,6)

pat <- rep(1:29, each=2)
period <- rep(1:2, 29)

placebo.first <- c(2,5,8,10,12,14,15,17,20,23,26,29)
group <- rep(1, 29) ; group[placebo.first] <- 2
trt <- matrix(1:0, nrow=29, ncol=2, byrow=TRUE)
trt[placebo.first,1] <- 0 ; trt[placebo.first,2] <- 1

( d <- data.frame(id=pat, group=rep(group,each=2), period=period, trt=c(t(trt)), dry=d0) )

id group period trt dry
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1 1 1 1 1 8
2 1 1 2 0 5
3 2 2 1 0 12
4 2 2 2 1 11
5 3 1 1 1 14
6 3 1 2 0 10
7 4 1 1 1 8
8 4 1 2 0 0
9 5 2 1 0 6
10 5 2 2 1 8
11 6 1 1 1 9
12 6 1 2 0 7
13 7 1 1 1 11
14 7 1 2 0 6
15 8 2 1 0 13
16 8 2 2 1 9
17 9 1 1 1 3
18 9 1 2 0 5
19 10 2 1 0 8
20 10 2 2 1 8
21 11 1 1 1 6
22 11 1 2 0 0
23 12 2 1 0 8
24 12 2 2 1 9
25 13 1 1 1 0
26 13 1 2 0 0
27 14 2 1 0 4
28 14 2 2 1 8
29 15 2 1 0 8
30 15 2 2 1 14
31 16 1 1 1 13
32 16 1 2 0 12
33 17 2 1 0 2
34 17 2 2 1 4
35 18 1 1 1 10
36 18 1 2 0 2
37 19 1 1 1 7
38 19 1 2 0 5
39 20 2 1 0 8
40 20 2 2 1 13
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41 21 1 1 1 13
42 21 1 2 0 13
43 22 1 1 1 8
44 22 1 2 0 10
45 23 2 1 0 9
46 23 2 2 1 7
47 24 1 1 1 7
48 24 1 2 0 7
49 25 1 1 1 9
50 25 1 2 0 0
51 26 2 1 0 7
52 26 2 2 1 10
53 27 1 1 1 10
54 27 1 2 0 6
55 28 1 1 1 2
56 28 1 2 0 2
57 29 2 1 0 7
58 29 2 2 1 6

# Group 1: trt -> placebo
g1 <- subset(d, group==1)
g2 <- subset(d, group==2)

ms <- function(v) c(mean(v), sd(v)/sqrt(length(v)))

g1.diff <- matrix(g1$dry, ncol=2, byrow=TRUE)
ms(g1.diff[,1]-g1.diff[,2])

[1] 2.824 0.841

g2.diff <- matrix(g2$dry, ncol=2, byrow=TRUE)
ms(g2.diff[,2]-g2.diff[,1])

[1] 1.250 0.863

z1 =
2.82−1.25√

0.84122 +0.86272
= 1.30

z2 =
2.82+1.25√

0.84122 +0.86272
= 3.38
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7.5 Other crossover designs

By GG Koch, IA Amara, BW Brown, T Colton, and DB Gillings (1989).

Consider sequences of treatments TT, TC, and CT.

1. The first period is parallel group design to address direct use in all patients

2. The second period for TT versus TC is a parallel group comparison design to address T versus
C for patients who received T during the first period.

3. The second period for TT versus CT enables “delayed start” assessment of T relative to C if
dropout during the first period is minimal and non-informative.

4. The second period for CT versus TC is for assessment of T relative C if carryover effects are
small.

5. If T − C from 1, 2, 4 are similar (carryover effects of T to T, T to C, C to T are small), then an
overall analysis of treatment effect differences have a very high power.

6. More patients are allocated to receive T within each period.

P1 P2

S1 =CT β0 β0 +β1 +β2

S2 = TC β0 +β1 β0 +β2 +β3

S3 = T T β0 +β1 β0 +β1 +β2 +β3 + τ

β0 · · · Treatment C effect
β1 · · · Increment of treatment effect due to T .
β2 · · · Carryover effect for C
β3 · · · Increment of carryover effect for T

τ could represent additional treatment effects for longer duration.
Period 1 comparison between T and C is for primary treatment effects, and period 2 comparisons
address effects of delayed start (CT vs. TT) and of long-duration effects.
Now consider TT, TC, CT, and CC.

1. This design can estimate all the parameters in the TT, TC, CT case.

2. CC vs. CT enables estimation of treatment effects with run-in period.

3. Relatively unethical to have many patients assigned to receive C.
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P1 P2

S0 =CC β0 β0 +β2

S1 =CT β0 β0 +β1 +β2

S2 = TC β0 +β1 β0 +β2 +β3

S3 = T T β0 +β1 β0 +β1 +β2 +β3 + τ

β0 · · · Treatment C effect
β1 · · · Increment of treatment effect due to T .
β2 · · · Carryover effect for C
β3 · · · Carryover effect for T

τ could represent additional treatment effects for longer duration.
Example: Pincus T et al. (2004) “Patient preference for placebo, acetaminophen (paracetamol) or
celecoxib efficacy studies (PACES): two randomised, double blind, placebo controlled, crossover
clinical trials in patients with knee or hip osteoarthritis”. Ann Rheum Dis. 63: 931-939.

7.6 Latin squares

When there are k treatments and each patient is to receive all k treatments. Then there are k!
possible sequences. Three treatments yield 6 sequences, four treatments yield 24, and five yield
120.
k = 3: ABC, ACB, BAC, BCA, CAB, CBA
The idea is to use a reduced number of sequences (reduced sample size) but maintain a good
“representation”, i.e., every treatment is represented in every period with the same frequency.

P1 P2 P3
S1 A B C
S2 B C A
S3 C A B

P1 P2 P3
S1 A C B
S2 B A C
S3 C B A

There are 6!/(3!)(3!) = 20 ways to choose 3 sequences from 6, but only 2 of those are Latin squares.

7.7 Optimal designs

There is an extensive literature on optimal choice of sequences for measuring treatment effects in
the presence of carryover.
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• More advanced theory · · ·

• Optimality depends on assumptions about carryover effects

Concerns about carryover can be reduced by using designs with more than two periods. (Laska E,
Meisner M, Kushner HB. (1983) “Optimal crossover designs in the presence of carryover effects”.
Biometrics. 39(4): 1087-1091.
Consider treatments A and B in two sequences: AABB and BBAA. This design is not uniquely optimal,
but it can be used to estimate treatment effects with more efficiency than using data from period 1.

P1 P2 P3 P4
AABB µ11 = µ +π1 + τa µ12 = µ +π2 + τa +λa µ13 = µ +π3 + τb +λa µ14 = µ +π4 + τb +λb
BBAA µ21 = µ +π1 + τb µ22 = µ +π2 + τb +λb µ23 = µ +π3 + τa +λb µ24 = µ +π4 + τa +λa

Note µ is the overall mean, π is the carryover effect, τ is the treatment effect, and λ is the carryover
effect.
To obtain an unadjusted (for carryover effect) treatment effect (B−A), use the following weights.

P1 P2 P3 P4
AABB −1/4 −1/4 1/4 1/4
BBAA 1/4 1/4 −1/4 −1/4

• Weights sum to 1 for B and −1 for A to form a contrast B−A.

• Weights sum to 0 over sequence and period.

− 1
4

µ11−
1
4

µ12 +
1
4

µ13 +
1
4

µ14 +
1
4

µ21 +
1
4

µ22−
1
4

µ23−
1
4

µ24

= (τb− τa)+(λb−λa)/4

When carryover effects are present, we can construct weights so that carryover effects will be elimi-
nated.

P1 P2 P3 P4
AABB −w1 −w2 w3 w4
BBAA w1 w2 −w3 −w4

Constraints on w’s.

• w1 +w2 +w3 +w4 = 1

• w2−w3 +w4 = 0
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−w1µ11−w2µ12 +w3µ13 +w4µ14 +w1µ21 +w2µ22−w3µ23−w4µ24

=−w1τa−w2(τa +λa)+w3(τb +λa)+w4(τb +λb)+w1τb +w2(τb +λb)−w3(τa +λb)−w4(τa +λa)

= (w1 +w2 +w3 +w4)τb− (w1 +w2 +w3 +w4)τa− (w2−w3 +w4)λa +(w2−w3 +w4)λb

= τb− τa

Let σ2 be the within-patient variance and n be the number of patients per sequence. The variance of
the unadjusted estimator is

2

{(
1
4

)2

+

(
1
4

)2

+

(
1
4

)2

+

(
1
4

)2
}

σ2

n
= 0.5

σ2

n
.

And for adjusted estimator:

2
{

w2
1 +w2

2 +w2
3 +w2

4
} σ2

n
.

If we pick w1 = 4/10, w2 = 2/10, w3 = 3/10, w4 = 1/10, we have

2

{(
4

10

)2

+

(
2

10

)2

+

(
3
10

)2

+

(
1

10

)2
}

σ2

n
= 0.6

σ2

n
.

If we only use data from the first period

2
{

12 +02 +02 +02} σ2

n
= 2

σ2

n
.

The adjusted estimator has slightly higher variance, but it is unbiased with presence of carryover.
William’s square
When an even number of treatments are considered in the same number of periods, William’s square
gives an optimal design. (Williams EJ (1949). “Experimental designs balanced for the estimation of
residual effects of treatments”. Australian Journal of Scientific Research. Series A2. 149-168.) It is
a Latin square design in which every treatment precedes every other treatments exactly once.

P1 P2 P3 P4
sequence 1 A B C D
sequence 2 B D A C
sequence 3 C A D B
sequence 4 D C B A

Latin square designs are a special type of incomplete block design.
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Example:
An experiment was conducted to study the effects of different types of background music on the
productivity (Y ) of bank tellers. The treatments were defined as five combinations of temp and style
of music:
A: slow, instrumental and vocal
B: medium, instrumental and vocal
C: fast, instrumental and vocal
D: medium, instrumental only
E: fast, instrumental only
There are 120 possible sequences of these treatments.
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Chapter 8

Group sequential design

8.1 Introduction

Fully sequential method A test of significance is repeated after each observation.

Group sequential method A test of significance is repeated after a group of observations.

Some basic characteristics of a group sequential method

• The response variable needs to be observed immediately.

• Number of stages (or looks) can be 2 to 20.

• Looks are equally spaced. (This is not a critical requirement.)

• At each interim (and final) analysis, compute summary statistic based on the cumulative data.

• A group sequential method is a strategy to stop early as opposed to an “adaptive design”, which
is often viewed as a strategy to extend the study if necessary.

• A set of critical values are computed so that the overall α is as specified.

– Haybittle-Peto (1971)
This is an ad hoc method in which a very conservative critical value (e.g., Z > 3) is used
at every interim test. At the final analysis, no adjustment is used (i.e., Z >−1.960)
It is highly unlikely to stop early.

– Pocock (1977)
A ”repeated test of significance” at a constant significance level to analyze accumulating
data.

– O’Brien-Fleming (1979)
The significance levels increase as the study progress.
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8.2 Example

For testing

µt−µc = 0
µt−µc > 0

With α = 0.025 and power= 0.90 at δ1 = 0.25 (σ2 = 1), 5-stage group-sequential designs are:

library(gsDesign)

x.of <- gsDesign(k = 5, test.type = 2, alpha = 0.025, beta = 0.1, delta0 = 0, delta1 = 0.25,
n.fix = 1, sfu = "OF")

x.po <- gsDesign(k = 5, test.type = 2, alpha = 0.025, beta = 0.1, delta0 = 0, delta1 = 0.25,
n.fix = 1, sfu = "Pocock")

0.0 0.2 0.4 0.6 0.8 1.0 1.2

−4

−2

0

2

4

Information Fraction

B
ou

nd
ar

y

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

●

●

Pocock
O'Brien−Fleming

Sample size is expressed in terms of ratios to the sample size of the conventional single-stage
design.
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## Pocock
x.po

Symmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.

Sample
Size

Analysis Ratio* Z Nominal p Spend
1 0.241 2.41 0.0079 0.0079
2 0.483 2.41 0.0079 0.0059
3 0.724 2.41 0.0079 0.0045
4 0.965 2.41 0.0079 0.0037
5 1.207 2.41 0.0079 0.0031

Total 0.0250

++ alpha spending:
Pocock boundary.

* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 4 5 Total E{N}
0.00 0.0079 0.0059 0.0045 0.0037 0.0031 0.025 1.177
3.24 0.2059 0.2603 0.2086 0.1402 0.0851 0.900 0.685

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 4 5 Total
0.00 0.0079 0.0059 0.0045 0.0037 0.0031 0.025
3.24 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

## O'Brien-Fleming
x.of

Symmetric two-sided group sequential design with
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90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.

Sample
Size

Analysis Ratio* Z Nominal p Spend
1 0.205 4.56 0.0000 0.0000
2 0.411 3.23 0.0006 0.0006
3 0.616 2.63 0.0042 0.0038
4 0.821 2.28 0.0113 0.0083
5 1.026 2.04 0.0207 0.0122

Total 0.0250

++ alpha spending:
O'Brien-Fleming boundary.

* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 4 5 Total E{N}
0.00 0.000 0.0006 0.0038 0.0083 0.0122 0.025 1.02
3.24 0.001 0.1244 0.3421 0.2840 0.1484 0.900 0.75

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 4 5 Total
0.00 0 0.0006 0.0038 0.0083 0.0122 0.025
3.24 0 0.0000 0.0000 0.0000 0.0000 0.000

• In the tables of the critical values, Nominal p is simply P[Z > z], where Z ∼ Normal(0,1).

• Spend is the type I error probability that has been spent by the end of each stage, and it is
based on conditional probability.
For example, for the second stage of the Pocock design, it is 0.006. It can be computed as
follows:
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P[Z2 > 2.413|−2.413≤ Z1 ≤ 2.413].

8.3 General applications

Let k = 1, · · · ,K be denote the stages so that we have

X̄ (k)
t − X̄ (k)

c =
1

ntk

ntk

∑
i=1

Xti−
1

nck

nck

∑
i=1

Xci

∼ Normal
(

µt−µc,
σ2

ntk
+

σ2

nck

)
,

where ntk and nck are the cumulative sample sizes for the treatment and control groups. Note that
this is not a conditional distribution but a marginal distribution.

Define “information” as Ik = (σ2/ntk +σ2/nck)
−1. Roughly speaking, information is square of what

appears in the denominator of the test statistic, Z. When nk = ntk = nck, Ik = (2σ2/nk)
−1.

The test statistic for stage k is

Zk =
X̄ (k)

t − X̄ (k)
c√

2σ2/nk
= (X̄ (k)

t − X̄ (k)
c )
√

Ik.

The vector, (Z1, · · · ,Zk), has a multivariate normal distribution because each Zk is a linear combination
of the independent normal variates Xti and Xci. The marginal distribution of Zk is

Zk ∼ Normal
(
(µt−µc)

√
Ik,1

)
.
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How about the covariance of Zk1 and Zk2 for k1 < k2?

Cov(Zk1,Zk2) =Cov
(
{X̄ (k1)

t − X̄ (k1)
c }

√
Ik1, {X̄

(k2)
t − X̄ (k2)

c }
√

Ik2

)
=Cov

(
{X̄ (k1)

t − X̄ (k1)
c }, {X̄ (k2)

t − X̄ (k2)
c }

)√
Ik1

√
Ik2

=
[
Cov

(
X̄ (k1)

t , X̄ (k2)
t

)
+Cov

(
X̄ (k1)

c , X̄ (k2)
c

)]√
Ik1

√
Ik2

Cov
(

X̄ (k1)
t , X̄ (k2)

t

)
=Cov

(
1

nk1

nk1

∑
i=1

Xi,
1

nk2

nk1

∑
i=1

Xi +
1

nk2
∑Xi

)

=
1

nk1

1
nk2

Var

(nk1

∑
i=1

Xi

)
=

1
nk2

σ
2

Cov(Zk1,Zk2) = σ
2
(

1
nk2

+
1

nk2

)√
Ik1

√
Ik2

=
√

Ik1/Ik2.

Therefore,

• (Z1, · · · ,ZK) is multivariate normal.

• E[Zk] = (µt−µc)
√

Ik, k = 1, · · · ,K, and

• Cov(Zk1,Zk2) =
√

Ik1/Ik2, 1≤ k1 ≤ k2 ≤ K.

General decision rule for a group sequential design is
After group k = 1, · · · ,K−1

if |Zk| ≥ ck stop and reject H0.
otherwise continue to group k+1.

After group K
if |Zk| ≥ cK stop and reject H0.
otherwise stop for futility.

The test’s type I error rate can be expressed as

P{|Zk| ≥ ck for some k = 1, · · · ,K} .

The critical values, ck, are chosen so that the above probability is equal to α. And the power of the
study at δ1 is

P

{
K⋃

k=1

(
|Z j|< c j, for j = 1, · · · ,k−1 and |Zk| ≥ ck

)}
.
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Evaluation of this probability requires knowing the distribution of (Z1, · · · ,ZK). Refer to tables of cK
values or a computer software.

• For a Pocock method, the critical values are constant, so ck = CP(K,α). That is, specifying α

and K uniquely determines the critical values.

• For the previous example, CP(5, 0.025) = 2.413.

• For an O’Brien-Fleming method, the critical values have the form, ck =CB(K,α)
√

K/k

• For the same example, CB(5, 0.025) = 2.040. And the other critical values are: 2.040
√

5/4,
2.040

√
5/3, and so on.

(K.of)

[1] 2.04

K.of * sqrt(5/ (5:1))

[1] 2.04 2.28 2.63 3.23 4.56

• More generally, if stage sample sizes are different, use Ik, that is, ck =CB(K,α)
√

IK/Ik.

8.3.1 Beta blocker heart attack trial

Seven analyses (including the final one) were planned (corresponding to the timing of the Data
Monitoring Committee meetings) using O’Brien-Fleming bounds with two-sided type I error rate of
5%. The primary outcome was survival, and log-rank test was used.
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If Pocock boundary had been used, N = 7 and α = 0.05 give Z = 2.485. Therefore, the trial would
have been stopped at the same point.

8.3.2 non-Hodgkin’s lymphoma

Pocock 1983 Clinical Trials: A Practical Approach. A trial was conducted in patients with non-
Hodgkin’s lymphoma for two drug combinations (cytoxanprednisone -CP- and cytoxan-vincristine-
prednisone -CVP-). The primary endpoint was tumor shrinkage (Yes/No).
Statistical analyses were planned after approximately 25 patients. With 5 looks and one-sided α =
0.05. The Pocock procedure requires a significance level of 0.017 at each analysis. χ2 tests without
the continuity correction were performed at each of the 5 scheduled analyses.

gsDesign(k=5, test.type=1, alpha=0.05, n.fix=1, sfu='Pocock')

One-sided group sequential design with
90 % power and 5 % Type I Error.

Sample
Size

Analysis Ratio* Z Nominal p Spend
1 0.246 2.12 0.0169 0.0169
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2 0.491 2.12 0.0169 0.0117
3 0.737 2.12 0.0169 0.0087
4 0.982 2.12 0.0169 0.0069
5 1.228 2.12 0.0169 0.0057

Total 0.0500

++ alpha spending:
Pocock boundary.

* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 4 5 Total E{N}
0.00 0.0169 0.0117 0.0087 0.0069 0.0057 0.05 1.197
2.93 0.2510 0.2574 0.1900 0.1249 0.0767 0.90 0.668

Tumor shrinkage
CP CVP p-value

Analysis 1 3/14 5/11
Analysis 2 11/27 13/24
Analysis 3 18/40 17/36
Analysis 4 18/54 24/48
Analysis 5 23/67 31/59

The CVP appeared better than the CP, but difference was not statistically significant. Further analy-
ses of secondary endpoints convinced the researchers that the CVP was better than the CP.

8.4 Alpha-spending

“Classical” group sequential designs have equal information (sample size) at every stage, but we
may want to be a little more flexible. And when Ik is not a constant we might want to change α spent
accordingly.
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Decompose the rejection region.

R = P{|Zk| ≥ ck for some k = 1, · · · ,K}
= P{(|Z1| ≥ c1) or (|Z1|< c1 and |Z2| ≥ c2) or · · ·}
= P{|Z1| ≥ c1}+P{|Z1|< c1 and |Z2| ≥ c2}+P{|Z1|< c1 and |Z2|< c2 and |Z3| ≥ c3}+ · · ·
= α(I1)+(α(I2)−α(I1))+(α(I3)−α(I2)−α(I1))+ · · ·

The biggest advantage of alpha-spending approach is its flexibility; neither the number nor timing of
the interim analyses need to be specified in advance. The monitoring plan can be changed during
the trial and still type I error rate is preserved. The power depends relatively little on the number and
timing of the interim looks1.
Alpha-spending functions
O’Brien-Fleming α(t) = 2

[
1−Φ

(
zα/2/

√
t
)]

Pocock α(t) = α log(1+(e−1)t)
Kim-DeMets (Power) α(t,θ) = αtθ (for θ > 0)
Hwang-Shih-DeCani α(t,φ) = α

1−e−φ t

1−e−φ (for φ 6= 0)
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1“Fundamentals of clinical trials (4th ed)” by Friedman LM, Furberg CD, DeMets DL
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8.5 One-sided test

If “stop for futility” is not an option, the same boundary can be used. If a futility stop is an option, then
After group k = 1, · · · ,K−1

if Zk ≥ bk stop and reject H0.
if Zk ≤ ak stop for futility (accept H0).

After group K
if Zk ≥ bK stop and reject H0.
if Zk < aK stop for futility.

Note that aK = bK ensures that the test terminates at analysis K.

8.6 Repeated confidence intervals

If we compute unadjusted confidence intervals X̄so far± 1.96σ/
√nso far at the end of each stage,

we get low coverage probabilities. Armitage, McPherson, Rowe (“Repeated significance tests on
accumulating data”. JRSS-A 1969) computed the actual coverage probabilities (Table 2).
Number of looks Overall probability that

all intervals contain θ

1 0.95
2 0.92
3 0.89
4 0.87
5 0.86

10 0.81
20 0.75
50 0.68
∞ 0

The idea of repeated confidence intervals (RCIs) is to use an adjusted value, ck(α,K), instead of
1.96 so that the overall coverage probability is 1−α/2. The value of ck(α,K) is the critical value
(border) for each stage and depends on α and K if Pocock boundary is used, and additionally k if
O’Brien-Fleming boundary is used.
Example: Suppose we use a 6-stage group sequential design of O’Brien-Fleming type with a two-
sided α = 5%. The critical values are:

gsDesign(k=6, test.type=2, alpha=0.025, sfu='OF')

Symmetric two-sided group sequential design with
90 % power and 2.5 % Type I Error.
Spending computations assume trial stops
if a bound is crossed.
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Sample
Size

Analysis Ratio* Z Nominal p Spend
1 0.172 5.03 0.0000 0.0000
2 0.343 3.56 0.0002 0.0002
3 0.515 2.90 0.0018 0.0017
4 0.686 2.51 0.0060 0.0047
5 0.858 2.25 0.0123 0.0079
6 1.030 2.05 0.0200 0.0105

Total 0.0250

++ alpha spending:
O'Brien-Fleming boundary.

* Sample size ratio compared to fixed design with no interim

Boundary crossing probabilities and expected sample size
assume any cross stops the trial

Upper boundary (power or Type I Error)
Analysis

Theta 1 2 3 4 5 6 Total E{N}
0.00 0.0000 0.0002 0.0017 0.0047 0.0079 0.0105 0.025 1.022
3.24 0.0001 0.0487 0.2350 0.2915 0.2088 0.1159 0.900 0.739

Lower boundary (futility or Type II Error)
Analysis

Theta 1 2 3 4 5 6 Total
0.00 0 0.0002 0.0017 0.0047 0.0079 0.0105 0.025
3.24 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

The critical values are

[1] 5.03 3.56 2.90 2.51 2.25 2.05

First, let’s confirm that the critical values have the form ck =COB(K,α)
√

IK/Ik. The final critical value
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COB(6,α) = 2.053, and assuming the looks are equi-distant (same group sample size), we have:

c1 = 2.053
√

6/1 = 5.028 c2 = 2.053
√

6/2 = 3.556

c3 = 2.053
√

6/3 = 2.903 c4 = 2.053
√

6/4 = 2.514

c5 = 2.053
√

6/5 = 2.249 c6 = 2.053
√

6/6 = 2.053

Then after stage 1, we would use 2.053 in place of the regular 1.96 when computing a 95% confidence
interval. In general after stage k (k = 1, · · · ,6),

(x̄kt− x̄kc)± ck

√
2σ2
√

mk
,

where m is per-group sample size for each stage.
This method (RCI) is consistent with the corresponding hypothesis testing. Only when is H0 rejected
in stage k, the confidence interval for that stage will exclude the null value. Thus, we can use the
idea of “inverting hypothesis test” to get the same confidence interval. (more later)

8.7 p-values

Recall how we construct a proper p-value for a Simon’s two-stage design in phase II methodology.
We needed to define “more or as extreme as the observed data”. To be able to do this, we need
to have an ordering of all the sample paths. In a simple single-stage design, the ordering is usually
based on z-values (or absolute value of z-values if two-sided test), i.e., the bigger the observed z, the
stronger the evidence against H0. Then a one-sided p-value is computed by

p = P0[Z ≥ z].

With a group sequential design, or more generally, with a multi-stage design with pre-specified group-
wise sample sizes, the following orderings have been proposed. Notation: (k′,z′) � (k,z) to denote
(k′,z′) is above (k,z).

• Stage-wise ordering.
(k′,z′)� (k,z) if any of the following is true:

1. k′ = k and z′ ≥ z.

2. k′ < k and z′ ≥ bk′ (upper critical value).

3. k′ > k and z≤ ak (lower critical value).
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• MLE ordering.
(k′,z′) � (k,z) if z′/

√
Ik′ > z/

√
Ik. Originally proposed in connection with a test for a binomial

proportion The bigger value of the MLE gets a higher order. Sometimes called “sample mean
ordering” because this is equivalent to ordering based on the sample mean (one-sample) or
the difference of sample means (two-samples).

• Likelihood ratio ordering.
(k′,z′)� (k,z) if z′ > z. (Stages do not matter.)

• Score test ordering.
(k′,z′)� (k,z) if z

√
Ik′ > z

√
Ik.

Whichever ordering is used, we can compute a one-sided p-value is

P0[(T,ZT )� (k∗,z∗)]

For example, if we use a stage-wise ordering and test terminates in the K−1 stage with ZK−1 > bK−1
(reject H0).

p =
∫

∞

b1

g1(z;0)dz+ · · ·+
∫

∞

z∗
gK−1(z;0)dz.

In the above expression, gk(z;θ) is a density function of z in stage k. Conceptually, the density
function of z in k stage depends on all the data in the previous stages, 1 · · ·k−1, requiring multivariate
integration.
Armitage, McPherson, Rowe (1969) derived a recursive formula so that the computation is much
simplified, requiring only a succession of univariate integrations. For k = 2, · · · ,K,

gk(z;θ) =
∫

Ck1

gk−1(µ;θ)

√
Ik√
∆K

φ

(
z
√

Ik−µ
√

Ik−1−∆kθ√
∆k

)
dµ,

where Ck1 is the continuation region of the stage k1, and ∆k is the increment information, Ik− Ik−1.
If stage-wise ordering is used, it automatically ensures that item the p-value is less than the signifi-
cance level α if and only if H0 is rejected.
Once we define the ordering to use with the group sequential test then we can compute a p-value for
testing H0 : θ = 0 by “inverting hypothesis test”. A (1−α/2) confidence interval is a collection of θ ′0
such that H ′0 : θ = θ ′0 would be accepted with the observed sample path. (More details with general
adaptive designs.)
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Chapter 9

Pragmatic Clinical Trials

Challenges of traditional clinical research

• Slow: Traditional RCTs are slow and expensive, and yet they do not produce findings that are
readily applicable to practice.

• Not relevant: Traditional RCTs study effectiveness of treatments on highly selected patient
population under ideal conditions.
Findings are difficult to translate to real situations.

Explanatory and pragmatic clinical trials

Explanatory : Trials to test causal research hypotheses
Efficacy. The effects of intervention under ideal conditions.

Pragmatic : Trials to help users choose between options for care
Effectiveness. The effects of intervention under usual conditions.

- Thorpe KE et al. J Clin Epi. 2009;62:464-475.

9.1 PRECIS

Explanatory trials and pragmatic trials are not mutually exclusive ideas; rather, almost all trials have
characteristics of explanatory and pragmatic trials. PRECIS and PRECIS-2 (Pragmatic-Explanatory
Continuum Indicator Summary) are the tools to represent a trial’s degree of pragmatism.
-Loudon K et al. BMJ. 2015;350.
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Nine dimensions for assessing the level of pragmatism in a trial (PRECIS-2)

Eligibility Who is selected to participate in the trial?
How similar are the patients in the trial to patients who would receive this intervention?

Recruitment How are participants recruited into the trial?
How much extra effort is made to recruit participants over what would be used in the usual care
setting?

Setting Where is the trial being done?
How different are the settings of the trial from the usual care setting?

Organization What expertise and resources are needed to deliver the intervention?
How different are the resources of the intervention group compared to the usual care?

Flexibility in delivery How should the intervention be delivered?
How different is the flexibility in how the intervention is delivered from the usual care?

Flexibility in adherence What measures are in place to make sure participants adhere to the inter-
vention?
How different is the flexibility in how participants are monitored and encouraged to adhere to
the intervention?

Follow-up How closely are participants followed-up?
How different is the intensity of follow-up measurements?
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Primary outcome How relevant is it to participants?
How relevant is the primary outcome to participants?

Primary analysis To what extent are all data included?

https://www.precis-2.org/Trials

9.2 Key concepts of most PCTs

• Randomization at clinic level

• Large and simple (evaluate heterogeneity)

• Patient-oriented endpoint

• Integrated in “real world”

– Non-academic centers
– Patients as partners
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9.3 Cluster RCTs

Randomization unit:

• Provider < Panel < Clinic < Region

The smallest cluster size without contamination is the best cluster size.

Simple cluster randomization

• Advantages

– Simple.
– Easy to implement.

• Disadvantages

– Need a large number of clusters.
– Not all clusters get the intervention.
– Mixed modesl within cluster: interpretation is problematic.
– GEE: Within-cluster changes not estimable.

Cluster with crossover

• Randomize at the cluster level and cross to other assignment midway.
Cluster ID Period 1 Period 2

1 Intervention Control
2 Control Intervention
3 Intervention Control
4 Control Intervention

• Feasible if the intervention can be turned on and off without “learning”.

Advantages This allows for within-cluster interpretation.
Potential to gain power.

Disadvantages Contamination leads to bias.
Not all clusters have the intervention at the end of the study.

• Alternative: Cluster with baseline.
Cluster ID Period 1 Period 2

1 Control Control
2 Control Intervention
3 Control Control
4 Control Intervention
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• This allows for within-cluster interpretation.

• Not all clusters get the intervention.

• Cluster with baseline?
Cluster ID Period 1 Period 2

1 Control Intervention
2 Control Intervention
3 Control Intervention
4 Control Intervention

• No randomization.

• No way to estimate the period effect (learning)

9.3.1 Stepped wedge design

• This is used for implementation studies of an intervention that everyone should get.

• Sites randomized to when they initiate intervention.

• Every site participates in control and intervention.

Cluster ID Period 1 Period 2 Period 3 Period 4 Period 5
1 Control Intervention Intervention Intervention Intervention
2 Control Control Intervention Intervention Intervention
3 Control Control Control Intervention Intervention
4 Control Control Control Control Intervention

Challenges:

• Requires long period to observe treatment effects.

• Contamination and attrition.

• Analysis of intervention * time interaction.

Example: CHEW

Children Eating Well (CHEW) Smartphone Application for WIC (Women, Infants, and Children) Fam-
ilies
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• The purpose of Nashville CHEW for Health is to address childhood obesity prevention through
Education, Extension, and Research.

• The CHEW smartphone application aims to assist WIC participants with shopping for WIC
items

• Intervention: Smartphone app.

• 95 counties in Tennessee.

Outcome measures

• Obesity risk factors (Healthy Kids Pediatric Obesity Risk Assessment).

• Dietary intake (24-hour dietary recalls).

• Other app-specific implementation/satisfactory data.

Study design: The app will gradually be rolled out to all 95 counties on a staggered schedule
during Years 2-5. We will use a two-arm, cluster randomized deisgn, with counties randomized to
an Intervention Arm (standard WIC education plus the CHEW 2.0 app) or Wait-List Control Arm
(standard WIC education only). Thus the counties who begin app implementation earlier in the
schedule will be compared with the counties that wait to start later in the schedule. The outcome
evaluation will compare the two arms on the primary and secondary outcomes. We hypothesize
that the outcomes will be significantly more favorable among participants in the Intervention counties
versus Wait-List Control counties.
Randomization: To achieve balance between the two study arms on county-level characteristics,
we will use block randomization based on the number, % black, and % Hispanic of WIC participants
in each county, using the reweighted Mahalanobis distance matching on the client population size
and racial/ethnic composition. One county from each pair will then be randomly selected for the
Intervention Arm to determine the roll out schedule.
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