
Introduction to String Matching and Modification in R Using

Regular Expressions

Svetlana Eden

March 6, 2007

1 Do We Really Need Them ?

Working with statistical data in R involves a great deal of text data or character strings
processing, including adjusting exported variable names to the R variable name format,
changing categorical variable levels, processing text data for using in LaTeX. Such tasks can
be performed by using functions for string search (or matching) and modification.

R provides several such functions. The most commonly used ones are grep(), gsub(),
strsplit(). When using them, it is important to know that some of their arguments are
interpreted by R as regular expressions.

What is a regular expression ? According to Linux help [3], regular expression is a pattern
that describes a set of strings. Simply speaking, regular expression is an ”instruction” given
to a function on what and how to match or replace strings. Using regular expression may
solve complicated problems (not all the problems) in string matching and manipulation, and
may reduce the time spent on R code writing and maintanence.

The purpose of this presentation is to introduce regular expressions by showing several ex-
amples, inspired by real problems. The examples are deliberately simple to attract potential
users and not to scare them off.

The concept of regular expressions is implemented in several programing lanquages (for
example Perl, Python). Regular expressions in R are usually restricted and help [1] is not
very informative; it does not cover many topics and not all examples work. To compensate
for this, R functions are written to ”understand”Perl regular expression syntax if you specify
argument ”perl”=TRUE. You can also read Perl documentation, which is more detailed and
widely available. For a quick introduction, you can read more user friendly Python help[2]
as well, since its regular expressions syntax is close to R.

2 How NOT to Use Regular Expressions: Beware of Metacharac-
ters

As mentioned before, R string matching and modification functions interpret some of their
arguments as regular expressions. For example, the argument pattern of function gsub()
is a character string interperted as a regular expression. If a user is not aware of that he/she
may get an error or fail to achieve his/her task and not noticing it. For example, we want
to substitute a ”$” with a period in string s using function gsub()

> s = "gsub$uses$regular$expressions"

1

Our final result should be string s1

> s1 = "gsub.uses.regular.expressions"

If we do not know that gsub() treats argument ”pattern” as a regular expression we try
to do the following.

> s1 = gsub(pattern = "$", replacement = ".", "gsub$uses$regular$expressions")

> s1

[1] "gsub$uses$regular$expressions."

String s1 is not what we wanted because gsub() interpreted the character ”$”as a regular
expressions special character. To get the correct result we have to tell gsub() to interpret
”$” as a regular character. This can be done by preceding ”$” with a double backslash. The
correct solution is

> s1 = gsub(pattern = "\\$", replacement = ".", "gsub$uses$regular$expressions")

> s1

[1] "gsub.uses.regular.expressions"

In regular expressions, characters

$ * + . ? [] ^ { } | () \

are called metacharacters. When matching any metacharacter as a regular character,
precede it with a double backslash. When matching a backslash as a regular character, write
four backslashes (see examples below).

2.1 Examples of unintentional usage of regular expressions resulting in errors

metaChar = c("$","*","+",".","?","[","^","{","|","(","\\")

grep(pattern="$", x=metaChar, value=TRUE)

grep(pattern="\\", x=metaChar, value=TRUE)

grep(pattern="(", x=metaChar, value=TRUE)

gsub(pattern="|", replacement=".", "gsub|uses|regular|expressions")

strsplit(x="strsplit.aslo.uses.regular.expressions", split=".")

2.2 Examples of correct ways of avoiding regular expression usage

metaChar = c("$","*","+",".","?","[","^","{","|","(","\\")

grep(pattern="\\$", x=metaChar, value=TRUE)

grep(pattern="\\\\", x=metaChar, value=TRUE)

grep(pattern="\\(", x=metaChar, value=TRUE)

gsub(pattern="\\|", replacement=".", "gsub|uses|regular|expressions")

strsplit(x="strsplit.aslo.uses.regular.expressions", split="\\.")

strsplit(x="strsplit.aslo.uses.regular.expressions", split=".", fixed=TRUE)

2

3 Here They Come...

The examples in this section show the importance of using regular expressions for efficient
R programming.

3.1 Please, Meet Some of the Metacharacters

Suppose we export a dataframe from a text file using function csv.get(). For the sake of
this example reprodusibility we will generate this data frame rather than actually exporting
it. Suppose that, after this procedure, the names of the dataframe variables contain multiple
periods.

> d1 = data.frame(id...of....patient = c(1, 2), patient....age = c(1,

+ 2))

> d1

id...of....patient patient....age

1 1 1

2 2 2

We would like to replace multiple periods with a single one. First, we get rid of 4 periods
and then of 3 periods

> names(d1) = gsub(pattern = "\\.\\.\\.\\.", replacement = ".",

+ names(d1))

> names(d1)

[1] "id...of.patient" "patient.age"

> names(d1) = gsub(pattern = "\\.\\.\\.", replacement = ".", names(d1))

> names(d1)

[1] "id.of.patient" "patient.age"

The main disadvantage of this solution is when the data changes we have to rewrite the
code for the new data, which is against the spirit of efficient programming. We want to
minimize time spent on code maintenance and free time for the data analysis. This is when
regular expressions come to the rescue. The following solution will always work, even if the
names of the variable change.

> d1 = data.frame(id...of....patient = c(1, 2), patient....age = c(1,

+ 2))

> d1

id...of....patient patient....age

1 1 1

2 2 2

> names(d1) <- gsub(pattern = "\\.+", replacement = ".", x = names(d1))

> names(d1)

[1] "id.of.patient" "patient.age"

3

Regular expression

\\.+

tells function gsub() to match and replace one or more repititions of a period. Metacharacter
”+” is the instruction to match one or more repetitions of whatever comes before ”+”.

Here are some metacharacters and their meanings.

"." matches everything except for the empty sting "".

"+" the preceding item will be matched one or more times.

"*" the preceding item will be matched zero or more times.

"^" matches the empty string at the at the beginning of a line.

When used in a character class (see explanation about character classes

in the following section) means to match any character but the following ones.

"$" matches empty string at the end of a line.

"|" infix operator: OR

"(", ")" brackets for grouping.

"[", "]" character class brackets (see next section).

We will see how to use some of them in the following sections.

3.2 Character Classes at Your Service

Consider a task of replacing all values that do not contain letters or digits with NA value.
Here is one way to accomplish this without using regular expressions

> d = data.frame(id = c(11, 22, 33, 44, 55, 66, 77, 88), drug = c("vitamin E",

+ "vitamin ESTER-C", " vitamin E ", "vitamin E(ointment)",

+ "", "vitamin E ", "provitamin E\n", "vit E"), text = c("",

+ " ", "3 times a day after meal", "once a day", " ",

+ " one per day ", "\t", "\n "), stringsAsFactors = FALSE)

> s = d$text

> unique(s)

[1] "" " "

[3] "3 times a day after meal" "once a day"

[5] " " " one per day "

[7] "\t" "\n "

> s[s == "" | s == " " | s == " " | s == "\t" | s == "\n"] = NA

As in the previous case, this solution is not good because when the data change, the code
has to be changed too. Moreover, the data may be so large that it is impossible (takes too
long) to check it manually. Let’s see how we can employ regular expressions in this case.

We have to explain to function grep() that we need only strings containing letter or
digits. Regular expressions allow us to do that by describing a set of characters. Such set is
called a character class and denoted by square brackets. For example, regular expression
”[nco]” matches any string containing any of the characters ”n”, ”c”, ”o”.

> grep("[nco]", c("nose", "letter38", "window9", "apple0"), value = TRUE)

4

[1] "nose" "window9"

Another example of a character class is regular expression ”[01234567]” or ”[0-7]” match
any string containing any of the digits from ”0” to ”7”.

> grep("[01234567]", c("nose", "letter38", "window9", "apple0"),

+ value = TRUE)

[1] "letter38" "apple0"

> grep("[0-7]", c("nose", "letter38", "window9", "apple0"), value = TRUE)

[1] "letter38" "apple0"

Here are examples of character classes:

"[0-9]" - Digits

"[a-z]" - Lower-case letters

"[A-Z]" - Upper-case letters

"[a-zA-Z]" - Alphabetic characters

"[^a-zA-Z]" - Non-alphabetic characters

"[a-zA-Z0-9]" - Alphanumeric characters

"[\t\n\r\f\v]" - Space characters

"[]$*+.?[^{|(\\#%&~_/<=>'!,:;`\")}@-]" - Punctuation Characters

To solve our problem we use alphanumeric character class.

> s = d$text

> s

[1] "" " "

[3] "3 times a day after meal" "once a day"

[5] " " " one per day "

[7] "\t" "\n "

> allIndices = 1:length(s)

> letOrDigIndices = grep("[a-zA-Z0-9]", s)

> blankInd = setdiff(allIndices, letOrDigIndices)

> s[blankInd] = NA

> s

[1] NA NA

[3] "3 times a day after meal" "once a day"

[5] NA " one per day "

[7] NA NA

This solution is better then the previous one, since, if our data change, we do not have to
change our code.
Another way of doing this:

> s = d$text

> s = gsub("^$|^(+)$|[\t\n\r\f\v]+", NA, s)

> s

5

[1] NA NA

[3] "3 times a day after meal" "once a day"

[5] NA " one per day "

[7] NA NA

If you would like to get rid of extra blank spaces the following code is helpful.

> s = d$text

> s = gsub("^([\t\n\r\f\v]+)|([\t\n\r\f\v]+)$", "", s)

> s

[1] "" ""

[3] "3 times a day after meal" "once a day"

[5] "" "one per day"

[7] "" ""

> s = gsub("^$", NA, s)

> s

[1] NA NA

[3] "3 times a day after meal" "once a day"

[5] NA "one per day"

[7] NA NA

3.3 Watch out for Special Characters Inside a Character Class

In section 2 we learned that in order to match a metacharacter as a regular character we
have to preceed it with a double backslash. This rule does not hold inside a character class;
almost all metacharacters loose their magic power to the following characters.

] ^ - \

Here is a set of rules on how to match characters as regular characters inside a character
class

To match ”]” inside a character class put it first.

To match ”-” inside a character class put it first or last.

To match ”̂ ” inside a character class put it anywhere, but first.

To match any other character or metacharacter (but \) inside a character class put it
anywhere.

R help [1] says that \ remains special inside a character class, but it does not say how to
match it. I tried to use a double backslash and it worked.

Good luck with all these rules !

6

4 But Wait, There’s More...

Here is another useful example, in which we can practice using both character classes and
metacharacters.

We would like to match all strings containing ”vitamin E”. Without using regular expres-
sions it is very easy to miss relevant matches or to match something we do not need.

> s = d$drug

> s

[1] "vitamin E" "vitamin ESTER-C" " vitamin E "

[4] "vitamin E(ointment)" "" "vitamin E "

[7] "provitamin E\n" "vit E"

> grep("vitamin e", s, ignore.case = TRUE, value = TRUE)

[1] "vitamin E" "vitamin ESTER-C" " vitamin E "

[4] "vitamin E(ointment)" "vitamin E " "provitamin E\n"

Using regular expressions helps to refine our search.
First, we exclude all strings with ”vitamin e” followed by a letter or nothing (an empty

string).

> grep("vitamin e($|[^a-zA-Z])", s, ignore.case = TRUE, value = TRUE)

[1] "vitamin E" " vitamin E " "vitamin E(ointment)"

[4] "vitamin E " "provitamin E\n"

Regular expressions ”vitamin e($|[^a-zA-Z])” says to find all character strings ”vitamin e”
followed by a non-character (character group [^a-zA-Z]) or an empty string (metacharacter
”$”). Here we also use round brackets to make sure that operator ”or” (metacharacter ”|”)
works on the right parts of our regular expression.

Second, we include string ”vit e” in our search by using operator ”or” (metacharacter ”|”)
> grep("vitamin e($|[^a-zA-Z])|vit e($|[^a-zA-Z])", s, ignore.case = TRUE,

+ value = TRUE)

[1] "vitamin E" " vitamin E " "vitamin E(ointment)"

[4] "vitamin E " "provitamin E\n" "vit E"

If you would like to get rid of ”provitamin” use the following:

> grep("([^a-z]+|^)vitamin e($|[^a-zA-Z])|([^a-z]+|^)vit e($|[^a-zA-Z])",

+ s, ignore.case = TRUE, value = TRUE)

[1] "vitamin E" " vitamin E " "vitamin E(ointment)"

[4] "vitamin E " "vit E"

You can get really fancy:

> grep("([^a-z]+|^)vitamin([^a-zA-Z]+)e($|[^a-zA-Z])|([^a-z]+|^)vit([^a-zA-Z]+)e($|[^a-zA-Z])",

+ s, ignore.case = TRUE, value = TRUE)

[1] "vitamin E" " vitamin E " "vitamin E(ointment)"

[4] "vitamin E " "vit E"

7

Drug ID Drug Price
11 $36.
22 2 for $11
33 50% sale

5 Very Useful LaTeX Info and a Puzzler

This section provides motivation for using regular expressions and presents a challenge even
to those who are familiar with the topic.

Suppose you would like to create a table

library(Hmisc)

d1 = data.frame(drugId=c(11,22,33),

drugInfo=c("$36.", "2 for $11", "50% sale"),

stringsAsFactors=FALSE)

latex(d1, rowname=NULL, colheads=c("Drug ID", "Drug Price"), file="")

When you try to compile your file, LaTeX will give you an error, because one of the vari-
ables contains special LaTeX characters ”$” and ”%”. If you want to display those characters
in LaTeX you have to escape them (to precede them with a backslash in a LaTeX file or
double slash, if you write a LaTeX from R). Let’s do that.

> d1 = data.frame(drugId = c(11, 22, 33), drugInfo = c("$36.",

+ "2 for $11", "50% sale"), stringsAsFactors = FALSE)

> d1$drugInfo = gsub("\\$", "\\\\$", d1$drugInfo)

> d1$drugInfo = gsub("\\%", "\\\\%", d1$drugInfo)

> d1

drugId drugInfo

1 11 \\$36.

2 22 2 for \\$11

3 33 50\\% sale

> library(Hmisc)

> latex(d1, rowname = NULL, colheads = c("Drug ID", "Drug Price"),

+ file = "")

Well, that was easy! Now, imagine that your data contain other LaTeX special characters
and you have to make sure that all of them are converted to LaTeX text characters. Here is
what you have to convert

-------------VERY USEFUL LATEX INFO--------------

special how to write it in LaTeX

LaTeX to make it look like

character regular character

\#

8

$ \$

% \%

_ _

{ \{

} \}

& \&

~ \verb*+~+

^ \verb*+^+

< $<$

> $>$

| $|$

\ \backslash

This task is difficult and time consuming without using regular expressions. Using regular
expressions makes it easier, but it is still not trivial and requires using regular expression
tools not covered in this presentation. I believe that some of you will find the following
challanges interesting.

Puzzler 1
How to convert all LaTeX special characters to LaTeX regular characters without using
regular expressions.

Puzzler 2
How to convert all LaTeX special characters to LaTeX regular characters using regular
expressions.

6 Annoying strsplit() Feature

Since we talk about R string manipulation, as a side note, I would like to mention an
annoying ”feature” of strsplit() .

If we split a string by a character and this character is at the beginning of the string,
strsplit() splits the string into an empty string and the rest. If this character is at the end
of the string, strsplit() does not split it into an empty string and the rest.

For example, this is what R does

> s = "k000k00k"

> strsplit(s, "k")

[[1]]

[1] "" "000" "00"

This is what Python does and R should have done

>>> s = "k000k00k"

>>> s.split("k")

['', '000', '00', '']

>>>

This ”feature” sometimes gets in the way and R users should watch out for it.

9

7 Aknowledgements

Cathy, thanks so much for correcting the text. Rafe, thanks for suggesting the phrase ”But
wait, there’s more...”. Peggy, I do not even show my writing to anyone, before I show it to
you - thanks.

References

[1] http://www.maths.lth.se/help/R/.R/library/base/html/regex.html

[2] http://www.amk.ca/python/howto/regex.html

[3] Linux help (type ”man grep” from a command line)

10

