Details about System Specifications

Frank E Harrell Jr
Aaron Mackey

January 12, 2002

1 Choice of PostgreSQL over MySQL

The follow quotations are from Doug Bates of the University of Wisconsin, who
has used both MySQL and PostgreSQL extensively.

I have found that MySQL is easier to set up and to administer than
is PostgreSQL but the added flexibility in PostgreSQL more than
makes up for its somewhat unwieldy nature.

Views are surprisingly important to me. One large database that
I work with consists of records from the Texas Assessment of Aca-
demic Skills (TAAS) with about 11 million records of math test
results. The original records have (inconsistent) information on stu-
dents and on schools and school districts embedded in each test score
record. A big part of the data cleaning was extracting consistent in-
formation wherever we could. That gives us tables of test results
that have identifying numbers for student, school, and school dis-
trict. Those identifying numbers reference the student table, the
school table and the district table. In MySQL I have to use explicit
joins to sew this information back together if, for example, I want
to use sex or ethnicity of student in a model of the test scores. In
PostgreSQL I can create and store a view and treat it as a single
table. The view looks like a table but is really a virtual table. It
just stores the recipe of how to relate test results to student infor-
mation to school information and school district information so the
whole thing appears to be one big table. This may seem trivial but
the view has two advantages over using explicit joins each time you
access the information:

e The expression defining the join is only entered once. This
saves on typing but, more importantly, it saves on errors. If
you have ever made the mistake of omitting a condition in a
join and accidently creating an outer join when you meant to
create an inner join, this becomes important. The CVS server

for the R project was brought down last year by a student who
made this mistake in MySQL.

e the query optimizer can examine the join in detail and work
out an optimal plan.

If you think of it, a factor in the S language is a specialized type of
view so we are familiar with the concept.

PostgreSQL is extensible. You can define your own functions using
SQL or PL/PGSQL or Perl or Python. You can also define new
data types. For the Current Index to Statistics we have specialized
data types for ISSN and ISBN numbers and special operators and
functions for these data types.

I would find it very confining to go back to MySQL these days but
I don’t begrudge people who use MySQL their choice. In a way the
MySQL/PostgreSQL religious wars are very much like the vi/emacs
religious wars. MySQL, like vi, is smaller and faster for the stan-
dard tasks. PostgreSQL, like emacs, is hard to adjust to initially
but its flexibility and extensiblity make the steeper learning curve
worthwhile.

I was just creating a PostgreSQL database and realized another ad-
vantage of PostgreSQL - in PostgreSQL tables you can use external
keys to enforce referential integrity. In the example I was describing
where the records in the test score table include a student identifier
and a school identifier and a district identifier, I can indicate in the
definition of the table that the student id refers to the primary key in
the student table. An attempt to insert a record into the test score
table with a student id that does not occur in the student table will
produce an error.

Duncan Temple Lang of Bell Labs added the following.

2

The REmbeddedPostgres package allows one to use R functions di-
rectly in Postgres. While we have also done this in MySQL it is not
in any way supported by MySQL and requires some modifications
to the system. For Postgres, this is a straightforward extension that
follows the Postgres documentation! Similarly, we may well be able
to use data types in R as elements in Postgres tables in the future.

Personally, I think that as this sort of embedding within sophisti-
cated and well-tuned database management systems becomes more
secure and stable, we will be able to handle significantly larger
datasets with R code.

Screen Layout

See www.humanfactors.com/layout.

The system will create a default HTML layout (basically a long layout with
one column of data). The system will autogenerate template files (without all
the extraneous javascript and navigational elements) at the users request. These
can then be hand-edited and the system made aware of which template file to use
(allowing you to have multiple template files to ”try out” during development).

This will be the usual web-browser file download/upload circuit (i.e. the
system will provide you with either the default template, or some other template
that’s already been stored - you can edit it locally, then upload it again as either
a new template, or a replacement for an already existing template; separately,
you define for each CRF what template should be used in it’s display (from the
list of available, stored templates).

The template format will probably have very simple ”placeholder wrappers”
for the data elements - e.g.:

<html>
<!-- The "template" -->
<table>
<tr>
<td><!-- FIELD NAME="name" ATTR="prompt" -->Name<!-- /FIELD -->:</td>

<td><!-- DATAENTRY NAME="name" SIZE="50" --><input type="text" name="name"

maxlen="128"><!-- /DATAENTRY --></td>
</tr>
<tr>
<td><!-- FIELD NAME="sex" ATTR="prompt" -->Sex<!-- /FIELD -->:</td>
<td>
<!-- DATAENTRY NAME="sex" SIZE="1" -->
<select name="sex">
<option value="">Choose:</option>
<option value="M">Male</option>
<option value="F">Female</option>
</select>
<!-- /DATAENTRY -->
</td>
</tr>
</table>
</html>

The idea here is that the template be valid html that when viewed in a
browser (or HTML editor), it looks much like the final product; The ”template-
ness” of it resides in the HTML comments - each dynamically generated element
(the prompt or the data entry element) is surrounded by XML-esque tags which
themselves are embedded within HTML comments (so they’re not visible in the
browser ”preview”). Content between the XML template tags is only for pre-
viewing, it doesn’t ever get interpreted (only the instructions contained within
the XML tags get interpreted). This way you can move around elements (in-
cluding the surrounding XML tags), and control the display of elements (via
attributes in the XML tag), and preview the result as well. And you can add
any other extra HTML (jhr;, embedded tables, etc) you like.

Note in the example above that the "name” input field doesn’t have a size
attribute, while the XML instruction does; here’s the final output after using
the template above:

<html>
<!-- The "real" output -->
<table>
<tr>
<td>Name:</td>
<td><input type="text" name="name" maxlen="128" size="50"></td>
</tr>
<tr>
<td>Sex:</td>
<td>
<select name="sex" size="1">
<option value="">Choose:</option>
<option value="M">Male</option>
<option value="F">Female</option>
</select>
</td>
</tr>
</table>
</html>

If a field is later added to a form definition, but no corresponding label exists
in the template, a warning can be issued, and the field added to the bottom of
the current template (in the default tabular format). For the reverse situation,
when a field is removed, the template position for that field will just get filled
in with blank space (removing it entirely could possibly break table
structure, don’t want to have to start parsing all the HTML to do it right).

The user needs to be able to easily navigate logical sections of data. These
sections might be inherited from the XML metadata such as Data Collection
Modules. The user should be able to put any sectioning commands she wishes in
the editable html template described above. Such sections may even represent
page numbers on a paper form. Section names should appear on a navigation
panel on the data entry screen, probably as a pull-down menu.

The system will automatically generate a navigation bar to appear on a
panel on each screen, for navigating by data collection module (DCM) if any
DCMs were used. Default HTML will include a horizontal rule before a new
DCM begins. The data manager can also hand-edit anchors and tags in the
HTML that allow for non-database-driven navigation of data screens (e.g., by
page numbers on printed versions of case report forms). The system will scan
these anchors and generate a second navigation bar.

3 Prompts for Field Entry

The default prompt to be inserted in HTML for user entry of a field will be the
field label. A customized field prompt can be specified in the field metadata.

Fields for which the URL suffix exists in the field metadata will have the field
prompt hyperlinked to the complete URL formed by combining the study base
URL and this suffix.

4 Entry Formats for Specific Data Types

At login time users can select formats for entering certain field types. Dates
may be entered as mm/dd/yyyy, dd/mm/yyyy, or yyyy/mm/dd. Two digit years
will automatically have 19 or 20 placed before them (19 if the two digits are
greater than the current year, 20 if the two digits are at or before the current
year). That is, as of 2001 a 20 will be placed in front of a 2-digit on the screen
if the 2 digits are 00 or 01.

Times will be entered as either 24-hour time, or as hh:mmx where x is either
aor p.

5 Check Boxes, Pull-down Lists, and Table Look-
up

Multiple-choice fields should have check boxes for each choice. Single-choice
fields should use pull-down lists.

For table look-up fields the field metadata specifies three new elements: a
table name, the name of the field to look-up, and the name of the field to store
as the field value (if different from the look-up field). The look-up field will drive
selection during data entry. The user enters the first letter of a string and the
first entry in the look-up table whose first letter matches that is displayed. The
user enters the second letter and the first string matching the first two letters
is displayed. This process continues in like fashion until the user has uniquely
identified the string to use.

A complication arises when returning to a record, if the optional “value to
store” was used. This may need back-conversion to the look-up value. It may
be best if to the right of the field prompt appeared both the look-up and stored
value even though only one of these is stored.

A different way for handling all this may be preferred. Whether single,
multiple choice, or look-up, either let users specify display format at login time,
or use the following scheme:

1. Always use check boxes if there are fewer than 12 possible choices

2. Use a pull-down list for 13-40 possible choices if only a single choice is
allowed

3. Use a pull-down list with highlighting of one option and promotion of that
selection to an accumulation of k selections to the right (after —), where k
is defined in the field or choice metadata. Demotion (with «) for removal
of choices should also be allowed.

4. For more than 40 possible choices, use alphabetic-partial match-choice
completion. For multiple choice fields the “promotion to accumulated
choices” would be used in conjunction with this.

6 Check Digits

There should be an option to require a LUHN check digit check upon entry
of certain ID variables. For a definition see whatis.com and search for LUHN
formula. The is the formula used by all major credit card companies.

7 Tool for Field Validation

The Perl Data: :FormValidator module will be used for server-side form valida-
tion. See http://search.cpan.org/doc/MARKSTOS/Data-FormValidator-1.
7/1ib/Data/FormValidator.pm.

8 Form and Record Navigation

At the bottom of any browser screen need arrows that when clicked bring up
previous or next record in the currently displayed CRF. It would also be good
to have symbols to click to get to the beginning or end of the entire file.

Click sites for Add, Update, Delete Record are needed.

Tabs or similar selection areas are needed to cause the main screen to be
replaced with any chosen CRF for the same primary key value to be displayed

When subjects can have multiple records for a CRF a certain click by the
user should pull up a chronological list of all records for the subject for that
CREF. By clicking on any one of these the user should be taken to that instance.

At login time users can select an option specifying whether by default to
display the last record entered at the site, the first record, or a management

page.

9 Client-Side Scripting

A generic Javascript function for basic checking of numeric data could be invoked
as follows.

chk.numeric(x, type, mandatory=T, hmin, hmax, smin, smax)

x is the field contents, hmin and hmax are hard limits (error message, clear field
on screen if violated), smin and smax are soft limits (warning message, contain-
ing something like Click here to confirm entry of the value. Messages
could go to a separate frame which is always in the same place on the screen
(e.g., bottom left). Any or all of the 4 limits could be missing, meaning no limit.
Messages should say e.g. field > hmax, field < smin to tell the user exactly

what the violation was and what the limit was defined as. The type argument
might specify integer or float so that if integer a check for a decimal place
could be made. If mandatory=T the user is forced to enter a value for that field.

Corresponding Perl functions for server-side checking would be good to have
too.

For table look-up fields, the table of look-up values and optional stored
values would be queries at the beginning of a session and converted to Javascript
vectors for fast lookup.

10 Derived Variables

Derived variables will not be stored in the database. They will appear on
the data entry screen as read-only fields after being calculated swiftly. They
will be re-derived as needed during SQL queries of the data. One good way
to handle derived variables is through the REmbeddedPostgres package (see
http://www.omegahat .org/RSPostgres/) by which R code can be executed in
PostgreSQL procedures.

11 Administration Screen

Users should be able to call up a screen that lists all the forms that have been
entered for a subject, with the date of data collection and the date the data were
last modified. The percentage of missing fields on each form (for non-mandatory
fields) should be displayed.

12 Data Views

Except for sub-tables, data will be viewed and entered in form format with one
subject per screen. There needs to be an option to display (but not change?)
data on multiple subjects in a tabular format.

13 Security

All communications are encrypted using modern SSL technology and strong
encryption. Servers will employ pass-phrase encoded encryption keys such that
a successful server breakin will not compromise data security. Database access
will be password protected; the password(s) for server access to the database will
also be encrypted within the server’s memory space, using the aforementioned
passphrase encryption method. All this jargon can be summed up as: there are
no unencrypted, non-password protected files that can be read by an intruder.
Both communications and data storage are protected from eavesdropping and
intrusion, independently of any efforts made to secure the machine itself. As a

side effect, if the server goes down, it must be brought up manually by a human
(so that the critical passphrase may be provided).

We assume that users’ browsers have strong encryption turned on.

User access will time out after 30 minutes of inactivity, to prevent unautho-
rized access if the user leaves the station.

A robot.txt file will be set up on the web site so that search engines do
not find the server site.

A software firewall (ipchains in Linux) will be set so that access is only
available for a list of IP addresses corresponding to study personnel. For at-
home access, users will have to use a proxy server their institution.

13.1 User Roles for Security

Start with the basic dichotomy between “Administrator” and “Project-specific
Usage”. I can guess that under “Project-specific Usage” would come various sub-
roles such as “data entry only”, “data review”, “data analysis”, etc. But I want
to try to keep a distinction between “Privileges” (ability to add/view/edit/delete
a form/field/data value) and “Roles” (I am a “well-trained data entry clerk”
and therefore I have add/view/edit privileges on my projects’ data values).

So, to begin:

13.1.1 Role: Super User
Privileges:

e (ALL)

13.1.2 Privileges for Role of Project-specific Super User

e access to all projects assigned to user

e access to all forms assigned to project

e access to all fields assigned to forms

e ability to view all existing patient records of project

e ability to add new patient records of project

e ability to edit all existing patient records of project

e ability to delete all existing patient records of project

e ability to view all private patient data from all records of project

e ability to edit all patient data from all records of project

13.1.3 Privileges for Role of Project-specific Data Entry User
e access to all projects assigned to user
e access to all forms assigned to project
e access to all fields assigned to forms
e ability to view all existing patient records of project
e ability to add new patient records of project
e ability to edit all existing patient records of project

e ability to edit all patient data from all records of project

13.1.4 Privileges for Role of Project-specific Access

e access to all projects assigned to user

e (no other privileges - need to be added manually)

Remember that the proposed design allows a very flexible combination of
privileges on projects vs. forms vs. fields. e.g., a limited data-entry user could
have access to only 1 form, in which they can only view some data (other data
being XXX-ed out), and only edit/update others. The idea of “Roles” is to
make a generic set of privileges (associated with the role) that can be given to
people “in batch”.

Remember that the basic set of privileges are access/view/add/edit/delete.
Each of these privileges has meaning when referring to a project, patient record,
form, or field.

Privilege Object Meaning

view project can see the project in main project listing
access project can gain access to the project from the main listing
add project can create a new project

edit project can edit a project’s definition

delete project can delete a project

view record can see listings of patient records

access record can gain access to specific patient records
add record can add a new patient record

edit record can edit a patient record

delete record can delete a patient record?®

view form can see the form in the form listing

access form can access data for this form

add form can add new patient data for this form
edit form can edit patient data within this form
delete form can delete patient data within this form
view field can see this field in the form display

access field can see the value (otherwise XXXX’ed out)
add field can enter new data in a field

edit field can change existing data in a field

delete field can remove data from field

“Record privileges may also be keyed off of user site/patient site, i.e. a user can have

record-level access to patients seen at their own site, but not at other sites.

13.2 Masking of Coordinating Center to Subject Identi-
fiers

Certain multi-center projects need to have patient identifying information col-
lected locally that is not available to the data center. This is handled by en-
crypting those fields using a passphrase/key supplied by the user. The key is not
stored in the database. Each remote site will be responsible for remembering
their (single) passphrase and for seeing that all users from that site who should
have access to subject identifiers know the passphrase.

The passphrase is entered at signon and will stay in effect for all forms used
during that session. At signon, the user has to enter the passphrase twice,
and they don’t match the user has to enter it twice again until the two match.
The system will fail if the user has already entered data and enters the wrong
passphrase twice.

14 Accessibility of Server

We are planning on using a dedicated machine for the server, so that accessi-
bility problems would normally result only from internet traffic problems (rare,
but they happen). Local data storage brings up security and data manage-
ment/integrity concerns, but can be accomplished if felt to be necessary.

10

15 User Actions for Data Transmission

Typically, data on a page is sent "manually”, by the user interacting with a
page element (clicking a button or link). However, it is quite possible to save
each data entry element as it is completed, using a hidden ”"data pipe”. This
will require a modern browser with JavaScript support turned on to function
correctly.

If the ”immediate data save” feature mentioned above is enabled, we can
switch the color coding in "real-time” as data is entered. The current plan is to
require the user to hit a Save button to save the values in the currently viewed
record.

16 Restricting Access According to Site

Varying levels of data security (both viewing and editing privileges) may be
assigned for each field in the form; e.g. a user may be given viewing privileges for
patient study number, editing privileges for specific lab data, but no privileges
(viewing nor editing) for personal identifying data. The default privileges for
any new user are none - privileges to view and/or edit data must be granted to
users administratively.

17 Audit Trail

The audit trail will be generated from Perl; we will not use the default Post-
greSQL audit trail. A relational scheme for storing the audit trail could be as
follows.
Table data

e datum_id (primary key)

e subject_id (references “subjects” table)

e field_id (references “fields” table)

e value (polymorphic type for numbers, string, enum, etc)

Table field update_log
e log_id (primary key)
e timestamp

e user_id (references “users” table)

data_id (references “data” table)

e status (enum 'new’, ’edit’, ’delete’, 'clear’)

11

e previous_value (default NULL, another polymorphic type);

e new_value (could be NULL for delete/clear options, polymorphic type).

In this way the log remains compact, but references the necessary info (the

foreign key points to the data element actually being changed, which in turn
has all the subject/field information required).

References

[1]

C. A. Brandth, P. Nadkarni, L. Marenco, B. T. Karras, C. Lu, L. Schacter,
J. M. Fisk, and P. L. Miller. Reengineering a database for clinical tri-
als management: Lessons for system architects. Controlled Clinical Trials,
21:440-461, 2000.

D. Conway. Object Oriented Perl. Manning, 1999.

R. M. Curley, R. L. Evans, J. Kaylor, R. M. Pogash, and V. M. Chinchilli.
Development and deployment of an Internet-based data management system
for use by the Asthma Clinical Research Network. Controlled Clinical Trials,
22:135S5-155S, 2001.

S. J. Kunselman, T. J. Armstrong, T. B. Britton, and P. E. Forand. Im-
plementing randomization procedures in the Asthma Clinical Research Net-
work. Controlled Clinical Trials, 22:1815-195S, 2001.

W. W. Marshall and R. W. Haley. Use of a secure internet Web site for col-
laborative medical research. Journal of the American Medical Association,
284:1843-1849, 2000.

R. M. Pogash, S. J. Boehmer, P. E. Forand, A. Dyer, and S. J. Kunselman.
Data management procedures in the Asthma Clinical Research Network.
Controlled Clinical Trials, 22:1685-180S, 2001.

L. Stein. Writing Apache Modules with Perl and C: The Apache API and
mod_perl. O’'Reilly, 1999.

12

