Chapter 5

Multivariable regression modeling strategies

Overview:

5.1 Basic concept on confounding
5.1.1 Accuracy of point estimate
5.1.2 Precision of point estimate
5.2 Variable selection in a multivariable model
5.2.1 Data driven parsimonious model
5.2.2 Pre-specified regression model
5.1 Why multivariable analysis is important?

Study question: Is the pharmacist based intervention to control type II diabetes effective?

Answer: Yes, the reduction in average HbA 1 c was greater with the intervention by 0.8% with $95 \% \mathrm{Cl}$ of (0.21-1.42), $\mathrm{p}=0.009$.

I wonder: 1. How accurate the point estimate of 0.8 is (confounded)?
2. How accurate the precision of the estimate measured by width of $95 \% \mathrm{Cl}$ (is p-value of 0.009 too small, or too large)? Does the result seems reliable for future studies?

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

5.1.1. How accurate the point estimate of 0.8 is?

Point estimate of the effect of treatment can often over or under estimate a true effect of treatment by existence of a confounding factor. When such confounding factor is not considered in a study design, it must be controlled in statistical analysis.

RCT - randomization prevents confounders:
i.e., in order to be a confounder, the extraneous factor must be associated with both outcome and exposure. Through randomization, treatment assignment tends to be balanced to both observed and unobserved extraneous factors. Thus estimated effect of treatment from unadjusted analysis is probably accurate (unbiased).

Observational studies - without randomization, treatment effect often be biased by the extraneous factor which is associated with an exposure of interest, thus adjusted analysis almost always "must" be used.

Graphical Presentation of Confounder (1):Assessing confounder by stratified analysis

Ignoring Smoking (Confounder)

Non Smoker
\square Smoker

Linear regression with $95 \% \mathrm{Cl}$

Alcohol consumption seem to be associated with lung cancer.

Alcohol Consumption (risk factor)

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

Graphical Presentation of Confounder (1):Assessing confounder by stratified analysis

Stratified by Confounder

Non smokers \square Smokers

Linear Regression with 95.00% Mean Prediction Interval

Mathematical assessment of confounding

Remember,

$$
\begin{aligned}
& \text { Adjusted: } Y=\alpha+\beta_{1} X+\beta_{2} \text { Conf } \\
& \text { Un-adjusted: } Y=\alpha+\beta_{1}^{\prime} X \\
& \qquad \beta_{1} \neq \beta_{1}^{\prime} \quad \text { Evidence of } C \text { being a confounder effect of } X \text { for Conf } \\
& \quad \beta_{1}=\beta_{1}^{\prime} \quad \text { No evidence of } C \text { being a confounder }
\end{aligned}
$$

Many people define confounder if $\left(\beta_{1}-\beta_{1}^{\prime}\right) / \beta_{1}^{\prime}>0.10,0.15$ or 0.2 regardless of p-value

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

Now, we know that we need to include possible confounding factors (defined as covariates, which are associated with both outcome and exposure of interest) in the model when we are assessing the effect of variable of interest. Are there any other type of extraneous factors we need to include in a regression model?

5.1.2. Precision of point estimation

Precision of point estimation can be improved by including factors associated with outcome variables by reducing measurement errors in outcome variable even when they are not associated with an exposure of interest.

Schematic presentation of including factors associated with outcome to assess the effect of pre-specified risk factor

Including many unimportant variables Including important variables
Variables included in a model

Variability in Y

on $Y=$

Variables included in a model

Variability in Y
Effect of \square on $\mathrm{Y}=$

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

5.2 Variable selection in a multivariable model

Result of including confounding variable in a model

When Factor A is a confounder to the association between outcome and intervention, including Factor A will change parameter estimate of the intervention compared with that of unadjusted model.

Result of including risk factor of outcome in a model
If Factor A is a risk factor of the outcome variable, including Factor A can remove variability (measurement error) of data, thus standard error of the estimate for the intervention effect tends to be reduced, resulting a smaller p-value for the intervention effect (see the schematic explanation in the previous page).

Result of including neither risk factor or confounder
Including variables which is neither associated with exposure nor outcome variable will lead to loss of statistical power without a gain (see the schematic explanation in the previous page).

Exercise: Select variables to include in a linear regression model to assess risk factor of post traumatic stress disorder (PTSD) among 43 ICU survivors. Data were collected for the following variables:

Age	Admission diagnosis of sepsis
Gender	Presence of depression
Race	Alcohol abuse
Apache II severity of illness score	Drug overdose
SOFA (score of organ function)	Ability of daily living (ADL)
Baseline dementia score	ICU days of delirium
Hearing difficulty	ICU days of coma
Vision difficulty	ICU length of stay in days
	Days of mechanical ventilation ICU use of sedative drug (lorazapam)

Variable selection for a multivariable model (model building):
determining how many variable?

Guideline for the maximum number of independent variables (degree of freedom) to be included in a multivariable model.

Linear regression	\# patients (samples) / 15 (10-20)
Logistic regression	Min(\#events, \#non-events) / 15 (10-20)
Cox regression	\#events / 15 (10-20)
Proportional odds logistic regression	$n-\frac{1}{n^{2}} \sum_{i=1}^{k} n_{i}^{3} / 15(10-20)$

K : number of categories, n : total sample size, n_{i} : sample size in each category

References:

* Harrell FE, Jr. Regression Modeling Strategies. Springer Verlag. (2001)
* Peduzzi P et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol

1996 Dec;49(12):1373-9.

* Peduzzi P et al. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995 Dec;48(12):1503-10.

Problems with over-fitted model:

> In multivariable regression analyses, a "small", EPV may affect the accuracy and precision of regression coefficients for independent variables, and their associated individual tests of statistical significance [2]. Under such circumstances, regression models can yield unstable risk estimates and can suggest misleading associations. In an analogy to type I errors, the results may erroneously reject the null hypothesis that a variable has no impact on the outcome. In an analogy to type II errors, the analysis may lack power to detect the impact of important variables. In an analogy to type III error [3], a variable having a distinctly positive effect on the outcome may be reported as having an important negative effect (or vice versa). All of these problems can occur or exacerbated when EPV is too small for a multivariable model.

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

How many variables to include in the PTSD analysis?

In order to prevent from over-fitting, based on the previous page, when we use linear regression to fit this data, we are able to include only up to 4 variables (43/10).

Which variables to include?

We want to include confounders of the association between any identified risk factors and PTSD to obtain unbiased estimate of the effect of risk factors, and also factors associated with PTSD to reduce measurement errors. Since confounding factor requires to be associated with both risk factor and outcome (not to be a confounder if not associated with outcome), thus, we include factors which are associated with outcome for simplicity.

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

We may choose age, drug overdose, ADL, and visual difficulty to include

Alternative method to present association between risk factor vs PTSD

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

Thus the final model based on the univariate analysis may include age, known visual impairment, ADL and drug overdose.

Model		Unstandardized Coefficients		$\begin{gathered} \hline \begin{array}{c} \text { Standardized } \\ \text { Coefficients } \end{array} \\ \hline \text { Beta } \end{gathered}$	t	Sig.	95\% Confidence Interval for B	
		B	Std. Error				Lower Bound	Upper Bound
1	(Constant)	34.431	6.527		5.275	. 000	21.166	47.695
	Age (years)	-. 159	. 133	-. 197	-1.195	. 240	-. 429	. 111
	ADL	-1.301	. 846	-. 224	-1.539	. 133	-3.020	417
	Known visual impairment	-4.967	3.761	-. 218	-1.321	. 195	-12.610	2.676
	Drug overdose	13.279	7.325	. 264	1.813	. 079	-1.607	28.165

a. Dependent Variable: PTSD score at 6 months post hosp discharge

Data driven parsimonious model

Traditionally, many believed parsimonious modeling strategies, model which includes fewer number of variables to explain greater variability in outcome variable is better, which in many cases, resulting in excluding in-significant variables from a regression model.

Popular approach in parsimonious model building includes
(1) Univaraite selection - include variables which are significant at univariate analysis
(2) Computer automated computer procedure to select a set of variables which are plausible to explain variability in outcome variable.
(3) Combination of the above (1) and (2): include variables selected in (1) into (2) to further select variables

Computer automated selection procedures

a) Forward Selection

Assess all simple linear regression with each independent variable in a model, then pick variables with the smallest p value if p value is less than a cutoff (i.e., 0.15). By keeping the variable selected above, repeat the procedure for the remaining variables until the model include only variables with p values less than the cutoff level.
b) Backward Selection

This method is similar to the forward method except that we start with all the variables and eliminate the variable with the least significance. The data is refit with the remaining variables and the process is repeated until all remaining variables have a significance level below some threshold.
c) Stepwise Selection

This method is like the forward method except that at each step, previously selected variables whose significance has dropped below some threshold are dropped from the model.

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.
(2). Computer automated computer procedure to select a set of variables which are plausible to explain variability in outcome variable.

Result of the stepwise selection evaluating all variables.

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.	95\% Confidence Interval for B	
		B	Std. Error				Lower Bound	Upper Bound
1	(Constant)	22.194	1.585		14.007	. 000	18.978	25.411
	GI Bleed	38.806	9.638	. 563	4.026	. 000	19.238	58.373
2	(Constant)	21.265	1.510		14.086	. 000	18.197	24.333
	GI Bleed	39.735	8.931	. 576	4.449	. 000	21.585	57.886
	Drug overdose	16.735	6.405	. 338	2.613	. 013	3.719	29.752

a. Dependent Variable: PTSD score at 6 months post hosp discharge
(3) Combination of the above (1) and (2): include variables selected in (1) into (2) to further select variables

Result of the stepwise selection evaluating age, ADL, drug overdose and visual impairment

Coefficients ${ }^{\text {a }}$								
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.	95\% Confidence Interval for B	
		B	Std. Error	Beta			Lower Bound	Upper Bound
1	(Constant)	27.733	2.750		10.084	. 000	22.161	33.306
	Known visual impairment	-8.067	3.506	-. 354	-2.301	. 027	-15.171	-. 963
2	(Constant)	26.725	2.687		9.946	. 000	21.276	32.175
	Known visual impairment	-7.689	3.372	-. 337	-2.280	. 029	-14.526	-. 851
	Drug overdose	15.119	7.436	. 301	2.033	. 049	. 037	30.201

a. Dependent Variable: PTSD score at 6 months post hosp discharge

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

However exhaustive data searching for a parsimonious model including univariate selection and computer automated model selection has recently been heavily criticized for it inflates type I error (over-fitting). Because this is essentially the same as fitting many regressions which generate many p-values, therefore, the final model chosen by these procedures usually make standard error smaller than it should be.

References:

Harrell, Regression Modeling Strategies.http://www.cmh.edu/stats/faq/faq12.asp Altman, D. G. and Andersen, P. K, Bootstrap investigation of the stability of a Cox regression model. Statistics in Medicine (1989) vol8:771-783 Derksen, S. and Keselman, H. J. Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology (1992). Vol45: 265-282

5.2.2 Pre-specified regression model

My recommendation of selecting variable in a regression is:
A priori (not looking at data) choose potential risk factors to outcome variable within the allowable limit determined by the general rule (You should not exclude insignificant variables!).

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

In fact, allowable number of variables (degree of freedom) to be included, will be affected by the number of dummies, and whether you want to asses non-linearity for continuous variables. You need minimum of 2 or 3 degree of freedoms to fit 1 non-linear continuous variable. Here I in fact chose age, gender, delirium days and Apace score to be included based on a prior belief. We are also interested in non-linear effect of age (we can use generalized Spearman's analysis to decide which variable to allow non-linear effect). SPSS cannot do non-linear associations, so we used R-software (total number of degree of freedom was $(1+1+1+3=6)$ which indicates a slight over-fitting for the allowable number was $43 / 10=4$ at most.

When you have more variables than the allowable number, you can try data reduction such as principle components or the propensity score, which we will learn later in the next chapter.

More advanced tool to account for over-fitting is "shrinkage" analysis. Problems due to over-fitting include inflation of both type I and type II error as stated on page 14 by Concato. Result of inflation type I errors, one may erroneously claim association when in fact there is no such an association. In this case, parameter estimate may be over-estimated (further away from the null value) and p-value tends to be smaller. Type Il errors, one may claim there is no association when in fact there is. Parameter estimate tends to be smaller (closer to the null) and p-value tends to be bigger than actual. Inflation of type I error is more problematic than type II, because once the association is claimed, it is hard to disclaim such a finding.

Shrinkage analysis can numerically assess degree of over-fitting using bootstrap computation method, which quantify a degree of exaggeration made in parameter estimates in your analysis. For example when your data suggests that reduction in Hba1c is greater than 0.8% with intervention than control, true effect (the effect that other people are plausible to detect with similar dataset) was in fact 0.6%, shrinkage analysis quantify degree of over-fitting by $0.8-0.6 / 0.8=25 \%$

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

Pre-specified model without shrinkage

```
>f.ols.noshrink<-ols(ptsd6m~rcs(age, 3)+female+deliicud+apache, data=ptsd,
x=T, y=T)
>anova(f.ols.noshrink)
                                    Analysis of Variance Response: ptsd6m
    Factor d.f. Partial SS MS F P
    age 2 997.05235 498.52617 4.65 0.0158
    Nonlinear 1 551.71298 551.71298 5.14 0.0293
    female 1
    deliicud 1 346.45687 346.45687 3.23 0.0805
    apache 
    REGRESSION 5
    ERROR 37 3970.49188 107.31059
>f.ols.noshrink
Coefficients:
    Value Std. Error t Pr(> t|)
Intercept 5.8744 14.0978 0.4167 0.67931
age 0.3352 0.2665 1.2576 0.21641
age' -0.7688 0.3391 -2.2674 0.02930
female 9.4281 3.5886 2.6272 0.01245
deliicud 1.8806 1.0466 1.7968 0.08053
apache -0.1259 0.2062 -0.6105 0.54525
```

Model validation to measure degree of over-fitting for model without shrinkage

```
> f.ols.noshrink<-ols(ptsd6m~rcs(age, 3)+female+deliicud+apache, data=ptsd,
x=T, y=T)
> set.seed(1)
> val<- validate(f.ols.noshrink, B=150)
> val
\begin{tabular}{lrrrrrr} 
& index.orig & training & test & optimism & index.corrocted & n \\
R-square & 0.2958843 & 0.3772006 & 0.1797252 & 0.1974754 & 0.09840896 & 150 \\
MSE & 92.3370206 & 81.4369238 & 107.5700113 & -26.1330876 & 118.47010813 & 150 \\
Intercept & 0.0000000 & 0.0000000 & 4.9105965 & -4.9105965 & 4.91059654 & 150
\end{tabular}
\begin{tabular}{lrrrrrr} 
Intercept & 0.000000 & 0.000000 & 4.9105965 & -4.9105965 & 4.91059654 & 150 \\
Slope & 1.0000000 & 1.0000000 & 0.7910922 & 0.2089078 & 0.79109225 & 150
\end{tabular}
```

-Difference in the original R-square and index.corrected R-square suggests some degree of over-fitting.
-Optimism for slope indicates degree of over-fitting in parameter estimate (21%). For example, parameter estimate for female gender $=9.42$, where true estimate may be around $9.42 \times 0.79=7.44$

Master in Clinical Bio-Medical Science Program
Biostatistics II, July 2006
Ayumi Shintani, Ph.D., M.P.H.

Pre-specified model with shrinkage

```
>f.ols.shrink<-ols(ptsd6m~rcs(age, 3)+female+deliicud+apache, data=ptsd,
x=T, y=T, penalty=2)
>anova(f.ols.shrink)
    Analysis of Variance Response: ptsd6m
    Factor d.f. Partial SS MS F P
    age 2 844.25417 422.12709 4.36 0.0191
    Nonlinear 1 411.51097 411.51097 4.25 0.0455
    female 1 1 604.16732 604.16732 6.24 0.0165
    deliicud 1 264.20582 264.20582 2.73 0.1061
    apache 
    REGRESSION 5
    ERROR 42 4067.94026 96.85572
>f.ols.shrink
Coefficients
    Value Std. Error t Pr(>|t|)
Intercept 14.4982 11.3308 1.2795 0.20860
age 0.1566 0.2037 0.7687 0.44693
age' -0.5345 0.2593-2.0612 0.04629
female 8.0780 3.2344 2.4976 0.01703
deliicud 1.5744 0.9532 1.6516 0.10700
apache -0.1186 0.1913 -0.6199 0.53906
```

```
> f.ols.shrink<-ols(ptsd6m~rcs(age, 3) +female+deliicud+apache, data=ptsd,
x=T, y=T, penalty=2)
> set.seed(1)
> val<- validate(f.ols.shrink, B=150)
> val
\begin{tabular}{lrrrrrr} 
& index.orig training & test & optimism & index.corrected & \(n\) \\
R-square & 0.286033 & 0.36222 & 0.2007558 & 0.16146421 & 0.1245688 & 150 \\
MSE & 93.628911 & 83.40712 & 104.8120827 & -21.40495992 & 115.0338707 & 150 \\
Intercept & 0.000000 & 0.00000 & 2.1790539 & -2.17905390 & 2.1790539 & 150 \\
Slope & 1.000000 & 1.00000 & 0.9095208 & 0.09047918 & 0.9095208 & 150
\end{tabular}
```

-Difference in the original R-square and index.corrected R-square became smaller.
-Optimism for slope indicates degree of over-fitting in parameter estimate (9%). For example, parameter estimate for female gender $=8.078$, where true estimate may be around $8.078 \times 0.91=7.35$

