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The practice of outcomes research is growing in all segments
of the health care industry, yet few practitioners and
researchers are prepared to deal with the completion of sta-
tistical analyses that characterize the new focus on results.
This article discusses basic model formulation and interpre-
tation. It also encourages the use of statistical models that
study the simultaneous effects of many variables on an out-
come and gives examples of relationships among variables
that are not simple and linear. The methods are illustrated
with a dataset consisting of stroke rehabilitation inpatients
discharged during a 3-year period with an admission date
that is within 1 year after stroke.

Nick, T. G., & Hardin, J. M. (1999). Quantitative Research
Series—Regression modeling strategies: An illustrative case study from
medical rehabilitation outcomes research. American Journal of

Occupational Therapy, 53, 459—470.

’ I Yhe place of outcomes measurement in health care
has been ameliorated recently by new accreditation
standards promulgated by the Joint Commission on

Accreditation of Healthcare Organizations (JCAHO).

Known as the ORYX initiative, JCAHO’s “next generation

of accreditation” requires hospitals and long-term-care facil-

ities to select a number of performance measurements for

JCAHO to begin monitoring in 1998 (JCAHO, 1998).

Home health care agencies, ambulatory care facilities, and -

others must announce their selected indicators in 1999.

Although medical rehabilitation organizations have a rela-

tively recent history of monitoring their programs,

CAREF...The Rehabilitation Accreditation Commission has

encouraged accredited organizations to collect data on

patient outcomes and to have ongoing program evaluation

(Wilkerson & Johnston, 1997). In short, health care orga-

nizations and the professionals that staff them now face the

daunting task of statistically proving their worth.

However, the measurement of health care outcomes is
far from the straightforward description provided by many
observers of the health care field. Whyte (1997) asked: If
many different variables at one level may influence a vari-
able at a higher level, why not study them all? He asserted
that in-depth analysis should be the ultimate goal of theo-
ry building; however, he believed that this goal would be a
long time in the making. Harrell, Lee, and Mark (1996)
stated that if model building is applied uncritically to a

daraset, the models will it th data poorly or they will inac-

curately predict outcomes on new subjects. For example, if
only simple models (those that-only allow for straight-line
[linear] relationships between variables) are fitted to a
dataset that has complex and nonlinear relationships, then
those models will perform poorly and will not fit the data.

An example of a complex model (i.e., one that can be fit-

- ted with a multivariable model) is given in Pentland, McColl,
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and Rosenthal (1995). The authors found that as a person
lived longer with a spinal cord injury (SCI), he or she felt less
financially secure and experienced more symptoms and ill-
nesses. These findings clearly convey to service providers and
health care policymakers the added vulnerability of older per-
sons with a disability. By using multivariable regression mod-
els, the authors could specify that the joint influence of age
and duration of injury and level of lesion are related to long-
term health outcomes, such as functional independence.

Many publications in professional journals also do not
exhibit a simultaneous use of several variables. For example,
only a few articles from The American Journal of Occupa-
tional Therapy (AJOTw) and Physical Therapy use statistical
models that incorporate many variables simultaneously and
consider the joint influence of predictors on a response. Jette
and Jette (1996) and Mitchell and de Lissovoy (1997) are
exceptions worth noting. Although many uses of analysis of
variance (ANOVA), repeated measures ANOVA, and analy-
sis of covariance (ANCOVA) were found, most of the arti-
cles include fewer than five total predictor variables and at
most two continuous predictor variables. Furthermore, any
inclusion of interaction terms is usually only associated with
ANOVA, and forced straight-line relationships are common
in regression analysis. Although Jette and Jette included
many predictor variables, it is apparent that only simple and
straight-line relationships were assessed. Mitchell and de
Lissovoy assessed some interactions but only allowed for lin-
ear relationships among the predictors and outcomes.

We believe that it is important to demonstrate the han-
dling of many predictors and various different types of pre-
dictors in one multivariable prognostic model. The meth-
ods we outline here are elaborated in greater detail in
Harrell et al. (1996). They discussed, in addition to multi-
variable linear regression models, logistic and survival mod-
els and illustrated their methods with a survival analysis in
prostate cancer. Our focus is on the multivariable linear
regression model, which we will illustrate with the use of
patients in a medical rehabilitation facility who have had a
stroke. All analyses were done using S-PLUS Version 4.5!
for Windows in conjunction with the Design library of
Microsoft Windows S-PLUS functions (Harrell, 1998).

The application of statistical models relating multiple
predictors (independent or explanatory variables, risk fac-
tors, treatments, covariates) to a single continuous response
(dependent, outcome) variable is referred to as multivari-
able modeling. These models can handle a combination of
dichotomous, nominal, ordinal, or continuous predictor
variables (see Table 1 for examples of data types). Most
textbooks refer to this type of statistical model as a multi-
ple linear regression model. ANCOVA handles both cate-
gorical and continuous predictors as does multivariable lin-
ear regression models. In fact, the multivariable linear
regression model is an ANCOVA-type model. However,

"Mathsoft Inc., 101 Main Street, Cambridge, Massachusetrs 02142-1521.
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ANCOVA models are mainly interested in categorical pre.
dictors, such as treatment given, and the continuous pre-
dictors, such as age, are introduced primarily to improve
the precision of the statistical model (Neter, Kutner,
Nachtsheim, & Wasserman, 1996). Multivariate model;
refer to models that simultaneously handle more than one
outcome variable. Note that many researchers, including
allied health professionals (see Portney & Watkins, 1993),
who are not statisticians use the term multivariate o
describe any statistical technique involving several vari-
ables, even if only one dependent variable is considered ar
a time (Kleinbaum, Kupper, & Muller, 1988).

Other practical multivariate models that are not discussed
here include logistic regression models and Cox proportional
hazard models (see Harrell et al., 1996). Logistic models are
used when the outcome is dichotomous, nominal, or ordinal,
such as with many clinical and disease outcomes (Kleinbaum,
1994). Cox proportional hazard models (a form of survival
analysis) are used when the outcome is the time until some
event occurs, such as with time to return to community in
rehabilitation or time to return to work in an industrial reha-
bilitation setting (Kleinbaum, 1996). See Iwarsson, Isacsson,
Person, & Scherstén (1998) for an example in A/OT

Existing Databases

Before describing analytical strategies for outcome assess-
ments, it is important to examine potendal issues and prob-
lems found in many databases available to a health care orga-
nization. Many health care facilities have maintained their
own databases for years. These databases often contain a rich
variety of clinical information on patients over extended peri-
ods. The U.S. Health Care Financing Ad-ministration
(HCFA) has also assembled large databases on Medicare
patients. Typical information in the HFCA/Medicare database
concerns the patient’s hospitalization, surgical procedures, and
office visits. In similar databases kept-by Medicaid in many
states, drug data may also be mcluded Wilkerson and
Johnston (1997) provided a history and critique of rehabilita-
tion clinical program-monitoring databases. These types of
databases have been the logical starting points for researchers
as they have begun to assess the quality of care and outcomes
in health care. With the increasing regulatory agency and pub-
lic demand for such assessmengs, McDonald and Hui (1991)
predicted that funding for both the creation of these databas-
es and their use will increase in the coming years.

What issues and problems, then, should an outcomes
researcher be wary of when analyzing the aforementioned
databases? First, it must bé remembered that these databas-
es originally were not created for research purposes; that is,
patients entered into these databases were not included as
part of a designed research preject but were included sim-
ply because they sought care at the given health care facili-
ty. Hence, the data could have biases, including selection
bias. Follow-up data may be absent because the patient
sought care elsewhere after a bad experience. Patients who
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*. Data Type
. Dichotomous

' Table 1
.Examples of Types of Data

Examples

Sex (male/female), bilateral involvement (yes/no), arthritis (yes/no), workers’ compensation (yes/no), patient has attorney (yes/no)

Nominal Impairment group, race (White, Black, Asian, Native American, etc.), prehospital living setting (home, skilled nursing facility, etc.),
; arthritis (rheumaroid, osteoarthritis, other)
‘. Ordinal Pain (none, mild, moderate, severe), patient status (unimproved, stable, improved)

Continuous Age, length of stay, toral Functional Independence Measure scores

are sicker tend to have more data than patients who are less

* sick because they visit the facility more often. Additionally,

patient eligibility changes. Moses (1991) and Byar (1991)
argued that bias is, in fact, the chief threat to database

© analyses.

The second problem facing an outcomes researcher was
noted by Tierney and McDonald (1991). They claimed that

" 'there may be multiple measurements per patient for a par-

ticular physiological parameter. Thus, the researcher must

_ determine which of the measures is clinically most appropri-

ate for a given analysis. Similarly, several clinical indicators
may be used across patients. Determining equivalence of
indicators to allow for comparison across groups of patients
can be problematic.

Third, data quality and reliability pose a serious prob-
lem for analysis of clinical and claims databases. For exam-
ple, variation can occur in basic clinical measures, such as
blood pressure, because of site differences, clinic differences,
clinic focus, and so forth. Similarly, electrocardiogram read-

ings in a coronary care clinic within the facility may vary in

accuracy from those in the emergency department.

These various sources of bias and error can be con-
trolled in several ways: stratification techniques, matching
schemes that are based on relevant covariates, or adjust-
ment factors and statistical models. Although an in-depth
examination of these methodologies is beyond the scope of
this article, it is nevertheless important that the reader gain
an appreciation of the problems inherent to these kinds of
databases and of the limitations that these problems may
impose on the resulting analysis.

Case Study From Rehabilitation Outcomes
Research

To illustrate various aspects of multivariable regression
analyses, we used a sample consisting of 745 stroke rehabil-
itation inpatients discharged from a facility in Mississippi
between January 1994 and December 1996. This dataset
included patients within the first year of stroke and those
who were admitted to the facility for the first time. Other
researchers have addressed the use of this dataset to descrip-
tively and graphically analyze functional status improve-
ment (Nick, Williams, & Barker, 1998). All of the variables
presented here are included in the Uniform Dataset, which
includes measures of functional status, usually derived from
the Functional Independence Measure (FIM).2

The FIM assesses physical and cognitive disability in

*FIMSM is a service martk of the Uniform Data System for Medical
Rehabilitation, a division of UB Foundation Activities, Inc.

7 The American Journal of Occupasional Therapy

terms of burden of care (McDowell & Newell, 1996). This
test of functional status is usually administered on admis-
sion and discharge from a rehabilitadon facility and
assessed by various care providers, such as nurses, occupa-
tional therapists, physical therapists, and speech~language
pathologists. The FIM is composed of an 18-item, 7-level
scale (where 1 = total assistance and 7 = independent) of -

~ patient performance. By totaling the points on each item,

the possible total score ranges from 18 (total dependence)
to 126 (highest level of independence). The FIM total
score can be separated into two major components—
Motor and Cognitive scores. The Motor score represents
13 items for a minimum of 13 and a maximum of 91 and
includes the items of self-care, sphincter control, transfers,
and locomotion. The Cognitive score represents 5 items for
a minimum of 7 and a maximum of 35 and includes the
communication and social cognition items. See McDowell
and Newell’s (1996) review of the FIM for more informa-
tion on this measurement method along with critiques of
more than 80 other measurement methods.

Of the 745 patents in the current study, 711 had
either left (right brain) or right (left brain) body involve-
ment, whereas the remaining 34 had either bilateral '
involvement (7 = 10), no paresis (z = 20), or some other
sttoke (7 = 4). Because a predominant proportion (more
than 95%) of the patients had only one body side that was
impaired, we decided to include only those 711 patients in
this analysis.

Formulating a Model

One of the first priorities of the invcstié;tor should be to
determine the specific research question to be addressed.
With large databases, it is often necessary to write special
darabase queries in order to obtain the appropriate dataset
for analysis. Without a clearly defined analysis plan, much
time and energy can be lost regenerating analysis datasets.
It is also important to note thar most statistical methods
require an assumption that the hypothesis being tested has
been produced a priori. Some controversy exists about this
assumption, and some new techniques, such as data min-
ing (Mitchell, 1997), offer the promise of assisting investi-
gators in the generation of*interesting new hypotheses.
However, at present the most secure route for most
researchers is to follow the standard paradigm. ‘
For our study, attention will be given to determining
the relationships between various patient admission char-
acteristics, including demographics, prehospital vocation,
setting from which admitted, payment source, and insur-
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ance status on length of stay (LOS) in rehabilitation. LOS
represents a more traditional outcome in medical rehabili-
tation outcomes research (Wilkerson & Johnston, 1997).
We use it here as a dependent variable for illustrative and
instructive purposes. Our particular emphasis is on assess-
ing the effect of payment source on LOS in rehabilitation
while controlling for differences in demographic, admis-
sion functional status (FIM Motor and Cognitive scores),
and other variables. If an effect is demonstrated between
insurance status and LOS, this will support the role of pay-
ment source as an independent influence on LOS in reha-
bilitation. Ideally, a facility hopes that LOS is independent
of payment source and that patients receive the amount of
care, measured by LOS, that they need to achieve rehabili-
tation benefits or appropriate functional status.

Other important research questions that could be
addressed with this dataset are: (a) What are the effects of
treatment on LOS? (b) When are demographic and func-
tional status differences among patients controlled for? (c)
What are the effects of care on patients’ functional status at
discharge? Additional treatment variables would have to be
collected, such as the amount or type of services they
received in the rehabilitadon center (e.g., occupational
therapy, physical therapy).

In their discussion of conceptual models in rehabilita-
tion, Duncan, Hoenig, Samsa, and Hamilton (1997) stat-
ed that an important question in stroke rehabilitation is:
Does therapeutic exercise improve motor recovery and sub-
sequently functional independence? To address this ques-
tion, variables that take into account the time, frequency,
and duration of therapy and the progression of exercise
intensity would be included in the statistical model. As well
as these variables, the type of therapeutic exercise used and
the classification of the session (group or individual) would
need to be characterized. In the absence of the amount and
type of care that patients received, LOS could be used as a
predictor variable. In this role, LOS acts as a proxy for the
amount and type of care that patients received in a rehabil-
itation center.

When one is formulating good hypotheses, it is impor-
tant to collect “good” predictor variables. Predictors are
“good” if they are reasonable, appropriate in number, mea-
sured reliably, handled well, and characterized adequately.
See Lynn, Teno, and Harrell (1995) for a discussion of these
aspects of formulating models with regard to prognosticat-
ing death. Predictors should be selected on the basis of what
is known about the determinants of the outcome (e.g,, in
the present study, LOS). When a researcher studies a more
general population with stroke, SCI, and traumatic brain
injury, the type of “impairment group” needs to be includ-
ed in the statistical model because different impairment
groups have different LOSs. One would need to consider
what factors, based on clinical and scientific knowledge and
the appropriate literature, seem likely to be important in
predicting LOS and include those variables in the model.
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Otherwise, the model will not be accurate and will lead 5 |
estimates of effect thar are not reflective of the actual popy-
lation of interest. The other characteristics of “good” pre- !
dictors will be discussed in the sections that follow.

Describing the Data

Before conducting formal statistical tests on a dataset, one
must explore the variables in one dimension (univariate)
both descriptively and graphically. This exploration allows
a researcher to uncover the basic structure and information
inherent in the data as well as uncover errors in the darta,
Describing the data includes the computation of simple
summaries. For continuous variables, these summaries are
provided by statistics, which include means, medians,
quartiles, minimums, and maximums. When data are
skewed (i.e., do not follow a normal distribution) or when
oudiers are present, which is generally the case with out-
comes dara, the center is more meaningfully measured by
the median. In other words, if the data are skewed, then the
median and quartiles are bezzer statistics than the mean and
standard deviation, respectively. The standard deviation is
often subject to the mistaken belief that 95% of the obser-
vations can be expected to fall within two standard devia-
tions from the mean (O’Brien & Shain;r0, 1981). Because
of this common misconception, the standard deviation is
used for descriptive purposes far more than it should be.
For nominal and ordinal variables, the frequency and per-
centage of the categories are the appropriate summary sta-
tistics. For all types of data, the number of unique (i.e., the
number of different scores) and missing values will aid an
investigator in the analysis stage.

For the stroke dataset, recall that we computed statistics
on only the 711 patients that had just one side of the body
impaired. The simple summaries of the categorical variables
are depicted in Table 2. For continuous variables, including
the outcome of interest, LOS, the mean, and some impor-
tant percentiles (5th, 10th, 25th, 50th,.75th, 90th) are re-
ported in Table 3. A percentile indicates the percentage of a
distribution that is equal to or below that number. The 25th
percentile represents the lower, or first quartile, and the
75th percentile represents the upper, or third, quartile.
The 50th percentile, or median, represents the middle value
of a variable when the data are ordered by size. For example,
the 25th percentile for admission FIM scores for patients
with stroke from this facility is 43, with the lowest possible
value being 18 (each item being rated as 1, with the parient
needing total assistance). This means that 25% of the
patients with stroke have FIM scores that are ar most 43,
and 75% have scores that afe greater than 43.

Also reported in Table 3 are the number of unique val-
ues and the number of missing cases for each variable. Such
detail would normally not be published in the final presen-
tation of the results. However, it is crucial to visualize the
data in great detail when developing a predictive model.
Further discussion of missing values in data is given in the
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Table 2

" pescriptive Statistics for Nominal and Ordinal Predictor Variables

Variable Unique (Missing) Frequency, %

Group 2 (0) Left brain (341, 48%), right brain (370, 52%)

Sex 2(0) Female (352, 50%), male (359, 50%)

Race 3(1) Native American (2, 0%), Black (303, 43%), White (405, 57%)

Year 3(0) 1994 (285, 40%), 1995 (215, 30%), 1996 (211, 30%)

Payment 5(2) Medicaid (55, 8%), Medicare (224, 32%), both (64, 9%), Medicare and
source private (231, 33%), private (135, 19%)

Prehospital 4 (0) Employed (129, 18%), not working (19, 3%), retired for age (421, 59%),
vocation retired for disability (142, 20%)

Setting 3(2) Acute (449, 63%), home (173, 24%), nonacute (87, 12%)
admit from

next section. patients are missing data for chronicity. Missing values

A measure of variation that is becoming quite popular

~ today, and deservedly so, is the inter-quartile-range (IQR),

which is the difference between the 25th and 75th per-
centiles and contains the middle 50% of the data. It is com-
mon to simply report the median along with the lower and
upper quartiles, such as the 50th (25th, 75th) percentiles.
For example, the FIM scores in this study would be report-
ed as 61 (43, 76).

Note that all of the variables except for chronicity (the
number of days between onset of stroke and rehabilitation
admission) have similar means and medians, meaning that
the distribution of the variable is symmetric (not skewed).
When the mean and median of a dataset are not equal, the
shape of the distribution is skewed. For example, because
the mean of chronicity (51) is significantly higher than the
median (24), the shape is said to be positively skewed. The
opposite applies to shapes that have a negative skew (see
Figure 1 for the actual shapes of the continuous variables of
this dataset). Examining the quartiles and other percentiles
provide additional, valuable information about the shapes

of the distributions.
Dealing With Missing Data

Attention to missing values is an important part of the data
description process. Decisions must be made regarding the
accepuability of missing values. The frequencies in Table 2
have very few missing data points. Only two patients are
missing information for “setting admitted from,” and two
patients are missing payment source. In Table 3, three

Table 3
Descriptive Statistics for Continuous Predictor
Variables and the Outcome Variable

Unique

Percentile

Variable (Missing2 M 5t 10th 25th 50th 75th 9Qth 95ch
Predictor
Age 68 (0) 67 42 47 58 69 76 83 85
Chronicity 168 (3) 51 8 10 15 24 51 145213
FIM at admission 94 (0) 60 24 30 43 61 76 87 94
Motor score 72 (0) 39 14 18 26 38 49 60 68
(FIM) .
Cognitive score 21 21 5 7 15 22 28 32 34
(FIM) :
Outcome .
LOS 25 25 10 13 17 24 30 37 42

Note. FIM = Functional Independence Measure; LOS = length of stay.
2Unique, as used here, simply means a value that produces only one result
and is without a like or an equal.
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must be tracked down to determine whether, in fact, they
were uncollectable data points. ‘

When data are missing for the primary outcome, the
patient record is usually deleted from the study. When data
are missing for the predictor variables, commonly all obser-
vations are inappropriately discarded. For example, in
studying the relationships between physical therapy and
health outcomes in patients with knee impairment, Jette
and Jette (1996) stated that “only data of patients with
complete data for the independent variables of interest
were included in the analyses” (p. 1179). Of their 426
patients who had complete episode of care and completed
both initial and discharge health outcomes questionnaires,
only 362 (85%) were included in studying predictors of the
bodily pain physical health dimension of the 36-Item
Short-Form Health questionnaire. Other dimensions ana-
lyzed included up to 405 patients. The disposal of data -
wastes valuable patient information and usually results in
less accurate estimates of effect. If dara must be discarded,
statistical modeling should be used to characterize the rea-
sons for the missing data (Harrell, 1997).

The most common type of imputation for a missing
value or observation is to plug in or fill in the missing value
with a descriptive statistic, such as the mean or median.
However, if several values or observations-are missing, spe-
cial imputation methods should be used that take explana-
tory factors into account. See Rubin and Schenker (1991)
for an overview of imputation strategies in health care data-
bases. Most statistical packages, including SAS?, SPSS*, and
S-PLUS, have routines, or at least additional add-on pack-
ages, that perform imputation. For the stroke sample, few
values were missing; therefore, simple statistics were used to
plug in a value. :

Categorical Predictors__

Whereas continuous variables are easily incorporated into a
regression model, dichotomouss, nominal, and ordinal pre-
dictors require additional attention because multiple
regression models cannot handle character strings, such as

3SPSS Inc., 233 Wacker Drive, 11th Floor, Chicago, Illinois 60606-6307.

“SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513-
2414,
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Figure 1. Histograms of all continuous variables under consideration. Note. LOS = length of stay; Chron. = chronicity; FIM =

Functionai Independence Measure.

Male/Female or M/E This actuality, however, does not
mean that only continuous variables should be analyzed in
a regression analysis. In particular, when important predic-
tors (be they continuous or categorical) are left out of a
model, estimates of effects may be incorrect (Glymour,
1997). For dichotomous, nominal, and ordinal variables,
design (dummy or indicator) variables are required. As we
will describe, the number of model design variables
required to represent a nominal predictor is one less than
the number of categories of that predictor. Thus, a reduc-
tion in the number of categories of a predictor will reduce
the number of variables required in a regression model.

Reducing the Number of Categories

Before coding the categorical predictors for regression
modeling, it is important to inspect the frequencies of the
categories of the nominal and ordinal predictors (i.e., left
brain vs. right brain, male vs. female [see Table 2]). Such
inspection will aid the investigator in determining whether
a reduction of the categories is warranted. A reduced model
would be easier to interpret and validate (see the “Sample
Size Requirements” section).

As an example, the FIM has six levels of race (Asian,
Native American, Black, Hispanic, White, and other).

464

Assuming a small sample size of 20 patients, a model would I
not be useful if it were to require five design variables just
to describe these six categories. The stroke dataset has only 1
three of these six categories of patients as seen in Table 2
(Native American, Black, White) and requires two variables
in a regression model. From the desesiptive information,
there are only two Native Americans. Forcing a variable for
this category would be wasteful. It would be far better to
collapse the Native American and the Black categories into
a new category (minority), thereby reducing the number of
total variables by one. Alternatively, the data on the Native
Americans could be discarded. In general, it is better to col-
lapse or merge categories ineo “similar” groups in lieu of
deleting them. By “similar” we mean groups that are
expected to behave alike with respect to the outcome and
that should be supported by subject matter knowledge. It
is not appropriate to base the reduction of categories on an
inspection of the outcomé data. This strategy leads to the
reporting of biased models.

The variable group (impairment group) presents
another potential category. Recall that we initially had 745
patients in the study. However, 95% of these patients rep-
resented single-side impairment; the remaining 5% had
bilateral involvement, no paresis, or some other involve-
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ment. We opted to delete the patients who did not have
single-side involvement. An alternative strategy would have
been to create an other category consisting of the three
groups (bilateral, no paresis, other). Although this puts dis-
dnct categories together, it preserves the initial patient pop-
ulation and uses only one additional variable.

A more complex reduction may be required of other
variables, such as payment source. The FIM has two vari-
ables that represent payment source—primary and sec-
ondary—each with 16 categories (e.g., Blue Cross,
Medicare non—Managed Care Organization [MCO],
Medicaid non-MCQ, Commercial Insurance, MCO
health maintenance organization, Medicare MCO,
Medicaid MCO, workers’ compensation]. If both of the
two payment source variables are included and the cate-
gories are not reduced, 30 variables would be required in the
regression model. This becomes impossible to interpret,
even if a valid model could be derived. A better “reduced”
model would be one that collapsed the two variables (pri-
mary and secondary) into one variable and reduced the 16
categories into a manageable number by forming like
groups. With regard to the LOS outcome, this may entail
forming three simple categories, such as (a) Medicaid only,
(b) private only, and (c) other (includes Medicare and
Medicaid, Medicare only, and Medicare and private). Note
that the Medicaid group is not combined with any other
category because it is a very different source from the oth-
ers. Many other assortments of categories exist, but these
three categories, which only require two variables in the
regression model, will be used for this article.

Other nominal predictors in this dataset for which cate-
gories were collapsed, in addition to race and payment
source, were prehospital vocation (employed, not employed
[not working, retired for age, retired for disability]), and set-
ting admitted from (acute, other [home, non-acute]). In
summary, the 22 categories listed in Table 2 were reduced to
16 categories, which should increase the validity of the
regression model.

For ordinal variables, it is valid to collapse a category
with only a few patients into a previous category, thus
reducing the number of variables required to model the
ordinal variable by one. Using an example not found in the
dataset, take a variable that measures pain with the ordinal
levels none, mild, moderate, and severe. If there were only
a few patients in the mild and severe groups, it would be
appropriate to have only two categories for this variable:
none to mild and moderate to severe.

Coding Nominal Predictors

Design variables are devices used to allow for categorical
predictors in statistical modeling, For dichotomous predic-
tors, such as sex (Male/Female), one design variable may be
set to 0 if the patient is male and 1 if the patient is female.
We therefore would have a new column of zeros and ones

The Awmorican Ingvnal nf () rratatinnal Theraha

and not of males and females in our dataset. Payment
source (Medicaid, Private, Other) requires two design vari-
ables. One design variable takes on the value of 1 if
Medicaid and 0 if otherwise. The other design variable
would be defined as 1 if private and 0 if otherwise. These
two design variables completely define the three categories
in the regression model. In general, one less design variable
is required than the number of categories of a predictor. For
example, with five different levels of a severity index (None,
Mild, Moderate, Severe, Excruciating), four design vari-
ables are needed in the regression analysis.

Coding Ordinal Predictors

There are several ways to code ordinal predictor variables.
If we code the variable year (1994, 1995, 1996) as 1, 2, and
3, we can only test for a linear relationship between the pre-
dictor and the response. Although this is commonly done,
it is often incorrect to assume such a linear relationship
between the ordinal variable and outcome because the
results could be misleading. An assumption with the pre-
ceding codings is that the effect on LOS of the years 1994
and 1996 is extreme and that of year 1995 is between
them. Here, the trend is not linear but rather a decreasing
trend that is more so each year.

The nominal codings work well on ordinal variables
with up to five categories. An adequate alternative is the ordi-
nal codings presented in Walter, Feinstein, and Wells (1987),
which allows a researcher to see the amount of change occur-
ring from one category to the next. Table 4 applies the nom-
inal and ordinal coding schemes on the year variable. With a
software package, one often has to create two new design
variables for year, for example, Yearl and Year2. These are
usually created with if~then statements such as in SAS [If
(Year = 1995) then Yearl = 1; If (Year ~= 1995) then Yearl
= 0;] or in SPSS [If (Year = 1995) Yearl = 1. If (Year ~= 1995)
Yearl = 0.]. The ~= symbol stands for net equal to in both
packages. Alternatively, most statistical software packages
have user-friendly dialogue boxes to recode variables.

Model Interpretation

To demonstrate the interpretation of regression coefficients
and to compare and contrast the coding schemes in Table
4, we again use the Year variablé (1994, 1995, 1996) alone
in a regression analysis on LOS. The mean LOS for the 3
years are 26.9, 25.2, and 22.1 days, respectively, and the
decreasing LOS trend is depicted in Figure 2 with a box
plot. Box plots are used to @mpare commensurate values,

Table 4 .

Nominai and Ordinal Coding of Design Variables for Year
Nominal Ordinal

Year Yearl Year2 Year] Year2

1994 0 0 0 0

1995 1 0 1 0

1996 0 1 1 1
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Figure 2. Box plot representing descriptive statistics of
length of stay by year.

such as the median and lower and upper quartiles, of
patients over various categories. The box extends from the
lower to upper quartiles and the horizontal line in the box
represents the median. Lines are usually drawn from the
rectangle (box) to the 2.5th percentile and 97.5th per-
centile representing the middle 95% of the data. Qutliers
are represented with open circles.

Table 5 presents the usual output from a statistical
package for the two aforementioned coding schemes. A
regression model is usually described with a prediction
equation or fitted model, and these can be written on the
basis of the output. Using the estimated coefficients from
above, we can estimate the LOS for patients with stroke at
this facility by inserting the appropriate values for the
design variables into the prediction equation. For the nom-
inal coding scheme, the prediction equation is Predicted
LOS = 26.9 - 1.7 X Year]l ~ 4.8 X Year2. The ordinal
scheme has a prediction equation of Predicted LOS = 26.9
~ 1.7 X Yearl ~ 3.1 X Year2. By inserting the appropriate
values of the design variables into the prediction equation,
taking the nominal scheme as an example, we see that 1994
patients with stroke [Year]l = 0 and Year2 = 0] have a pre-
dicted LOS of 26.9 days {26.9 - 1.7 x 0 - 4.8 X 0 = 26.9].
For 1995 patients, the predicted value of LOS is easily
derived as well [26.9-1.7 X 1 - 4.8 X0 = 25.2]. In fact, as
long as the appropriate design codings are used, the codings
will produce the same predicted values. The differences in
the schemes are with the interpretation of the regression
coefficients and their respective P values. ,

To interpret Pvalues for the nominal coding scheme, we
see that the coefficient and Pvalue of the first design variable

Table 5

Regression Coefficients and P Values for Coding Schemes
Nominal Ordinal

Term Coefficient P Value Coefficient P Value

Intercept 269 <.001 26.9 <.001

Yearl ~1.7 .005 -1.7 .05

Year2 —4.8 <.001 -3.1 <.001
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(Yearl) is simply a hypothesis test for differences betweep
mean LOS for patients in 1995 versus 1994. The hypothesis
test for the second design variable (Year2) is a test for differ.
ences between mean LOS for patients in 1996 and 1994
From the P values and regression coefficient (see Table 5), j¢
is apparent that mean LOS for 1995 patients is significandly
different from the mean for 1994 patients (P value = .05),
with 1995 patients having a mean LOS that is 1.7 days less
than that of 1994 patients. It is also apparent that 199¢
patients have a mean LOS that is significantly different from
1994 patients (Pvalue £ .001), with a mean LOS that is 4.8
days less than that of the 1994 patients.

For the ordinal coding scheme, the coefficient and P
value of the first design variable (Yearl) has the same inter-
pretation as that of the nominal scheme. The coding
schemes differ with respect to the coefficient and P value
for the second design variable. The P value for the second
design variable (Year2) is testing for differences between

mean LOS for 1996 versus 1995 patients. From the P val--

ues and regression coefficient, it is apparent that the mean
LOS of 1995 patients is 1.7 days less than that for 1994
patients (P value = .05) and that the mean LOS of 1996
patients is 3.1 days less than that for 1995 patients (P value
£ .001). Thus, the regression coefficients are interpreted as
amounts of change from the previous category. With this
coding scheme, it is easy to see that the facility decreased
LOS for 1995 patients by 1.7 days and by 3.1 additional
days for 1996 patients.

Continuous Predictors
Model Interpretation

For continuous predictors, such as FIM Motor score,
regression coefficients are simply interpreted as the change
in the predicted LOS per unit change in admission FIM
Motor score. Using Motor score as the only predictor for
illustrative purposes, the predicted LS = 32.2 — .20 X
Motor. The regression coefficient of — .20 can be interpret-
ed as LOS is decreased by .2 days for a 1-unit increase in
Motor score at admission. The intercept is 32.2 days, and
there is usually no interest in this parameter. A regression
coefficient of 0 would imply no relationship whatsoever
between the predictor and the outcome. A useful descrip-
tion is the 95% confidence interval for the coefficient.
Because the sample is large, this formula is approximately
[=20 + 1.96 (.02)] = [-.16, —.24]. The .02 is the standard
error of the coefficient and is shown in typical regression
output. Thus, we are 95% confident that a l-unit increase
in Motor score relates to att LOS decrease of between .16
to .24 days. '

Although coefficients are most often reported in terms
of a 1-unit increase in the predictor variable, a more useful
description would be to determine a meaningful Motor
score change, such as a change of 10-units. By simply mul-
tiplying the coefficient or confidence interval by this
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change, the new statistics can be easily interpreted. For a
10-unit change in Motor score, the coefficient is —2.0 days
with 2 95% confidence interval of (-1.6, =2.4). Thus, com-
paring a patient with a Motor score at admission that is 10
units higher than another results in a shorter LOS by 2
days. It is often difficult to determine a meaningful change
on the basis of data that have a tendency to be rather arbi-
wary in their fluctuations. A simple strategy is to use the
change from the 25th to the 75th percentiles as a differ-
ence. This difference is commonly referred to as the IQR
coefficient (Harrell, 1997). Here, the lower quartile is 26
and the upper quartile is 49 for a total change of 23 units,
producing a coefficient of 4.6 with a 95% confidence inter-
val of (3.7, 5.5). A patient whose Motor score is at the
upper quartile at admission should have an LOS that is 4.6
days shorter than a patient whose Motor score is in the
lower quartile at admission.

Because we only regressed Motor score on LOS, the
model is assumed to be linear in Motor score. However,
this linearity is often not the case, and curved relationships
should be allowed for if these trends are expected.
Graphically, the relationship between Motor score and
LOS is depicted in Figure 3. These graphs also show the
differences in three different cognitive values (low [less than
18], medium [18-25], high [> 26]). Plots A and C illus-
trate the differences in assuming a linear versus curved rela-
tionship. From Plot C, patients with Motor scores between

20 and 40 apparently have about the same stay. However,
once beyond a Motor score of 40 at admission, there is a
dramatic change in slope (change in LOS per 1-unit
change in Motor score), which demonstrates shorter LOS
for patients with higher Motor scores at admission.

Functional recovery can be nonlinear, as Johnston,
Stineman, and Velozo (1997) have shown. Additionally,
because existing outcome instruments commonly measure
function over a limited range, there can be ceiling and floor
artifacts. Allowing for nonlinear trends in the relationships
between predictors and outcomes would take some of these
artifacts into account.

The easiest way to incorporate curved relationships into a
model is to include a squared term. For example, in the regres-
sion model, we would have to create a new variable, Motorz,
and include both Motor and Motor? in the regression model.
Doing this produces a more complex prediction equation and
affects our ability to interpret the coefficients. Now, the
Predicted LOS = 24.3 + .25 Motor — .005 Motor2. Thus, for
a Motor score of 26, the lower quartile, we could plug in the
values (Motor = 26 and Motor? = 262 = 676) into the equa-
tion to derive a predicted LOS of 27.4. For a Motor score of
49 (the upper quartile) the predicted LOS is 24.6. The differ-
ence in predicted LOS values [24.6 — 27.4 = —2.8] represents
the new IQR coefficient. That is, a patient at the 75th per-
centile of Motor scores at admission would stay about 3 (exact-
ly 2.8) days shorter than a patent at the 25th percentile.
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Flgure 3. Length of stay predictions of Functional Independencé Measure’s Motor and Cognitive scores. Cognitive scores col-

lapsed for graphical reasons into three equal categories: (a) < 18; (b) < 26 and > 18; and (c) > 26. These categories are repre-
sented in the graphs as [5,18), (18, 26), [26,35), respectively. The four graphs represent different scenarios of the assumptions of
linearity and no interaction. From left to right: Plot A = assumption of linearity and no interaction; Plot B = assumption of lineari-
ty; Plot C = assumption of no interaction; Plot D = assumptions relaxed.
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Interactions

One of the assumptions of multiple linear regression is that
predictor variables are additive, meaning that the effect of a
predictor on the outcome does not depend on another pre-
dictor. This assumption needs to be verified; if the assump-
tion fails, we say that the two predictors are interacting with
each other or that there is a statistical interaction present.
What happens if two predictor variables are not inde-
pendent of each other? That is, suppose the effect of the
patient’s Motor score on LOS depends on the values of the
patient’s cognitive score. Whenever it is reasonable to
believe that predictors have this joint influence on an out-
come, specific interaction terms should be included in the
statistical model (Gunst & Mason, 1980). Harrell et al.
(1996) listed interactions that have consistently been found
to be important in predicting clinical outcomes and, thus,
should be included or prespecified in a regression model.
One plausible interaction term is that of calendar time by
study center. For example, if there are two study centers, it
is possible that LOS is decreasing over time for one of the
centers but is remaining constant for the other. Yet anoth-
er important interaction is the quality and quantity of ther-
apy. If patients receive individual therapy sessions, they
might derive greater benefit, even if they are only seen once
a week, whereas patients who receive only group therapy
might profit from the treatment only if they are seen every
day. Whyte (1997) gave examples of plausible interactions
as well; for example, weakness may be relevant to gait dys-
function only if it is greater than some level, or pain may
interact with weakness in ways that differ from those expe-
rienced by persons who have pain or weakness alone.
Interactions can be incorporated into a statistical
model simply by multiplying the two terms together to
form a cross-product term. For example, we would include
a variable named MotCog = Motor X Cognitive in the
regression model. Although the interpretation of interac-
tion coefficients will not be addressed here, Figure 3 shows
the effect of not allowing for interaction as well as the effect
of forcing a straight-line relationship. A comparison of
Plots A and B demonstrates the impact that an interaction
term may have on a relationship. Assuming no interaction
between Motor and Cognitive scores forces the three cog-
nitive levels to have the same Motor and LOS relationship
(see Figure 3, Plot A). As one would expect, patients with
high Cognitive scores and low Motor scores stayed longer
for inpatient rehabilitation than patients with high Motor
and low Cognitivc scores (see Figure 3, Plot B) at admis-
sion. It might be assumed that patients with good motor
and cognitive function would need less rehabilitation and
that patients with good cognition but poor motor function
would have greater needs for and a larger capacity to bene-
fit from inpatient rehabilitation. Plot D of Figure 3 illus-
trates how Cognitive and Motor scores together relate to
LOS by including both interaction and nonlinear terms.
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Sample Size Requirements

To produce valid statistical models, one must have appropri-
ate sample sizes for the given number of variables in the
model. Although there are many software packages for plan-
ning sample sizes that include routines for multiple linear
regression models, these packages do require specific a priorj
hypotheses. For example, by using nQuery software
(Elashoff, 1997), it is possible to determine that when there
are G0 patients, the multiple linear regression test of no rela-
tionship (alpha = .05) for 5 predictor variables will have 809%
power to detect an R? of .20. R2 is the amount of variance of
the outcome that is accounted for by the predictors. R2is 3
very useful measure of the model’s predictive accuracy or
specifically the model’s ability to discriminate, which is its
ability to separate patients outcomes (Harrell, 1997).
Additionally, for a multiple linear regression model that
already includes 5 predictors with an Rz of .20, we could
determine that a sample size of 60 will have 80% power
(alpha = .05) to detect an increase in R? of .10 due to
including 1 additional predictor.

Although we encourage the preceding power compu-
tations whenever appropriate, in some instances, there is
usually litde a priori information available. Besides, the
main concern of a study usually is whether the regression
model is reliable or accurate. A general rule of thumb for
multiple regression models is that there should be az least
10 participants per degree of freedom in the model
(Harrell, 1996). Degrees of freedom does not simply mean
the number of predictors, but the number of continuous
predictors and their nonlinear terms (usually at least 3
degrees of freedom per continuous variable), design vari-
ables for categorical predictors (one less than the number of
categories), and interaction terms. The interaction terms
alone could potentially use an exorbitant number of
degrees of freedom. Note that this rule of thumb is often
quoted as 10 subjects per “variable,” which often erro-
neously leads an investigator to have too few*patients.

For example, suppose that a model is being developed
from a sample containing 200 patients. The 10:1 rule sug-
gests that we can examine, at most, 20 degrees of freedom.
We wish to analyze payment source (5 categories); sex; race
(Black, White, other); nonlinear effect of age, chronicity;
FIM Motor score; FIM Cognitive score; and the possiblc
interactions between race and age, face and chronicity, sex
and age (only linear term), and sex and chronicity (only lin-
ear term). We would need 4 degrees of freedom for pay-
ment source, 1 for sex, 2 for race, 3 each for the 4 contin-
uous predictors to allow for noplinear trends, and 6 total
for the interaction terms because race has 2 design vari-
ables. There is a total of 25 degrees .of freedom, which is 5
more than the 10:1 rule. Now what? A simple strategy is to
collect more data. If this is not possible, one might forego
some of the nonlinear or interaction terms upon further
investigation of the body of research on this outcome.
Alternatively, the number of degrees of freedom could be
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reduced by combining “like” categories or variables in a
clinically meaningful way (see the Categorical Predictors
section) by using summary scores. One could also use some
sophisticared statistical methods, such as principal compo-
nents analysis or variable clustering (Harrell, 1996).

Many researchers have used stepwise variable selection
(stepwise regression), even when sample size is lacking.
This type of variable selection produces R values that are
too high (higher than they should be) and P values that are
too small (smaller than they should be). Hence, the results
are better than they should be. Therefore, these stepwise
procedures are not recommended for determining signifi-
cant predictors. See Derksen and Keselman (1992) for
problems associated with the use of stepwise regression.
Additionally, simple bivariable analyses (which define the
relationship between one independent variable and one
dependent variable), such as #tests and correlation analyses,
should not be used for selecting variables to be used in a
multivariable analysis. Although simple analyses are com-
monly used for this purpose in the medical sciences, this
use is inappropriate: It wrongly rejects potentially impor-
tant variables when the relationship between an outcome
and an independent variable is confounded by any con-
founder variable and when this confounder is not properly
controlled (Sun, Shook, & Kay, 1996). In summary, asso-
ciations should not be performed using the outcome vari-
able to determine data reductions, and stepwise regression
should be used with caution. See Sun et al. (1996) for some
recommendations about variable selection and the use of
stepwise regression.

If the data are already collected, a simple but informa-
tive strategy to determine whether there are too many vari-
ables, given the number of patients, is to run all of the vari-
ables (dummy variables, interactions, and the like) and
determine the R? and adjusted R2. The adjusted R2 is com-
puted in most linear regression outputs (Neter et al., 1996)
and calibrates the R? by the number of variables. The
adjusted Rz, and not the regular R2, will be an accurate esti-
mate of the model’s predictive ability. If there are a suffi-
cient number of patients given the number of variables, the
adjusted Rz should be within 90% of the R2. For example,

if the full model (all predictors) produces an R of .50 and
an adjusted R2 of .40, there should be some concern.

The Final Model

Once the full model produces an adjusted R? that is close to
the R2(90% of R?), then interpretation of the full model
can begin. With simple terms (i.e., terms not including
nonlinear and interaction terms), [QR coefficients can be
easily computed with almost any software. However, this is
not the case with complex terms because there are multiple
coefficients associated with each complexity. One way to
compute IQR coefficients easily is by using S-PLUS Version
4.5 for Windows in conjunction with the Design library of
Microsoft Windows S-PLUS functions (Harrell, 1998). As
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of June 1999, S-PLUS released S-PLUS 2000 for Windows.
This recent release now includes the Design libraries of
Harrell (1998). Of course, graphics should always be used
for interpreting complex terms, such as in Figure 3.

Summary

In the published literature, little attention is given to the
interpretation and presentation of the simultaneous effects
of many variables on an outcome, and usually only rela-
tionships that are simple and linear are described. In this
article, we addressed these issues and presented some strate-
gies for handling complex terms.

We acknowledge that some of the methods and con-
cepts in this article may be difficult to implement because
they depend on the statistical experience of the researcher
and the availability of statistical software. We encourage all
researchers, preferably at the outset, to form a collaborative
relationship with a statistician. See Moses and Louis (1992)
on how to effectively collaborate with a statistician.
Medical statisticians can be found ar health science centers
or through the American Statistical Association’s (ASA%)
Web site at www.amstat.org. By selecting ASA Directories,
then Sections, and then Section on Statistical Consulting,
consulting centers can be found at Centers & Facilities.
Although one-on-one meetings facilitate a collaborative
effort, long-distance efforts are almost as effective with the
use of e-mail, fax, and telephone. A

Acknowledgments

We thank Robin Davis, MS, OTR/L, and John Barker, PhD, for input, crit-
tful discussion of concepts in this article. We

ical comments, and though

also thank Kathleen Savage for support in the preparation of this article.

References

Byar, D. P. (1991). Problems with using observational databases to
compare treatments. Statistics in Medicine, 10, 663-666.

Derksen, S., 8 Keselman, H. J. (1992). Backward, forward and
stepwise automated subser selection algorithms: Frequency of obtaining
authentic and noise variables. British Journal of Mathematical and
Statistical Pyychology, 45, 265-282.

Duncan, P W., Hoenig, H., Samsa, G., & Hamilton, B. (1997).
Characterizing rehabilitation interventions. In M. ], Fuhrer (Ed.),
Assessing medical rehabilitaton practices: The promise of ouzcomes
research (pp. 307-317). Baltimore: Brookes.

Elashoff, J. D. (1997). NQuery Advisor Version 2.0 user’s guide. Los
Angeles: Dixon Associates.

Glymour, C. (1997). Social statistics and genuine inquiry:
Reflections on The Bell Curve. In B. Devlin, S. E. Fienberg, D. P. Res-
nick, 8 K. Roeder (Eds.), Intelligence, genes, and success: Scientists respond
to The Bell Curve (pp. 257-280). New York: Springer-Verlag.

Gunst, R. E, & Mason, R. L. (1980). Regression analysis and its

. application. New York: Marcel Deldker.

Harrell, E E. (1997). Predicting outcomes: Applied survival analysis
and logistic regression. Charlottesville, VA: University of Virginia.

Harrell, E E. (1998). Design: S functions for biostatistical/epi-
demiological modeling, testing, estimation, validaton, graphics, and
prediction. (Program available from www.med.virginia.edu/medicine/
clinical/hes/biostat.htm)

Harrell, E E., Lee, K. L., & Mark, D. B. (1996). Multivariable
prognostic models: Issues in developing models, evaluating assumptions

469



and adequacy, and measuring and reducing errors. Statistics in Medicine,
15, 361-387.

Iwarsson, S., Isacsson, A., Persson, D., & Scherstén, B. (1998).
Occupation and survival: A 25-year follow-up study of an aging popu-
lation. American Journal of Occupational Therapy, 52, 65-70.

Jette, D. U., & Jette, A. M. (1996). Physical therapy and health out-
comes in patients with knee impairments. Physical Therapy, 76,1178-1187.

Johnston, M. V., Stineman, M., & Velozo, C. A. (1997). Outcomes
research in medical rehabilitation: Foundations from the past and direc-
tions for the future. In M. J. Fuhrer (Ed.), Assessing medical rehabilitation
practices: The promise of outcomes research (pp. 1-41). Baltimore: Brookes.

Joint Commission on Accreditation of Healthcare Organizations.
(1998). 1998 comprehensive accreditation manual for hospitals: The offs-.
cial handbook. Oakbrook Terrace, IL: Author.

Kleinbaum, D. G. (1994). Logistic regression: A self-learning zext.
New York: Springer-Verlag,.

Kleinbaum, D. G. (1996). Survival analysis: A self-learning text.
New York: Springer-Verlag,

Kleinbaum, D. G., Kupper, L. L, & Muller, K. E. (1988). Applied
regression analysis and other multivariable methods (2nd ed.). Boston:
PWS-KENT.

Lynn, J., Teno, J. M., & Harrell, E E., Jr. (1995). Accurate prog-
nostications of death—Opportunities and challenges for clinicians.
Western Journal of Medicine, 163, 250-257.

McDonald, C. J., & Hui, S. L. (1991). The analysis of humongous
databases: Problems and promises. Staristics in Medicine, 10, 511-518.

McDowell, L, & Newell, C. (1996). Measuring health: A guide 1o ras-
ing scales and questionnaires (2nd ed.). New Yotk: Oxford University Press.

Mitchell, J. M., & de Lissovoy, G. (1997). A comparison of
resource use and cost in direct access versus physician referral episodes of
physical therapy. Physical Therapy, 77, 10-18.

Mitchell, T. M. (1997). Does machine lea.ming really work? A7
Magazine, 18, 11-20.

Moses, L. E. (1991). Innovative methodologies for research using
databases. Statistics in Medicine, 10, 629-633.

470

Moses, L. E., & Louis, T. A. (1992). Statistical consultation in cli,
ical research: A two-way street. In J. C. Bailar & E Mosteller (Eds,),
Medical uses of statistics (pp. 349-356). Boston: NEJM Books.

Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W
(1996). Applied linear statistical models (4th ed.). Chicago: Irwin.

Nick, T. G., Williams, J. M., & Barker, J. R. (1998). Descriptive and
graphical strategies for assessing change: A case study on functional starys
in stroke patients. Topics in Health Information Management, 18(3), 8-17.

O’Brien, P. C., & Shampo, M. A. (1981). Statistics for clinicians,
Mayo Clinic Proceedings, 56, 45—46.

Pentland, W., McColl, M. A., & Rosenthal, C. (1995). The effec;
of aging and duration of disability on long term health outcomes fo-
lowing spinal cord injury. Paraplegia, 33, 367-373.

Piantadosi, S. (1997). Clinical trials: A methodologic perspective,
New York: Wiley. ‘

Portney, L. G., & Watkins, M. P. (1993). Foundations of clinica/
research: Applications to practice. Norwalk, CT: Appleton & Lange.

Rubin, D. B., & Schenker, N. (1991). Multiple imputation in
health-care databases: An overview and some applications. Statistics in
Medicine, 10, 585~598.

Sun, G., Shook, T. L., & Kay, G. L. (1996). Inappropriate use of
bivariable analysis to screen risk factors for use in multivariable analysis,
Journal of Clinical Epidemiology 49, 907-916.

Tierney, W. M., & McDonald, C. J. (1991). Practice databases and
their uses in clinical research. Statistics in Medicine, 10, 541-557.

Walter, S. D., Feinstein, A. R., & Wells, C. K. (1987). Coding
ordinal independent variables in multiple regression analyses. American
Journal of Epidemiology, 125, 319-323.

Wilkerson, D. L., & Johnston, M. V. (1997). Clinical program
monitoring systems: Current capability and future directions. In M. J.
Fuhrer (Ed.), Assessing medical rehabilitation practices: The promise of ous-
comes research (pp. 275-305). Baltimore: Brookes.

Whyte, J. (1997). Distinctive methodologic challenges. In M. J.
Fuhrer (Ed.), Assessing medical rebabilitation practices: The promise of ous-
comes research (pp. 43—59). Baltimore: Brookes.

Y

September/October 1999, Volume 53, Number 5.

Isa

Ke

tio

Isa
Ph

JoR-I YR

o

Iw OO ZY

ki



