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This text was developed as the course notes for the course Fundamental Statistical Concepts in 
Presenting Data; Principles for Constructing Better Graphics, as presented by Rafe Donahue at the 
Joint Statistical Meetings (JSM) in Denver, Colorado in August 2008 and for a follow-up course as 
part of the American Statistical Association’s LearnStat program in April 2009.  It was also used as 
the course notes for the same course at the JSM in Vancouver, British Columbia in August 2010 and 
will be used for the JSM course in Miami in July 2011.

This document was prepared in color in Portable Document Format (pdf) with page sizes of 8.5in by 
11in, in a deliberate spread format.  As such, there are “left” pages and “right” pages.  Odd pages are 
on the right; even pages are on the left.  

Some elements of certain figures span opposing pages of a spread.  Therefore, when printing, as 
printers have difficulty printing to the physical edge of the page, care must be taken to ensure that 
all the content makes it onto the printed page.  The easiest way to do this, outside of taking this to a 
printing house and having them print on larger sheets and trim down to 8.5-by-11, is to print using 
the “Fit to Printable Area” option under Page Scaling, when printing from Adobe Acrobat.  Duplex 
printing, with the binding location along the left long edge, at the highest possible level of resolution 
will allow the printed output to be closest to what was desired by the author during development.

Note that this is version 2.11.  A large number of changes and enhancements have been made, many 
of them prompted by many kind readers (MD, HD, BH, WZ, PD, TK, KW, JF, and many others!) 
who have offered constructive criticism and feedback based on the original Version 0.9 that was 
used with the JSM class in July 2008 and on Version 1.0 that has been in place since early 2009.  The 
author is aware, however, of the very high possibility of there still being any number of typos, gram-
matical errors, and misspellings.  As always, gently alerting the author (via email at rafe.donahue@
vanderbilt.edu or in person) will greatly improve upcoming versions.  Thank you.
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T his book carries the rather promising, and perhaps over-achieving, subtitle 
“Principles for Constructing Better Graphics”; what does that imply about 
what you will find in the text that follows?  What, specifically, are better 

graphics?

The risk of using a word like better is that there can be disagreements as to what 
that word actually means.  In order to avoid these disagreements, let me state up 
front what I mean when I refer to better graphics.

I believe that a fundamental purpose of statistical graphics is to improve under-
standing of what the data mean since we collect data in an effort to make infer-
ence about some process about which we might not have perfect understanding.  
Consequently, we are seeking to be inferentialists: we seek to make inference 
and we want that inference to be valid; we want to avoid being duped or fooled 
or misled.  We want our inference to allow us to make accurate and reproducible 
descriptions about the past and predictions about the future.  We want legitimate 
inference, inference that will stand up to scrutiny and all manners of attack.  We 
want justifiable, tenable, and defensible conclusions.  We are not seeking to spin 
or manipulate or exaggerate.

We want understanding.

Thus, better graphics will promote understanding the data and the process from 
which they came.  They will not necessarily have “pop” or “flash” or be “atten-
tion-grabbing.”  They will focus on the data and will let the data speak.

What is in the book?  

This book is a collection of examples and descriptions of what to see and what 
works and what doesn’t.  It grew from a series of lectures and informal talks I 
gave while at Vanderbilt and reached its current form as the course notes for this 
class.  At its heart, it is a collection of things I have learned, things I have stolen 
lifted borrowed from found that others have done, things I have discovered on 
my own.  It is “Hey, look at this!” and “Here’s why this works” and “This is the 
general principle that can be used elsewhere.”  It is based on nearly 20 years of 
post-graduate work as a statistician.

This book is a collection of principles that will help us determine what to do 
when trying to decide how to display our statistical data.  The principles will 
help us discern better (and worse!) ways to show our data.

This book is about my experience and journey to discover understanding in the 
field of statistical graphics.

This book is sometimes an example of breaking the very principles that it lays 
out.

What is not in the book?

This book does not contain any sort of Absolute Truth that can be followed al-
ways, in every situation.

This book does not have answers to every question you can ask.



4  Fundamental StatiSticS conceptS in preSenting data

This book does not deliver edicts like “Never use a pie-chart” or “Always make 
the axes cover every conceivable datum”.

This book is not perfect.  There are likely typos and errors.  There is opportunity 
for improvement.  

This book is not about pop and flash.

Displaying data, seeing individual data atoms and how they incorporate to syn-
thesize a distribution, goes hand-in-hand with analysis and investigation of data.  
Pictures are worth more than a thousand words; they are priceless.
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The two fundamental acts of science, description and comparison, are facili-
tated via models.  By models, we refer to ideas and explanations that do 
two things: describe past observations and predict future outcomes.  

Brad Efron►, in an editorial in AmStat News, discusses statistics and the rules 
of science.  In particular, he references Richard Proctor’s 19th-century maps of 
future solar transits of Venus — those times in which it will be possible to see, 
with feet planted firmly on our planet, Venus pass between the earth and the sun.  
Two such occurrences exposed by Proctor in 1874 are transits predicted on June 
8, 2004 and on June 6, 2012.  The maps detail the locations on the earth where 
one can observe this celestial wonder.  

The heliocentric model of our solar system is a grand example of a scientific 
model, one that allows us to compute the exact dates and times of transits of 
Venus, solar and lunar eclipses, and exact times of equinoxes and solstices.  It 
allows us to compute dates of Easter and has enabled us to send spacecraft to 
orbit and land on other planets.  In Efron’s words, it exemplifies “the prestige 
and power of what science connotes in modern society.”  The Laws of Nature, as 
discovered by Newton, Galileo, Kepler, and their peers, are clockwork-like de-
terministic models that have helped pull our society, albeit kicking and scream-
ing, into a modern scientific age.

The models of Newton and Galileo, those used by Proctor and still being used 
today, describe deterministic behavior; they have little room for statistical in-
ventions like variation and random error.  Statistical models, then, allow us to 
describe past observation and predict future outcome not with the certainty of 
Proctor, but within the confines of our understanding of probability and random-
ness.  Statistical models become tools for understanding sources of variation.

The history of science over the centuries can be written in terms of improve-
ments in resolution►.  Galileo’s invention of the telescope and Leeuwenhoek’s 
microscope improved our ability to see large worlds far away and small worlds 
close at hand.  Each improvement in resolution has removed a layer of what 
was previously thought to be noise and replaced it with explanation.  Statistical 
models serve as tools to understand sources of variation and allow us to investi-
gate more intricate natural phenomena.  Statistical models address the question: 
What is causing the differences in outcomes that I see?

Statistical and probabilistic thinking centers on understanding distributions.  
Distributions consist of two components:  first, a support set, a listing of what 
outcomes are possible, and second, a mass, or probability, function, which tells 
how likely the outcomes are.  Scientific description and comparison, as we pro-
ceed to improve our resolution and advance science, will be done with data 
that contain variation.  This description and comparison will be done through 
description and comparison of distributions.  Although some of these distribu-
tions will be easily summarized via classic summary statistics like the mean and 
variance, more often than not, truly understanding the distribution requires more 
than just two summary statistics.  As such, often the best thing is to try to show 
all the data; summary measures don’t always tell the whole story.

Our quest for understanding distributions begins several years ago in the form of 
an elementary school math class homework assignment for one of my children.  
Paraphrasing, it asked, “Last year there were eight students in Mrs. Johnson’s 
piano class.  Their ages were 10, 11, 6, 11, 9, 48, 10, and 7.  Calculate the mean 

►Bradley Efron was President of 
the American Statistical Association 
(ASA) in 2004 and, as such, penned a 
series of monthly “President’s Corner” 
essays in Amstat News, a membership 
magazine of the ASA.  Statistics and 
the Rules of Science was published in 
the July 2004 issue of Amstat News.  
An online copy might be found with 
careful google searching; at time of 
this writing, a copy can be found at 
http://www-stat.stanford.edu/~ckirby/
brad/other/Article2004.pdf [cited 
26 February 2009].

►Edward Tufte. 2008. “‘The deepest 
photo ever taken’ and the history of 
scientific discovery” <http://www.ed-
wardtufte.com/bboard/q-and-a-fetch-
msg?msg_id=0000ZR&topic_id=1>, 
16 June 2003 [cited 26 February 2009].
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age.  Calculate the median age.”  And then the “interpretation” component:  “If 
you could only use one number to represent the ages in Mrs. Johnson’s piano 
class, which one would it be?”  

Of course, the fourth-graders are being taught something along the lines of “out-
liers can adversely skew the sample mean”.  The mean is conveniently simple 
to compute as 112/8 = 14.  The median is found by putting the data in order (6, 
7, 9, 10, 10, 11, 11, 48), noting that there are two 10’s in the middle, and writing 
down “10” as the median.

The interpretation component is typically answered from remembering instruc-
tions from the teacher akin to “the median is a better number than the mean to 
represent data with outliers” so for the last part of the question the students will 
write “the median”.

And all these thoughts are zooming around in my head as my son is showing 
me the homework problem and I realize that there is no gun to my head forcing 
me to use just one number to represent those data and I come to the realization 
that throughout this solution-finding process, the students are never being asked 
to think.

The data themselves form a distribution; it is this distribution that should be at 
the center of discussion of ages of students in Mrs. Johnson’s piano class.  While 
one can certainly always compute the mean and the median, these summary 
measures only tell part of the story; what we need is the distribution.  So the 
Fundamental Principle of Statistical Data Displays, whether they be figures or 
summary statistics or whathaveyou, must be that the exposition of the distribu-
tion is paramount. 

Different people might ask different questions of Mrs. Johnson’s piano class 
data.  If I join that class, will there be any students my age?  Will I be the young-
est one?  Might I be the oldest one?  Note that these questions are not necessarily 
answered by using the mean and the median.  [Note that the mean is simply the 
total scaled by the number of observations.  Thus, any question to which the 
mean is a relevant answer is a question to which the total is a relevant answer.  
Thus, mean if, and only if, total, meaning that if the mean is relevant, then the 
total must also be relevant, and if the total is relevant, then the mean must be rel-
evant.  As such, one could argue that since it seems unlikely that anyone would 
be interested in the total age of the students in the class, it seem unlikely that 
anyone would be interested in the mean age.]

If the number of data points being exposed is small, then a simple ordered list 
might suffice in our effort to expose the distribution, as we have shown above:

6, 7, 9, 10, 10, 11, 11, 48.

Note that this representation compresses outliers, as the 48 gets pulled in next to 
11.  Furthermore, the pairs of 10’s and 11’s actually spread out, so that duplicity 
in this case is illegitimately rewarded.  We could physically space the values at 
their values, each number marking its own location:

At this point, we see that the current typography is failing us, as the reduced 

6 7 9 10
1011

4811
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spacing needed to accommodate the 48 forces the 10 and 11 to merge.  Rather 
than reduce the size of the font, we may move to showing things pictorially; the 
distribution can be shown with dots replacing the numeral in what becomes, in 
essence, a histogram:  

The individual dots sum up to produce what could be perceived as bars in a typi-
cal histogram but due to their uniqueness, no vertical scale is even necessary as 
a quick count points to areas where there are multiple individuals.  So we build 
up the graphic from component elements; each atomic-level datum has its place 
in the graphic, building up the whole but maintaining its autonomy.  Granted, 
some information is lost, in particular, without the original data list, we have to 
make the assumption the data points are supported on the integers.  But what we 
get in return for giving up that precision is a picture of the data set as a whole; 
our purpose is not necessarily a visual element that carries all the value of a re-
gurgitation of the data set, it is a visual element that allows us to see each datum 
in relation to the others, for this is how we make descriptions and comparisons, 
this is how we do science.  Our visual element allows us to see the distribution, 
to see what is possible and how likely it is.

There is no real reason for this histogram to be all by itself and taking up all this 
space.  This histogram shows us the distribution; it is a noun and can take its 
place as an element of a sentence.  So we could say, “Mrs. Johnson’s piano class 
last year had eight students of varying ages ••• •••• •

6 4810
, seven of 

them young children and one older gentleman, Mr. Onaip, who provided the 
other students with an interesting perspective on music and life in general.” 

Tufte calls these small, in-line data displays sparklines, intense, simple, word-
sized graphics►.  Their use appears to be ever increasing; however, most seem to 
take the form of time series plots.

Like any good infomercial, “But wait!  There’s more!”; the fourth-grade math 
question continued:  “This year there are eleven students (all eight have returned 
and there are three new students).  The ages are 7, 8, 10, 11, 11, 12, 12, 49, 27, 
47, and 49.  Calculate the mean …”.  Three points were added to the distribution 
and it shifted to the right.  Again, we expose the distribution, keeping things on 
the same scale, so as to facilitate comparisons between the two years:  “This 
year, the age distribution ••• •••• •

6 4810
•••  is noticeably different, since 

Mr. Onaip has brought along two of his like-aged friends and his daughter, Al-
legro, who has just graduated from medical school.”

We can now compare last year to this year and see a number of interesting fea-
tures of the two distributions.  We can see the younger children (and Mr. Onaip) 
all get a year older.  We can see Mr. Onaip’s two like-aged friends.  We can see 
Allegro Onaip filling a place in the center of the distribution.  Just for sake of 
comparison, we can compute the new mean, at slightly more than 22, and the 
new median, 12.  Again, neither of our typical summary measures tells the story 
of the distribution, (either separately or collectively).

••• •••• •
6 4810

►Edward Tufte, Beautiful Evidence 
(Graphics Press, 2006), 47.
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Another example:  The following table shows the number of points little Johnny 
scored in each of his team’s first 5 games:

Game Points
1 6
2 0
3 6
4 23
5 25

Note that mean points per game from little Johnny is 12, the median is 6, and the 
mode is also 6.  But do any of these summaries tell the story of the data?

While the mean may be a relevant summary measure since we might be interest-
ed in little Johnny’s season total as well, the really important question revolves 
around the stunning transformation that took place between the third and fourth 
games!  What happened?  Did little Johnny get new glasses?  Did he get casts 
removed from both arms?  Did the top scorer on the team break a leg?  Did the 
team change levels of competition?  Almost all the pertinent questions surround-
ing little Johnny and his basketball team are not answered by the mean, median, 
or mode of this data set; why are we teaching students that computations of sum-
maries is how one does analysis?

We detect variation in the data set, not all of the data points are the same.  We 
seek to understand and uncover the source or sources of that variation.  Of note 
here is the fact that the source of variation is not exposed in this collection.  All 
we have is a surrogate (the game number) for that source of variation.  Statistical 
investigations involve finding those true sources of variation.  Oftentimes, com-
puting only summary statistics only serves to hide that telltale variation.

Distributions (and the data sets that create them) are difficult concepts.  People 
often avoid working with distributions; to get around them, they like to sum-
marize these distributions, instead of carrying around all the data points. All the 
common summary statistics, like means and medians, variances and standard 
deviations, minima and maxima, percentiles, even regression lines, chi-square 
values, and P values, are summary statistics of distributions of data.

A result then is that these summaries are shown graphically. We often say that 
we show them graphically so as to improve understanding. As such, we should 
make sure that the graphics that we produce actually improve our understanding. 
Consider the following plots.
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The left plot shows a grand summary of the relationship between the number of 
eggs on a plant and the parasitism rate.  This likely is an output from some sort 
of linear regression. In general it shows that as number of eggs increase, the 
parasitism rate decreases.

The middle plot adds some sort of error curves or prediction intervals that help 
us understand that the relationship is not exact. We are not sure if these relate to 
the uncertainty in the mean of the Y values for a given X or to the actual distri-
bution of the Y values for a given X, but at least the author lets us know that he 
is aware of uncertainty in some sense.The third plot adds the actual data points 
to the plot, along with some explanatory notes telling us something about the 
equation of the regression line and the computed r-squared value.

So, we see in the last panel the data and the summaries that are being used to 
describe the model for the relationship between the number of eggs on plant and 
the parasitism rate.

The important question, however, is this: “Do you want these summaries to de-
scribe these data?” Moving from the first to the third panel, we might feel some 
sort of uneasiness. When we see the data and the summaries together, we might 
feel like we distrust the summaries. Regardless of your like or dislike of the 
summaries used below, what the designer of the figure has given you are the data 
themselves. So, if you agree or disagree with the presenter with regard to the 
interpretation, the data remain unchanged. Show the atoms; show the data.

Not all summaries are bad.  Means and variances, for example, are well-used 
summaries since they are jointly minimally sufficient statistics for all the pa-
rameters in a normal (Gaussian, bellshaped) curve.  That is, the mean and the 
variance in that case tell us all that the data can possibly tell us about a normal 
distribution.  In the bivariate normal regression setting, as in the parasitism rate 
and number of eggs example, the regression line parameters, the estimated inter-
cept and slope and the variance structure, act similarly.  But all these conclusions 
of sufficiency hinge on the assumption that the underlying distribution is normal 
and that we have a random sample.  What if we don’t have that? Then what can 
we do? Is there a way to come up with summaries that can carry the information 
that we seek to carry?



.

.

.



Fraction of 
water acquired 

in shallow 
(< cm) soil 

Large 
sagebrush 

Medium 
sagebrush 

Small 
sagebrush 



.

.

.



Large 
sagebrush 

Medium 
sagebrush 

Small 
sagebrush 



.

.

.



Large 
sagebrush 

Medium 
sagebrush 

Small 
sagebrush 

Number of eggs on plant

 

. 

. 

. 

. 

  

Parasitism
rate

 

Number of eggs on plant

 

. 

. 

. 

. 

   

Number of eggs on plant

 

. 

. 

. 

. 

   

y = .±. – .±.x 
(uncertainties are  CIs) 

r² = . 

Graphic courtesy of Anthony Dar-
rouzet-Nardi, University of Colorado 
at Boulder.



10  Fundamental StatiSticS conceptS in preSenting data

The next plot shows another example of increasing resolution from summaries 
to data points.  The example uses categorical classifications on the horizontal 
axis instead of a continuous predictor.

The three-part figure contains three steps from simple means of some outcome 
(left) to the entire distribution of responses (right).  The figures here show the 
fraction of water acquired in shallow soil for three different sizes of sagebrush.  
As sagebrush grow, their root systems get water at different depths.

The first panel shows the means for each of the three sizes of plants in a tradi-
tional bar plot.  Here we see that as the sagebrush gets smaller, the mean gets 
larger.  Older, and hence bigger, plants get more water from deeper in the soil.  
[We might note that the ordering of the categories might be more intuitive if 
‘Small’ were on the left and ‘Large’ were on the right.  This figure, however, is 
actually a subset of a larger figure with more types of plants.  In that context 
the ordering works well.]

The center panel shows the means with the addition of some measure of un-
certainty, the dreaded ‘dynamite plot’, so named because of its resemblance to 
devices used to set off dynamite blasts.  “But this shows the means and some 
measure of uncertainty; isn’t this a good thing?”

At issue here is the visual perception of this plot; are we showing the distribu-
tion?  Where are the data?  If we are clever, we notice that the small sagebrush 
category on the right has a longer variability measure, so that group is more 
variable.  But what can we conclude about the actual distribution of the data?  
Can we use the plot to make inference about the distribution?

If the variability stems are standard deviations, then we might use a statisti-
cal rule of thumb and guess that about 95% of the data fall within two such 
standard deviations of the mean.  So, we need to visually double the length of 
the variability stem, add and subtract it from the top of the black bar, and then 
guess where the data might be.

If the variability stems are standard errors, then we only have a statement 
about where the mean is.  If we recall that the standard error is estimated from 
the standard deviation divided by the square root of the sample size, then we 
can use the standard errors to estimate the standard deviation (if we know the 
sample size!) and then proceed as mentioned previously.  Goodness; that’s a 
lot of work to try to decipher a plot that was constructed to help us understand 
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the data.

Here’s a simple rule of thumb: each datum gets one glob of ink and add extra 
ink only to increase understanding.  If we apply such a rule, we see something 
like the third panel.  Here we see each individual datum, the measurement from 
each plant.  The small lines are the means that were shown with the bars in the 
other two panels.  The bar plots, both with and without the error bars, don’t show 
us where the data are and they present an impossible data mapping scheme: at 
the bottom of each bar in the bar plot (beneath the lowest datum), the ink there 
means that there are no data.  Farther up, between the lowest datum and the 
mean, ink in this region implies that there are data there.  Above the mean, but 
below the highest datum, the lack of ink is used to show data.  And above the 
highest datum, the lack of ink is used to demonstrate the lack of data! That’s just 
silly; no wonder kids think that graphs are hard to read.

The individual dots on the plot help us to understand the distribution; the bar 
plots hide the distribution from us or even lie to us as to where the data are.

Note that standard error calculations tell us about our certainty in finding the 
mean, which may or may not even be important to the question at hand.  Stan-
dard deviations tell us about uncertainty in the data themselves.  If making infer-
ence about means, use standard errors.  If making inference about individuals 
use standard deviations.

Analysis, from the Greek, implies breaking things down into component parts so 
as to understand the whole.  Its opposite is synthesis, bringing together the parts 
to construct the whole.  If we are going to use data displays to help us do data 
analysis, then we must make attempts to break the data down to their component 
parts, their atoms.  Computing summary measures like means and medians and 
percentiles and standard deviations and even F and chi-square and t statistics 
and P values, is not analysis; it is synthesis! And, far worse than playing games 
with word meaning, data synthesis often obscures understanding the data.

Why, then, do we ever compute summary measures? The theory of statistics has 
a concept called sufficient statistics.  The general idea is that if you know the 
data come from a distribution with a known form, then there are certain summa-
ries of the data that tell you all you can possibly know about the distribution.  In 
many of the nice theoretical distributions, the sum (and thus, by way of simply 
scaling by the sample size, the mean) of the data values is a sufficient statistic.  
And medians are close to means when you have well-behaved data, so people 
use medians too.

Often (more often than not?), however, the data are not well-behaved or they 
don’t come from pretty distributions.  Then what? Are there still sufficient sta-
tistics?

The answer is yes; there is always a set of sufficient statistics.  That set of suf-
ficient statistics, the order statistics, is essentially the data themselves.

That is why, when doing data analysis, we first plot the raw data.  We show the 
atoms.  We search for the fun stuff, like outliers.  [The excitement is always 
found in the tails, or outliers, of the data.]  We seek to understand their source.  
Remember that the goal is understanding of the distribution of the data; there-
fore, make every rational attempt to show all the data.

A bad data-to-ink mapping:

Location Data status Ink status

Below lowest datum Absent Present

Between lowest 
datum and mean

Present Present

Between mean and 
highest datum

Present Absent

Above highest 
datum

Absent Absent

A good data-to-ink mapping:

Location Data status Ink status

Everywhere Absent Absent

Everywhere Present Present
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A little aside on means and summary statistics; show this page to your 
friends and colleagues who like dynamite plots, those who insist that 
they need to have them in their manuscripts and slideshows.

The very simple, quick and easy plots on these pages are courtesy of Tatsuki 
Koyama, Vanderbilt University Medical Center Department of Biostatistics.  

On the left side of each plot are some raw data.  Each plot is based on the same 
set of data.  The data happen to be counts, so the support set is the integers.

The data in group 1 range from 0 to 7; those in group 2 range from 6 to 11.  There 
are 9 data in each group.  The mode for both groups is 6, perhaps alerting us to 
the fact that 6 may have some preference in selection.  The atomic-level presen-
tation on the left allows us to see the entire distribution.  

The right side of each plot shows the mean and some measure of variation, based 
on the data on the left side of the plot.  On this page, the measure of variation 
is the standard error; standard deviations are shown on the next page.  We see 
that the means for the two groups are approximately 4 and 7.  The standard error 
bars on this page tell us how certain we are in the location of the mean, if we 
know how to read them.  The standard deviation bars on the next page tell us 
something about where the data are, if we know how to read them.

Here’s the challenge for your friends.  Ask them if they like the standard error 
bars or standard deviation bars.  Based on their answers, show them the corre-
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sponding plot but cover up the raw data plot.  Then ask them to guess where the 
data are.  If they are clever they might ask how many data point there are.  Tell 
them.  They might ask about the support set.  Feel free to tell them that the sup-
port set is the non-negative integers.  Ask lots of your friends to sketch the data.  
Look at the distribution of responses across the collection of your friends.  Then 
have your friends look at all the distribution of responses across the collection of 
your friends.  Have them all work together.  Heck, buy them a pizza and drink as 
they work.  Ask them how can it be that there are so many different interpreta-
tions from these plots, after all, they are showing the mean and some measure 
of variability, shouldn’t that be enough?  Work, work, work.  Ask, ask, ask.  Ask 
them if they think the distributions are the same or different and what does that 
mean and why do they think what they think.

When they are all done arguing over who is correct and who isn’t, show them 
the data in the left plot.  Tell them that each dot is one datum.  Then ask them the 
same questions as before: ask them to now guess where the data are.  Ask them 
whether they think the distributions are the same or different and what does that 
mean and why do they think what they think.

You see, the dynamite plots just obscure the data and hence obscure understand-
ing of the data.  Let’s not provide plots that make it difficult to understand the 
data and what they are trying to say.  
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A scan of some more homework, complete with elementary student annota-
tions:

This graphic is intended to help elementary school students learn about graphics 
and math.  What it does is teach them that graphics are just brain-teaser puzzles:  
I encoded the data into this chart; your job is to get it out.

As you can see, the student here did exactly as she has been instructed to do:  
Let’s see here; cart 3 has sixt-…, oops, I mean, cart 5 has five little cone things 
so I take thirty times five; zero times five is zero; three times five gives me fifteen, 
so that gives me one-fifty for cart 5, I’ll put that by cart 5; ok, now I subtract the 
sixty; so zero minus zero is zero; tens column: five minus six; ok, gotta borrow; 
cross off the one, make it zero, make the five a fifteen; fifteen minus six is nine; 
so I get ninety.  Ok, it is [c].  Done. 

Of course, she could have noticed that cart 5 had three more cone thingys than 
cart 3 and then just multiplied three times thirty.  Yikes.

The real question one ought to ask of these data is why one would go through 
all this trouble to write down five data?  And why are all these carts selling 
multiples of 30 cones?  Are they only selling by the case?  And why is cart 4 
selling six times as much ice cream as cart 2?  What is the source of the variation 
among the carts?  Why are we teaching children that graphics are an impediment 
to understanding instead of an aid?  None of these questions is answered by this 
graphic puzzler.
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Good graphics should reveal data.  Tufte lists nine “shoulds” for graphical dis-
plays; they are fundamental and deserve mention here►.  Graphical displays 
should

show the data• 

induce the viewer to think about the substance rather than about the meth-• 
odology, graphic design, the technology production, or something else

avoid distorting what the data have to say• 

present many numbers in a small space• 

make large data set coherent• 

encourage the eye to compare different pieces of data• 

reveal the data at several levels of detail, from a broad overview to fine • 
structure

serve a reasonably clear purpose: description, exploration, tabulation, or • 
decoration

be closely integrated with the statistical and verbal descriptions of a data • 
set.

The ice cream cone data display probably fails at all of these, perhaps with the 
exception of distorting what the data have to say.

Again, however, “but wait, there’s more”; the next question in the assignment 
also fails miserably.  A question about ticket sales:

►Edward Tufte, The Visual Display 
of Quantitative Information (Graph-
ics Press, 1983), 13.  This book is 
a must-read and re-read for anyone 
trying to understand what to do with 
graphical displays of information.  The 
book is one of four books on graphics 
and information design the Tufte has 
authored.  He also offers a one-day 
course, during which the books are 
provided.  See his website for details 
(www.edwardtufte.com).
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Goodness.  Our student 
has diligently done the 
computations, converting 
the ticket stubs back into 
numbers, numbers that 
were adequately and pre-
cisely presented in the 
data table at the start of 
the problem.  The secret 
encoding trick this time 
deals with the magical 
half-ticket, cleverly drawn 
to indicate 10 tickets.

Important reasoning about 
sources of variation relating 
to ticket sales, including why 
the school only sells tickets 
in multiples of 10 tickets, is 
completely obfuscated by 
the drudgery involved in 
turning perfectly good 
numbers into ticket stub 
images.  Why are the 
tasks surrounding think-
ing about the distribution 
being ignored?

We do see in these little pic-
tographs, however, inclina-
tions of distributions.  We are 
seeing evidence about what is possible and 
how often those things occurred.  What we are not seeing, though, is any 
attempt to reason from the data, to make comparison or draw conclusions.  The 
scientific component is being stifled.  While we are seeing a distribution akin to 
the piano data, the presentation is treating the data as playthings and graphical 
presentation as a toy.
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“The graphical method has considerable superiority for the exposition of sta-
tistical facts over the tabular.  A heavy bank of figures is grievously wearisome 
to the eye, and the popular mind is as incapable of drawing any useful lessons 
from it as of extracting sunbeams from cucumbers.”  — Arthur B. and Henry 
Farquhar►  

To paraphrase, I know there are useful lessons in this table, I just don’t know 
how to get them out!  One more display disaster and then suggestions for im-
provement:

Here we see a table 
of information on the 
planets (back when 
there were still nine 
planets).  The table 
could use a bit of work, 
as inconsistencies and 
detours to informa-
tion retrieval abound.  
Let’s start at the top.

Note the subtle incon-
sistency in the column 
headers: planets and 
diameters are plural, 
distance and length 
are singular.  The ‘km’ 
unit description for 
‘Diameters’ could eas-
ily be placed in the 
header, as could the 
‘million km’ descriptor 
in the Distance col-
umn.  Lengths of One 
Year are presented at 
the top in days and 
toward the bottom in 
years.  Yes, students 
should pay attention 
to units but improving 
understanding comes 
from maintaining con-
stistency across entries.  Note also that an Earth year is measured with precision 
of six hours but Jupiter through Pluto are measured to the nearest year, a drop 
in precision of 1400 times, over three orders of magnitude.  No wonder the kids 
don’t understand significant digits.  Planet diameters share a similar fate, as Ju-
piter’s is rounded to the nearest 1000 km (a kilo-kilometer, a megameter?) while 
the other planets enjoy precision to the nearest kilometer, excepting poor Pluto, 
who gets rounded to the nearest 100 km.

Evidence of our student’s computations are present, showing that she is able to 
find the difference in planetary diameters, for whatever reason there might be to 
do such a thing.  Oh, yes, there is a reason; it is right there at the header for Ques-
tion 20: Use Numbers.  This is not science, it is a subtraction problem encased 

►Arthur B. and Henry Farquhar, 
Economic and Industrial Delusions, A 
Discussion of the Case for Protection 
(G.P. Putnam’s Sons, 1891), 55.  I 
found this quote from the Farquhars in 
Howard Wainer’s Graphic Discovery, 
A Trout in the Milk and Other Visual 
Adventures.   
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in a riddle.  And the Interpret Data question is the attempt to extract sunbeams 
from a cucumber.  Assuming the student doesn’t notice that choices F and G are 
logically equivalent and thus must both be considered incorrect, and assuming 
further that choice J follows choice H, directly bypassing I, this is precisely the 
time to learn to reason from graphics.

These nine rows represent nine multivariate data.  A collection of even hastily-
drawn scatter plots (using only default graphics settings in R) reveals the rela-
tionship that bears Kepler’s name:

Here we see the multivariate data in projections onto the three bivariate planes.  
We can examine the relationship between distance and diameter and detect the 
four small inner planets and then see that Pluto is small too.  The gas giants Ju-
piter and Saturn are truly giant compared to the small ones, while Neptune and 
Uranus fill out a niche in the middle.  Planetary period (“Length of One Year”) 
as a function of distance from the sun is seen in the middle plot in the bottom 
row.  The smooth relationship is driven by the fact that the period increases with 
the 3/2 power of the semimajor axis, or, approximately, the average distance to 
the sun.  The plot also shows the inverse relation (right, middle), that the dis-
tance is related to the 2/3 power of the period.

Yet, we can do even better by showing a bird’s-eye view of the solar system with 
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some crude animation.  The web site http://www.edstephan.org/Astronomy/
planets.html presents just such an animation, a still version of which is here:

The applet is a joy to watch.  The inner planets whirl around the sun while the 
outer planets lumber along.  The students could actually use computers to learn 
something aside from updating Facebook and making PowerPoint slides.  A site 
from which this applet is referenced, http://csep10.phys.utk.edu/astr161/lect/
history/kepler.html, has a straightforward presentation of Kepler’s laws. 

The remade data table could look like this:

Planet Diameter
(thousand km)

Distance from 
the Sun

(million km)

Period 
(Earth years)

Mercury 4.9 58 0.24
Venus 12 110 0.62
Earth 13 150 1.0
Mars 6.8 230 1.9

Jupiter 140 780 12
Saturn 120 1400 30
Uranus 51 2900 84
Neptune 50 4500 170

Pluto 2.3 5900 250

Now we can see Kepler’s law in action.  Look at distances for Mercury and Plu-
to.  Pluto is at 5900, Mercury is at 58, a ratio of approximately 100:1.  Now look 
at their periods.  Pluto is at 250, Mercury is as 0.24, a ratio of approximately 
1000:1.  What is the 2/3 power of 1000?  It is 100!  We can see this in the table.

The lesson from remaking the table and clearing out all the non-data items is 
stay out of the way of the data.  This principle shows up within Tufte’s five 
principles► (above all else show the data; maximize the data-ink ratio; erase non-
data ink; erase redundant data-ink; revise and edit), as the antithesis of some of 
Wainer’s How To Display Data Poorly rules► (show as little data as possible; 

►Tufte presents these “five principles 
in the theory of data graphics” at the 
conclusion of Chapter 4 of The Visual 
Display of Quantitative Information, 
page 105.  
►Wainer’s first chapter in Visual Rev-
elations is entitled “How to Display 
Data Poorly”. This chapter presents 
a dozen rules for poor data display.  
From these he develops three rules 
for good display:  1. Examine the data 
carefully enough to know what they 
have to say, and then let them say it 



20  Fundamental StatiSticS conceptS in preSenting data

hide what data you do show; emphasize the trivial, label (a) illegibly, (b) incom-
pletely, (c) incorrectly, and (d) ambiguously; more is murkier: (a) more decimal 
places and (b) more dimensions), and in Cleveland’s Clear Vision► (make the 
data stand out; avoid superfluity; use visually prominent graphical elements to 
show the data).  In redrawing the planet table, we took out the clutter and kept 
the focus on the data.  The ice cream cones and ticket stubs get in the way of the 
data.  Our plots of the piano class focus on the distribution of the data, keeping 
mind of the data atoms themselves.

Here is another table, in the format in which it came from the researchers:

Incidence of ROP by Weight Class and Year
No ROP < Prethreshold Prethreshold Threshold Total # infants

1995-
1996

1986-
1987

1995-
1996

1986-
1987

1995-
1996

1986-
1987

1995-
1996

1986-
1987

1995-
1996

1986-
1987

< 750 gm 7
(29.2%)

1
(3.7%)

7
(29.2%)

11
(40.7%)

9
(37.5%)

8
(29.6%)

1
(4.2%)

7
(25.9%)

24 27

750-999 
gm

20
(55.5%)

3
(9.4%)

9
(25.0%)

9
(28.1%)

4
(11.1%)

12
(37.5%)

3
(8.3%)

8
(25.0%)

36 32

1000-1250 
gm

27
(84.4%)

14
(46.7%)

4
(12.5%)

12
(20.0%)

1
(3.1%)

2
(6.7%)

0
(0%)

2
(6.7%)

32 30

Total (all 
wt)

54
(58.7%)

18
(20.2%)

20
(21.7%)

32
(36.0%)

14
(15.2%)

22
(24.7%)

4
(4.3%)

17
(19.1%)

92 89

ROP is retinopathy of prematurity, a disease of the eye that affects prematurely 
born babies.  In the table above, infants can be classified as having no ROP, 
less-than-prethreshold ROP, prethreshold ROP, or threshold ROP.  These are 
ordered categories of disease, making the data ordered categorical data, some-
times called ordinal data.

Birth weight is an index of amount of prematurity; children born early typically 
weigh less than those at full term.

I received the above table from two researchers who were interested in compar-
ing ROP “then” (10 years ago, in 1986-1987) and “now” (1995-1996, which was 
the present time as of the collection of these data).  They wanted to know if ROP 
was more or less common now compared to then, since they had been influential 
in changing how and when children were screened for ROP.  Had their methods 
made any improvement?  

Attempting to answer this question from the table they provided is difficult, if 
not impossible.  The overbearing gridlines aside, the table prohibits the investi-
gation of the fundamental comparison of interest.

The fundamental comparison here is a comparison of distributions, in particular, 
the distribution of ROP ratings for children then and the distribution of ROP rat-
ings for children now.  As such, we need to expose those distributions of ROP 
ratings; we can do better than the draft table I received.

If incidence of  ROP is the outcome, there are essentially three comparisons that 
could be made.  The first is between levels of ROP, the comparison between the 
rates in the ordinal categories.  The second is between the three birth weight 
classes.  The third is between the time frames, then and now.

with a minimum of adornment; 2. In 
depicting scale, follow practices of 

“reasonable regularity”; and 3. Label 
clearly and fully.  
►The second chapter of Cleveland’s 
The Elements of Graphing Data is 

“Principles of Graph Construction”.  
Section 2.2 of this chapter is Clear 
Vision and points to the importance of 
the viewer being able to “disentangle 
the many different items that appear 
on a graph”.  Cleveland devotes thirty 
pages to this topic.
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Note that this first comparison, between levels of ROP, compares the levels 
within the distribution; we want to compare the distributions as a whole.  Since 
question of interest is between time frames, let’s start with just comparing then 
with now, and ignore, for the time being, the fact that we know the birth weights.  
The bottom row of the table gives us the numbers we need, but the presentation 
transposes the ROP and time frame.  Just using the bottom row of numbers and 
rearranging the numbers, we get

Birth weight class Time frame No ROP Less than preth-
reshold Prethreshold Threshold Total number of 

infants

Total (all weight 
classes)

1986-1987 18 (20.2%) 32 (36.0%) 22 (24.7%) 17 (19.1%) 89

1995-1996 54 (58.7%) 20 (21.7%) 14 (15.2%) 4 (4.3%) 92

Now we can compare the distributions (the percentages that fall in each of the 
categories) between the two time frames but we are still letting all manner of 
extra typographic paraphernalia interfere with seeing those numbers.

We want the percentages so as to understand the distribution; we can reduce or 
eliminate the heavy and daunting partition cage; we can scrap the parentheses 
and percent signs; we can use more-meaningful and understandable integer per-
centages; we can drop the 19’s and use 2-digit years, perhaps to the chagrin of 
our friends in IT; but we will need to add some explanatory notes at least in the 
form of a more descriptive table title.  Notice we have already re-ordered the 
time frames so that 1986-1987 comes before 1995-1996 and we have removed 
some symbols (‘<’ and ‘#’) from the column headers.

Now we see the distributions laid out horizontally.  We see that the percentage of 
no ROP has increased from 20 percent in 1986-1987 to 59 percent in 1995-1996.  
Over time there has been a shift to the left in the distribution of ROP severity..  
More children now are having no ROP and also now there are fewer children at 
each of the graduated levels of the disease than there were in 1986-1987.

But perhaps the change is due to birth weight class changes; do these differences 
still show up when adjusting for weight class?  The statistician will say that this 
now looks like a job for a Cochran-Mantel-Haenszel test, a way to compare 
the distributions of ordered categorical data while controlling for a possibly-
explanatory stratification variable.  Using our table set-up, it is straightforward 
to include the individual birth weight classes that make up the total.   We will 
add the strata and some additional notes to the title and footnotes.

Percentage of infants with each level of retinopathy of prematurity (ROP) in 1986-87 and 1995-96

Birth weight class Time frame No ROP Less than 
prethreshold Prethreshold Threshold Total number of 

infants

Total (all weight 
classes)

86-87 20 36 25 19 89

95-96 59 22 15 4 92
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Fewer babies are developing ROP now compared to a decade ago:  comparing the percentage of infants with 
each level of retinopathy of prematurity (ROP) in 1986-87 and 1995-96 by birth weight class

Birth weight class Time frame No ROP Less than 
prethreshold Prethreshold Threshold Total number of 

infants

Less than 750 gm
86-87 4 41 30 26 27

95-96 29 29 38 4 24

750-999 gm
86-87 9 28 38 25 32

95-96 56 25 11 8 36

1000-1250 gm
86-87 47 40 7 7 30

95-96 84 13 3 0 32

Total (all weight 
classes)

86-87 20 36 25 19 89

95-96 59 22 15 4 92

Data from Allegro Onaip, M.D. and Sophie Bistro, M.D., Very Scientific Eye Center, Highly Sophisticated University 
Medical Center; analysis and table by Rafe Donahue, Ph.D., Trustworthy and Unbiased University.  Substantially few-
er low-birth-weight babies are developing ROP in the mid-90s compared to the mid-80s; Cochran-Mantel-Haenszel 
test for differences between time frames with respect to ROP category controlling for birth weight class is significant 
at p=0.001, chi-square value=29.2 with 1 degree of freedom.

What we have now is a visual display of the CMH test.  The strata have become, 
quite literally, strata, or layers, in the table.  We see how the components make 
up the whole and can now make comparisons on multiple levels.  We see in the 
higher birth weights that nearly all the children (over 80 percent) are in the no 
ROP group, compared with fewer than half a decade ago.  Within each stratum, 
the distribution shows a shift toward better outcome with respect to ROP when 
comparing now to then.  While the numbers are small in each individual stratum, 
combined they form a solid case in support of the work done by Drs. Onaip and 
Bistro.

The lessons learned from the ROP data table and from the pictographs and plan-
et data can be found in Tufte’s five principles: erase non-data ink; eliminate 
redundant ink.  These are part of the general lesson of staying out of the way 
of the data.  Expose the distribution.
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Estimated disease state probabilities as a function of TAC score
Rafe Donahue, PhD, Research Associate Professor, Vanderbilt University Medical Center
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Ordinal logistic regression allows one to model and estimate the probabilities of individuals falling into ordered
categories.  Peripheral artery disease can be classified into such ordered categories.  In a recent study, we sought
estimates of patients falling into three groups (No Disease, Claudication, and Critical Limb Ischemia (CLI)) as a
function of Tibial Artery Calcification (TAC) score and a host of covariates.  This plot shows estimated probabilities
and 95% confidence intervals for varying levels of TAC score, while controling covariates at their mean level.

As TAC score increases, the probability of a patient having no disease drops as TAC score increases so that for a
TAC score of 100, the probability of having no disease is less than 50%; meanwhile, the probability of suffering
claudication rises to essentially the same level at this TAC score. The probability of critical limb ischemia reaches
nearly 50% at a TAC score of 10,000 while, at this level, probability of no disease is approaching zero.  Note that
for any TAC score, the sum of the three probabilities is equal to unity.

Analysis of the data was carried out in SAS and the plot was constructed using the R statistical software language.
Data were measured and collected by vascular surgeon Raul Guzman, MD, Assistant Professor, Division of
Vascular Surgery, Vanderbilt University Medical Center.

No Disease

Claudication

Critical Limb 
 Ischemia

The buildup of fatty deposits in artery walls is called peripheral artery dis-
ease.  Patients can be classified, using an ordinal scale, based on the level 
of peripheral artery disease as having either no disease, claudication (pain 

in the legs due to poor circulation), or critical limb ischemia (dangerously re-
stricted blood supply).  Patients in a study were assessed relative to their pe-
ripheral artery disease state, a tibial artery calcification (TAC) score, and a host 
of covariates (age, race, smoking status, and the like).  The goal of the data ex-
amination was to understand the relationship between peripheral artery disease 
category (the outcome) and TAC score (a measure of calcium in the leg arteries) 
and the covariates; in particular, how do changes in TAC score impact the prob-
ability that a patient will be in a particular peripheral artery disease state?

The plot above shows model probabilities for a collection of patients, estimating 
probabilities of being in each of the three disease states as a function of tibial 
artery calcification score, with each of the covariates held at its mean level.  The 
model is an ordinal logistic regression model, an extension of a logistic regres-
sion model where the outcome, instead of having only two levels, say 0 and 1, 
as would be the case in a logistic regression, can have many different levels (in 
this case, three levels), with the caveat that the levels are ordinal — they carry 
a natural ordering.

The plot, as presented above, shows a number of pertinent features.  At the top is 
a title which describes what the plot represents.  Don’t underestimate the value 
of titles in graphics that might need to stand on their own.  Also, prominently 
displayed is the author of the plot and his affiliation, so as to lend some level of 
authority and credibility to the information being presented.  The three estimat-
ed probabilities from the ordinal logistic regression model are presented with 
measures of uncertainty (the light grey 95% confidence intervals), demonstrat-
ing that the author and analyst understand that the probabilities are estimated 
imprecisely.  

The original of this plot is 10.5 inches 
wide and 6 inches tall and rendered in 
the deeply rich and flexible portable 
document format (pdf).  As a vector-
based plot, it is fully scalable and 
maintains its clarity and resolution 
when magnified or reduced.  An 
electronic copy is available from the 
author and makes a great gift. 
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The estimated probability curves are labeled on the plot itself, providing instant 
access to understanding which curve stands for which disease level.  Rather 
than a legend floating nearby and using different, visually-distinct lines to show 
the curves, the on-field labeling allows the viewer quick and easy access to the 
categories without having to withdraw attention from the plot in order to deter-
mine what is what.  The labels require no pointy arrows or connectors; the words’ 
proximity to the curves they label provide all the connection necessary.

The text on the plot itself provides a description of the method and the model, 
grounds the viewer with a simple but comfortable introduction to the problem, 
and then tells us how to read the plot and what to see.  We are told to move left 
to right and see that as TAC score increases, the chance of having no disease 
decreases.  At the same time, claudication and critical limb ischemia chances 
rise.  We are told that a TAC score of approximately 100 assigns no disease and 
claudication essentially equal probabilities and that, for purposes of this model, 
these three disease classifications represent a partition of the patients, in that the 
three probabilities always sum to unity.

We are also told how the analysis was carried out and who is responsible for the 
data measurements and collection.

Does this plot tell us all we need to know about TAC score and peripheral ar-
tery disease?  Certainly not.  But it does tell us quite a bit and it tells us who 
is responsible.  It shows (estimated) distributions of patients’ peripheral artery 
disease at any particular level of TAC and allows us to make comparisons across 
those levels.  This data display reveals the model that is used to describe the data 
set and can be used to help predict future observations.

And it shows us that these models can be quite pretty, even in grey scale.

Note that all the relevant data-related elements are prominent and that support-
ing information has taken a visually subordinate role.  The point estimates for 
the probability curves are in bold black curves, at the front, on top of the other 
elements, in particular, the ranges of grey that depict the 95% confidence inter-
vals.  These, along with the labels and textual narrative, sit on top of the grid of 
reference lines.  The support elements are humble and unassuming, yielding vi-
sual prominence to the data-related elements.  Like good type-setting or a good 
wait-staff, the support elements are out of the way until they are needed; they 
never interfere, they only support.

All of these features require time and effort on the part of the author, but the 
result is a rich, nearly stand-alone graphic that tells a story.

From this plot:  take time to document and explain; integrate picture and 
text; put words on your displays; tell the viewer what the plot is and what 
to see; engage the viewer.

The data in the study from which this graphic derives are complex multivariate 
data in patients with a complex disease using a complex data analysis method.  
Why should we expect any figure attempting to enlighten us to this relationship 
to be without explanation?  Should we expect it to be simple?  Should we expect 
it to be small?  Yes, a picture may be worth a thousand words but good descrip-
tion and attention to detail never hinder understanding.
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Old Faithful geyser is an American landmark, a geological wonder lo-
cated in Yellowstone National Park in Wyoming.  It takes its name from 
its predictable eruptions.

Data concerning over 250 eruptions of the Old Faithful geyser are included with 
the R software environment.  The relationship between time until next eruption 
and eruption duration are shown in the plot below.

The design of the plot employs some automated techniques for computing sum-
mary statistics for the marginal distributions.  For both marginals, summaries 
(the extrema, the three quartiles, and the mean) are shown.  The minima and 
maxima are depicted as the labels at the ends of the axes; the first and third 
quartiles are shown with the shifts in the axis bars; the medians are shown by 
the breaks in the bars, and the means are show by the dots just below the axes.  
Adjacent to each axis is a histogram, similar to what we created for the piano 
class data, showing each datum where it falls in the distribtuion. 

The data are (at least) bivariate and show how eruption duration is related to how 
long one waited to see the eruption.  In general, we see a positive correlation 
across the range of the data points.  The coloration of the dots shows whether or 
not the duration of the previous eruption was more (red) or less (blue) than an 
arbitrarily-selected 180 seconds, indicated by the horizontal dotted line.  This 
is showing a negative autocorrelation: short-duration eruptions are followed by 
long-duration eruptions and long-duration eruptions are followed by short-dura-

Old Faithful Eruptions (271 samples)
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Graphic courtesy of Steven J. Mur-
doch, University of Cambridge.  Code 
used to generate this plot is avail-
able from the author at www.cl.cam.
ac.uk/~sjm217/projects/graphics/.  I 
was fortunate to come across Dr. Mur-
doch’s work through postings on 
Tufte’s Ask E.T. forum, which can be 
found on Tufte’s website.
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tion eruptions; the eruption durations are not independent!

The automatic axes are triumphs of programming and subtle visual informa-
tion encoding, providing summaries without having to compute and plot them 
by hand; yet, the summaries, in conjunction with the histogram, demonstrate 
exactly why such summaries do not tell the whole story.  The data are bimodal; 
they form two distinct groups, one up and to the right and one down and to the 
left.  The marginal distributions also expose this bimodality with two humps or 
peaks on each axis.

When I was young, I always heard that Old Faithful erupts every hour.  (After 
all, it is Old and Faithful.)  Obviously, this is not the case.  Examining the data 
summaries, the argument can be adjusted to say that “on average, Old Faithful 
erupts approximately every 70 minutes.”  This is certainly true (truer?), but still 
a corrupting statement nonetheless.  The issue is the bimodality, only revealed 
by examining the atomic-level data.  There are really two peaks.  Very rarely 
are the eruptions an hour apart, in fact, if it has been exactly 60 minutes and 
you forgot to put new film in the camera, you are more likely to wait for more 
than 15 minutes than less than 15 minutes; you might have time to reload your 
film! This is great information. Examining only the summaries would cause one 
to completely misunderstand the data; showing the atomic-level data reveals 
the nature of the data themselves.  Were we to report only the mean of the time 
between eruptions (71 minutes) or the median (76 minutes), we would not and 
could not understand the distribution.  All we would know would be the location 
of the center point, regardless of the amount of mass living there.

The data also show a peculiarity, also revealed by looking at the atomic-level 
data.  The time-till-next-eruption data has no values at 61 minutes.  Every other 
integer from 44 minutes through 94 minutes is represented; where is 61?  My 
personal conjecture is that these data show human digit preference:  the desire to 
conform the geyser’s eruptions to man’s arbitrary clock may have enticed a data 
collector to move a “61” down to “60”.  Yes, it is certainly possible for there to 
be no 61 minutes observations in the data set but experience with human nature 
has made me more cynical.  Regardless, this anomaly is only revealed through 
an examination of the data atoms themselves.

Attempt to show each datum; show the atomic-level data.  Avoid arbitrary 
summarization, particularly across sources of variation.
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Elementary school science fairs produce wonderful arrays of elementary 
science lessons, from tadpoles-to-frog development to baking-soda-and-
vinegar volcanoes.  Occasionally, there are also grand data displays, and 

sometimes, these are actually instructive.

The figure below is a figure from such a science fair.  The resolution problems 
are the result of poor photography with a weak camera on the part of the photog-
rapher, not poor scholarship on the part of the student.  A zoomed-in version of 
the same plot, showing more detail, is on the facing page.

The plot shows 54 multivariate data.  Each night, this student recorded bedtime 
and the subsequent waketime; these values are plotted on the horizontal and 
vertical axes.  The individual points are also coded as to whether that night’s 
sleep represented a weeknight (dot) or a weekend night (cross).  Diagonal lines 
across the chart show nights of equal amounts of sleep.  The bottom line, pass-
ing through the point (8:30p, 6:00a) shows all points with 9.5 hours sleep.  The 
middle line shows 10 hours sleep.  The top line shows 10.5 hours sleep.  Fur-
thermore, there are three data points specially annotated; we will take these up 
shortly.

The plot, and the study from which it derives, is designed to answer the question 
of whether or not early bedtimes yield early waketimes and late bedtimes yield 
late waketimes.  Does this student “sleep in” following a late bedtime?

A solid answer to these questions is not evident but a lesson in understanding 
data and the processes that generate them, along with reinforcement of data dis-
play principles, is available.  All the data are plotted: we see the bivariate nature 
of the bed- and waketimes.  The variation in the bedtimes is tight; we must have 
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parents here who are sticklers for getting to bed on time.  Nearly all the bedtimes 
are between 8:30p and 9:00p, regardless of weeknight or weekend night status.  
Of the 54 data, all but 8 of them have their abscissa between 8:30p and 9:00p.  

The waketimes, however, are much more variable, with no such tight 30 minute 
boundaries.  The parents are obviously letting this child get up on his own voli-
tion.  A range that includes a similar proportion of the ordinates is nearly an hour 
in width.

Three annotated points describe the outliers in the data.  At the far right, only 
visible in the zoomed-out version is a bedtime after 10:30p on a weeknight.  The 
description?  “Super Bowl”.  Another anomaly: nearly 9:30p.  “Acc Tourna-
ment”.  The last outlier, so far to the left, it falls off the plotting region.  Bedtime 
of barely 8:00p.  Explanation?  “got in trouble!”   Note that we see outliers in 
bedtime but no such explanations for early or late awakenings.  Apparently, such 
phenomena are not considered note-worthy.

Overall, we see no consistent relationship between bedtime and waketime; we 
see a child that sleeps until he is no longer tired, and then awakes on his own.  I 
know this to be true; he is my eldest son.

Elementary school science fairs produce wonderful arrays of elementary 
science lessons, from tadpoles-to-frog development to baking-soda-and-
vinegar volcanoes.  Occasionally, there are also grand data displays, and 

sometimes, these are actually instructive.

The figure below is a figure from such a science fair.  The resolution problems 
are the result of poor photography with a weak camera on the part of the photog-
rapher, not poor scholarship on the part of the student.  A zoomed-in version of 
the same plot, showing more detail, is on the facing page.

The plot shows 54 multivariate data.  Each night, this student recorded bedtime 
and the subsequent waketime; these values are plotted on the horizontal and 
vertical axes.  The individual points are also coded as to whether that night’s 
sleep represented a weeknight (dot) or a weekend night (cross).  Diagonal lines 
across the chart show nights of equal amounts of sleep.  The bottom line, pass-
ing through the point (8:30p, 6:00a) shows all points with 9.5 hours sleep.  The 
middle line shows 10 hours sleep.  The top line shows 10.5 hours sleep.  Fur-
thermore, there are three data points specially annotated; we will take these up 
shortly.

The plot, and the study from which it derives, is designed to answer the question 
of whether or not early bedtimes yield early waketimes and late bedtimes yield 
late waketimes.  Does this student “sleep in” following a late bedtime?

A solid answer to these questions is not evident but a lesson in understanding 
data and the processes that generate them, along with reinforcement of data dis-
play principles, is available.  All the data are plotted: we see the bivariate nature 
of the bed- and waketimes.  The variation in the bedtimes is tight; we must have 
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Staining cells consists of slicing up little bits of tissue and then putting 
staining solutions onto the bits of tissue.  Cells with certain characteristics 
react differentially to different stains.  Under a microscope, trained indi-

viduals can determine what type of cells are in the tissue by examining whether 
or not the cells in the tissue react to different stains.

Preparing the tissue specimens takes time and, since the tissue samples are bio-
logical entities, the lab researchers who had contacted me were interested in ex-
amining the impact of the amount of time used in preparation of the specimens 
on the reactions of certain types of tumors to certain stains.  So, an experiment 
had been concocted and run and data were collected.  Seven tumor types were 
sampled, each with eight different stains, each at four time points (0, 5, 15, and 
60 minutes).  At each time point, three replicated readings of percent of cells 
stained were obtained; the outcome values range from 0 to 100.

There were 7x8x4x3=672 data, less three missing observations.  How do we 
show these data?  How do we expose the distribution?  Can we show each 
datum?  What are the sources of variation?  On the surface, this problem looks 
like a classic analysis of variance model, with sources of variation being tumor, 
stain, time, replicates, and appropriate interactions.  We could easily drop these 
669 data into any competent statistical package and generate the ANOVA.  But 
what do the atomic-level data say?

A plot of the 669 data is shown in the following graphic.  The seven types of 
tumors are the columns; the eight different stains are the rows.  In each little box, 
time flows from left to right from 0 to 60 minutes while percent of cells stained 
is shown vertically from 0% to 100%.  We can see the three replicates at each 
time point.  The main effects of tumor are shown in the bottom row; the main 
effects of the stains are shown in the rightmost column.  The intersections of the 
rows and the columns then represent the interactions between tumor and stain.  
Our data display is the model:  we see the distributions as functions of the 
levels of the sources of variation.

Look at the top row: for this stain, all but the fourth tumor type show high levels 
of staining.  What is the overall effect of this top-row stain?  Since it depends on 
the level of tumor, there is interaction here.  Are there other interactions?  All but 
the last stain show interaction with tumor type; main effects in the presence of 
interactions are of little value.  To see why, compare the marginal distributions 
to the interaction plots: what does the main effect mean when it depends on the 
level of a second source of variation?

Note the little clusters of the three replicates at each time point in the plot at the 
top left.  These three points show us something about the residual error: it is 
small — but it is not small everywhere!  While the residual, between-replicate 
error is small for stain 1 on tumor 1, for some combinations, the error is gigantic.  
Check, for example, stain 4 on tumor type 1.  Note the variation at time 0, with 
one reading near 100% and two readings near 0%.  These outliers are rampant: 
stain 5, tumors 2 and 3; stain 4, tumor 4; stain 7, tumor 3; and more.  These 
outliers are output from the same process that generated the nice data for stain 1, 
tumor 1; ought we not make certain we understand the source of their variation 
before even trying to understand the effects due to time?

And what of time?  Is there an effect?  Whatever it is, relative to the differences 
seen between tumor and stains and their interactions, the time effect is most 
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Staining cells consists of slicing up little bits of tissue and then putting 
staining solutions onto the bits of tissue.  Cells with certain characteristics 
react differentially to different stains.  Under a microscope, trained indi-

viduals can determine what type of cells are in the tissue by examining whether 
or not the cells in the tissue react to different stains.

Preparing the tissue specimens takes time and, since the tissue samples are bio-
logical entities, the lab researchers who had contacted me were interested in ex-
amining the impact of the amount of time used in preparation of the specimens 
on the reactions of certain types of tumors to certain stains.  So, an experiment 
had been concocted and run and data were collected.  Seven tumor types were 
sampled, each with eight different stains, each at four time points (0, 5, 15, and 
60 minutes).  At each time point, three replicated readings of percent of cells 
stained were obtained; the outcome values range from 0 to 100.

There were 7x8x4x3=672 data, less three missing observations.  How do we 
show these data?  How do we expose the distribution?  Can we show each 
datum?  What are the sources of variation?  On the surface, this problem looks 
like a classic analysis of variance model, with sources of variation being tumor, 
stain, time, replicates, and appropriate interactions.  We could easily drop these 
669 data into any competent statistical package and generate the ANOVA.  But 
what do the atomic-level data say?

A plot of the 669 data is shown in the following graphic.  The seven types of 
tumors are the columns; the eight different stains are the rows.  In each little box, 
time flows from left to right from 0 to 60 minutes while percent of cells stained 
is shown vertically from 0% to 100%.  We can see the three replicates at each 
time point.  The main effects of tumor are shown in the bottom row; the main 
effects of the stains are shown in the rightmost column.  The intersections of the 
rows and the columns then represent the interactions between tumor and stain.  
Our data display is the model:  we see the distributions as functions of the 
levels of the sources of variation.

Look at the top row: for this stain, all but the fourth tumor type show high levels 
of staining.  What is the overall effect of this top-row stain?  Since it depends on 
the level of tumor, there is interaction here.  Are there other interactions?  All but 
the last stain show interaction with tumor type; main effects in the presence of 
interactions are of little value.  To see why, compare the marginal distributions 
to the interaction plots: what does the main effect mean when it depends on the 
level of a second source of variation?

Note the little clusters of the three replicates at each time point in the plot at the 
top left.  These three points show us something about the residual error: it is 
small — but it is not small everywhere!  While the residual, between-replicate 
error is small for stain 1 on tumor 1, for some combinations, the error is gigantic.  
Check, for example, stain 4 on tumor type 1.  Note the variation at time 0, with 
one reading near 100% and two readings near 0%.  These outliers are rampant: 
stain 5, tumors 2 and 3; stain 4, tumor 4; stain 7, tumor 3; and more.  These 
outliers are output from the same process that generated the nice data for stain 1, 
tumor 1; ought we not make certain we understand the source of their variation 
before even trying to understand the effects due to time?

And what of time?  Is there an effect?  Whatever it is, relative to the differences 
seen between tumor and stains and their interactions, the time effect is most 
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certainly minimal.  Furthermore, if there is any evidence of a time effect, it 
most certainly interacts with stain and tumor type:  for example, stain 1, tumor 3 
shows a drop over time; stain 2, tumor 6 shows a rise over time; stain 4, tumor 5 
shows a U shape.  

The overall grand mean is in the neighborhood of 50%; in light of many drastic 
“all or none” experiences in the data, what does such a mean represent?  Is re-
porting the mean even a rational thing to do?

The initial description of the problem sounds like a classic three-way ANOVA 
with replicates, but examination of the data reveals a number of issues that must 
be addressed:  interactions between tumor type and stain and time, inconsistent 
variances in the distributions of the replication process, highly nonnormal dis-
tributions.  The data are complicated from a complicated process.  Ignoring in-
teractions and consistencies will not make them go away.  The atomic-level data 
compel us to work harder to understand the sources of variation in the process 
that generated these data.
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People involved with surgery are interested in measuring performances of 
the people involved in the surgery.  Eight measures, and a Global Rating, 
were collected by an observer for each of 549 surgeries done, with each 

measure corresponding to something someone is supposed to be doing with (or 
to) the patient or with (or to) some other member of the staff.  The measures 
were scored on a discrete, five-point scale, from 1 to 5.

Data were collected from early July 2007 through January 2008.  The statistician 
was given the data, which consisted of dates and times of the observed surgeries, 
identifiers for people involved, and the scores on each of the measures.  Sum-
maries (means and such) of the scores had been calculated within each month.  
Could the statistician please do a further analysis of the scores?

The plot shows the 549 data for one of the eight measures.  The horizontal axis 
shows time, progressing from July 2007 through January 2008.  Vertical grey 
bars mark the start of each week; they are placed at midnight between Saturday 
and Sunday.  The ticks marking the starts of each of the months mark midnight 
as well.  Each datum is shown in two locations: once to mark the day and time 
of the surgery and once to mark the score given (1, 2, 3, 4, or 5) for that surgery.  

A backwards-looking moving-average window of length 30 observations is used 
to compute both the mean score, as marked by the wandering black line, and the 
density estimate at each surgery, as marked by the varying grey bands.  Hence, 
computations at a particular observation are based upon the current observation 
and the 29 that precede it.  The vertical thickness of the polygon that is the grey 
background shows the estimated probability of each score across time, based on 
the moving average.  At any point in time, the total vertical widths of the grey 
polygons is the same, summing to 100%.

The data row labeled “All” clearly shows that not all days are equal.  July 1, 2007 
fell on a Sunday, so the first surgeries that were included in the set must have 
occurred on a Friday.  (We can tell they aren’t on Saturday by looking farther to 
the right and seeing some Saturday observations during the second full week in 
August.)  Sunday surgeries first occur during the third full week in September, 
amidst a streak of eleven consecutive days with observations.

The week that contains August 1 shows no data at all, as does the week of 
Thanksgiving.  The last full week of the year has only one observation, taking 

In
tro

du
ct

io
n

1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 07 1 Jan 08 1 Feb

A
ll

1
2

3
4

5 Window length: 30

●

●

●

●

●

●

●

●

●●●

●

●

●● ●● ●●

●●

●●

●

●

●

●

●

●●● ●●●●

●

●●●

●●

●● ● ●

●

●

●

●●●● ●●

●

●

●

●

●

● ●●●

●

●●● ●●

●

●●● ●

●

●●●

●

●● ●●●●

● ●

●

●

●

●

●● ●●●●● ●●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●●● ●●● ●●●●●

●●

● ●

● ●

● ●●

●

● ●●●●

●

●

● ●

●

●●●●

●

● ●●●

●

●● ●●●●

●

●●

●

●●● ●●

●

●●●● ●

●

●

●

● ●

●

●●●

●

●

●

● ●

●

●●●● ●●●

●

●●

●●

●●

●

●

●●

●

● ●

● ●●●●●●●●

●

●● ●●

●●

● ● ●●●●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●●●

●●

●●

●

●●●●

●

●●●●

●●●●

● ●

●

●

●

●●

●

●

●

●

●●●● ●

●●

●●

●

●●●

●

● ●

●

●●

●

●●● ●

●●

●

●

●●●

●

●●●

●

●

●

● ●●

●

●

●

●

●●●● ● ●●

●● ●

●

●

●

●●

● ●

●

●●●● ●

●●

●

●●●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●●

●

●

●●●

●●

●●

●●●●●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

● ●

●●

●●

●●●

●●

●

●

●

●

●

●

●

●●●●●

●●●●●●

●

●

●

●●●●●● ●●●

● ●●●●●●

●● ●●●●

●

●●

●

●

● ●●

●

●

●

●

●●● ●●● ●

●

● ●●●

●

●

●

●●

●●●●● ●

●● ●●●

●

●

●●●

● ●●●●●●●●

● ●

●

●

●

●● ●

●

●●●

●●

●●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

● ●

●●

●
●

●
●
● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

● ●●●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●● ●

●
●

●

●

●

●

●●

●

●
●

● ●

●



principleS For conStructing Better graphicS 33

place late on Saturday, the only observation in a twelve-day stretch of otherwise 
empty days.

Some weeks have a full complement of workday surgeries while others show 
conspicuous differences.  Labor Day is exposed by the absence of observations 
early in September.  Many weeks, too numerous to list, show particular days 
that are anomalies.

The first full week of October has oodles of surgeries, more than the resolution 
of the display will allow us to count.

The scores are predominantly 1’s, at least until October, when a shift occurs.  
Starting on October 8, the predominant score (the mode!) moves from 1 to 4; 
consequently, the mean value then jumps from approximately 2 to over 3.  This 
trend is essentially maintained until the end of the time under study, except dur-
ing early December and late January, when the 1’s return for a brief encore.

Evidence of the temporal intensity in number of observations can be seen not 
only in the density of the dots in the “All” data row, but also in the length of the 

lone data points that score 5.  Note that the score of 5 that occurs on Septem-
ber 11 influences the summary statistics for approximately a week, indicating 
that it took approximately a week to record 30 observations.  In contrast, the 5 
that was witnessed on Wednesday, October 10, burns out by Friday, October 12, 
due to the high number of observations during that time.

The vertical positioning of the “All” data row has been jittered, creating some 
vertical separation between the points.  The first draft of this plot routine simply 
placed the dots at the same vertical location, resulting in reduction in resolution.  
We do place, however, individual score data at their exact score position, only 
allowing differences in time to discriminate between equal scores on equal days.  
An example of the overlap can be seen on many dates, perhaps most noticeably 
in mid-October where the overlapping dots are wider than a single dot.

Further notes are also in order.  One thing that we are not doing in this graphic is 
accounting; we are not computing total number of observations in any arbitrary 
time interval, say, one month, as had been done when the data were originally 
handed to the statistician.  Accounting has a very real purpose and value: it ac-

People involved with surgery are interested in measuring performances of 
the people involved in the surgery.  Eight measures, and a Global Rating, 
were collected by an observer for each of 549 surgeries done, with each 

measure corresponding to something someone is supposed to be doing with (or 
to) the patient or with (or to) some other member of the staff.  The measures 
were scored on a discrete, five-point scale, from 1 to 5.

Data were collected from early July 2007 through January 2008.  The statistician 
was given the data, which consisted of dates and times of the observed surgeries, 
identifiers for people involved, and the scores on each of the measures.  Sum-
maries (means and such) of the scores had been calculated within each month.  
Could the statistician please do a further analysis of the scores?

The plot shows the 549 data for one of the eight measures.  The horizontal axis 
shows time, progressing from July 2007 through January 2008.  Vertical grey 
bars mark the start of each week; they are placed at midnight between Saturday 
and Sunday.  The ticks marking the starts of each of the months mark midnight 
as well.  Each datum is shown in two locations: once to mark the day and time 
of the surgery and once to mark the score given (1, 2, 3, 4, or 5) for that surgery.  

A backwards-looking moving-average window of length 30 observations is used 
to compute both the mean score, as marked by the wandering black line, and the 
density estimate at each surgery, as marked by the varying grey bands.  Hence, 
computations at a particular observation are based upon the current observation 
and the 29 that precede it.  The vertical thickness of the polygon that is the grey 
background shows the estimated probability of each score across time, based on 
the moving average.  At any point in time, the total vertical widths of the grey 
polygons is the same, summing to 100%.

The data row labeled “All” clearly shows that not all days are equal.  July 1, 2007 
fell on a Sunday, so the first surgeries that were included in the set must have 
occurred on a Friday.  (We can tell they aren’t on Saturday by looking farther to 
the right and seeing some Saturday observations during the second full week in 
August.)  Sunday surgeries first occur during the third full week in September, 
amidst a streak of eleven consecutive days with observations.

The week that contains August 1 shows no data at all, as does the week of 
Thanksgiving.  The last full week of the year has only one observation, taking 
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counts.  In the sense of these data, accounting is literally counting, adding one 
to each count in each month for each observation in that month.  In order to do 
such accounting, one must perform some sort of arbitrary binning along the time 
axis.  The account will tell us how many 1’s or 2’s or whatevers occur in any 
given period.  It is dry and precise, clean and sterile, rigid and exact.  Reporting 
of counts, aka, accounting, is certainly a necessary process, most certainly in 
any sort of regulated environment, in any environment where people need to 
show the counts, for whatever reason they may possess.  

What we are doing by exposing the distribution and emphasizing each individual 
datum is pushing us more to do analysis, the understanding of the total by under-
standing the component parts.  The first thing we see is that the observers of the 
surgeries, those people who are actually generating the data, are not observing 
all the surgeries, at least, we wouldn’t believe this to be the case; how could a 
surgery center go twelve days with only one surgery?  So the observations in our 
data set are not the complete record of all the surgeries, they are only a sample of 
what really happened.  Is it rational to assume they constitute a random sample?  
What impact is there on the ability to generate valid inference if they do or do 
not constitute a random sample?  More investigation into the nature of the data 
collection scheme is warranted.

We also see that we need to be cautious with how we treat each datum, as arbi-
trary time boundaries and summaries thereof can change the weighting of the 
data in the summaries.  One reason we used a window length based on num-
ber of surgeries instead of on absolute time was to follow a “one datum, one 
vote” policy.  By setting up our boundaries relative to the number of surgeries 
observed instead of setting up boundaries relative to arbitrary time points, we 
allow the data that fall in the high density areas to carry as much weight as those 
data that fall in the low density regions.  As such, our computations (estimates?   
of what?) in mid-October weight the data with the same weighting scheme as 
our estimates in late December.  An accounting scheme that partitions time into 
week- or month-based boundaries weights those data falling in high-intensity 
regions less than those in low-intensity regions.

Note that day of the week has an impact on the data and whether or not they ex-
ist.  Surgeries on weekends are much less likely to be in our data set.  The impact 
of this selection bias is not known in these data but any cautious analyst of these 
data should investigate this sort of concern.

Our data display shows the varying distributions in score value as a function 
of time.  This implies that, on some level, we are viewing time as a source of 
variation.  

Of course, this is pure folly.  Time is not a source of variation; time is a surrogate, 
an index that marks locations where other sources of variation have had their 
impact.  A change in score did not occur because the calendar said mid-October; 
rather, something happened in mid-October that resulted in a change in score.  
Any rational investigation of these data will need to examine ancillary or aux-
iliary pieces of information and determine what happened in mid-October to 
produce what we have seen: an increase in the intensity of surgery observations 
and a corresponding (consequential? subsequential?) rise in scores.

Times series plots are always a victim of this pseudo-variation source.  Time 
series plots are very good at telling us what happened and when it happened but 
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they aren’t very good at telling us why they happened.  Time series make fine 
accounting but poor scientific models.

We should be wary then of accounting when it is being passed off as analysis.  
Arbitrary summarization across a source of variation (whatever is also indexed 
by time) can actually mask variation that we are trying observe.  Further ex-
amination of these data needs to include those sources of variation (who was 
involved, what kinds of patients, what kinds of procedures, etc.) that are being 
surrogated by time.  If the slow and steady, unrelenting, dispassionate drum-
beat of time is the only source of variation in these data, how can we expect to 
change the state of Nature and improve the surgery scores?  So, unless specifi-
cally doing accounting, avoid arbitrary summarization, particularly across 
sources of variation.
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When attempting to show large numbers of data points using ink, a 
graphic will often be problematic because of large areas of overlap of 
the data points.  The simplest solution to this problem is to use smaller 

dots; after all, in mathematics a “point” truly has no dimension, so why would 
we want one to be represented by a gigantic dot?  Most often, very small dots, on 
the order of the size of the period at the end of this sentence will suffice, since 
we are interested in exposing the distribution of the data.  We saw small dots in 
the exposition of the piano class data.  Even dots this small, however, are not 
always sufficient to show the depth of complexity in the data, most certainly 
when there are repeats in the data or when the dots, when at the limit of visual 
perception, still overlap.

As we have seen, one way to avoid this overlap issue is to jitter the data points. 
Jittering adds small amounts of noise to each datum so as to allow the individual 
data points to not fall directly on top of one another.  This jittering technique 
can be seen, for example, in the plot of the cancer staining on page 31, where 
the horizontal values, the time readings, were slightly jittered.  This allows the 
three readings at, say, time 0 to all be visible, even if they have the same per-
cent of cells stained.  A note-worthy example can be found at time 0 for stain 7, 
tumor 1, where all the response values are 0%.  Instead of one dot that is three 
layers of ink thick, we see a glob of ink representing more than one observation.  
It isn’t a perfect solution, but it is in keeping with a “one datum, one ink-dot” 
goal.  Perhaps some users of our graphics, those with heightened tactile sensory 
capabilities, could detect a double- or triple-thick ink dot as opposed to a singlet, 
but most ordinary viewers cannot.  Thus, jittering helps to provide a way around 
the two-data-at-one-location issue.

This graphic from a medical journal► is another example of jittering.  It exposes 
some other attributes of a fine data graphic, along with some elements that are 
unnecessary.  We see on a logarithmic scale the 
APC/MYOD1 ratios from three different groups of 
samples.  Each datum is depicted with its own 
small dot.  The shadow behind each datum creates 
the effect that each dot is hovering above the grid, 
which, although fun-looking, is certainly unneces-
sary.  The hover-distance could be used to encode 
more information.  If there is no need to do such 
additional encoding, then simple flat dots are suf-
ficient.  These data are two-dimensional with 

“group” as one dimension and “APC/MYOD1 ratio” 
as the other; this is simple “cause” and “effect”.  
Why encode them with three dimensional images?

The horizontal position of each datum within its 
category is jittered to allow discrimination among 
the individual data.  Two summary measures are 
provided.  The boxes list the number of positive 
samples in that group and provide an aid to the ob-
viously difficult task of trying to count all the little 
balloons.  The horizontal bar depicts the median 
level of the response so as to provide an objective numerical summary measure 
of the location of the distribution.  Furthermore, the description of the plot, in-
cluding a notation about how zero values are presented on this logarithmic scale, 
is included in the caption.

range of amplification. The APC promoter methylation-negative fetal human
epithelial lung cell line L132 was used as a negative control. To further verify
the specificity of this methylation-specific real-time PCR assay, we treated 100
�g DNA of the APC promoter methylation-negative control cell line L132 in
vitro with Sss I Methyltransferase, according to the manufacturer’s protocol
(New England Biolabs, Inc., Beverly, MA). This enzyme adds methyl-groups
to all CpG dinucleotides within the genomic DNA. Sodium-bisulfite treated
DNA of in vitro methylated L132 DNA revealed positivity for APC promoter
methylation compared with untreated cells (data not shown). All of the assays
were performed at least twice.

Statistical Analysis. Real-time PCR analyses yield values that are ex-
pressed as ratios between two absolute measurements (gene of interest:internal
reference � 100). Medians and ranges were calculated for the methylation
values of each sample. Associations between variables were tested by using the
Wilcoxon signed rank test or the Mann-Whitney U test. The significance of
rank ordering between variables was tested by using the Kruskal-Wallis
ANOVA for ordinal data. The maximal �2 method was adapted to determine
which methylation value best segregated patients into poor and good prognosis
subgroups (in terms of likelihood of surviving; Refs. 33 and 34). Survival was
estimated according to Kaplan and Meier (35). Multivariate analysis was
performed with the Cox proportional hazards regression model. The level of
significance was set to P � 0.05. Analyses were carried out using the SPSS
software package (Chicago, IL).

Results

We collected tissue samples of primary lung cancers from 99
patients who underwent curative resection (Table 1). Methylation of
the APC promoter 1 A was detected by real-time quantitative PCR in
95 (96%) of 99 lung cancer tissues (Fig. 2). The median methylation
level (APC:MYOD1 � 100) was 7.33 (range: 0.001–346.8; Fig. 2).
Because we detected APC methylation in most lung tumors, we went
on to investigate whether this epigenetic alteration was also specifi-
cally detectable in matching serum and/or plasma from these patients.
Methylated APC promoter 1 A DNA was detected in 42 (47%) of 89
matched serum or plasma samples. The median level of methylated
APC promoter DNA in the positive samples was 0.36 (range: 0.01–
11.5; Fig. 2). APC methylation in serum or plasma DNA was never
detected if this alteration was not present in the primary tumor tissue.
Moreover, methylated APC DNA was not detected in 50 control
serum samples from healthy individuals, whereas robust amplification
of the MYOD1 control for input DNA was documented.

We compared the detectability, as well as the levels of detected
methylated APC DNA, in between serum and plasma samples taken
before surgery from 15 individuals with lung cancer. Methylated
APC-DNA was detectable in 14 of 15 (93%) plasma samples and in
6 of 15 (40%) serum samples. The median of the APC:MYOD1 ratio
in the positive samples was 0.35 (range: 0.015–1.6) for serum samples
and 0.21 (range: 0.015–1.6) for plasma samples, respectively. The
ratio differences and the distribution differences in these samples and
in all of the serum and plasma samples of the study population were
not statistically significant, but we observed a trend toward higher
levels of methylated APC DNA in plasma versus serum in both groups
(P � 0.08). Although this observation suggests that larger quantities
of tumor DNA are present in plasma, further validation is needed in
a larger series.

Statistical analyses of the data using the Mann-Whitney U test
revealed no significant differences between APC promoter methyla-
tion levels in tissue, serum and plasma, and common clinical or
pathological parameters, such as histological subtype of lung cancer,
grade, age, gender, smoking history, tumor size, lymph node status,
and overall stage.

To determine whether different methylation levels in tumor tissue
have prognostic value, we analyzed the available survival data for 93
lung cancer patients. Twenty-four patients (26%) died of recurrent
disease, 4 (4%) from other causes. The median overall survival of the
entire study population was 51.8 months. A methylation ratio of 32.7
in lung cancer tissue best segregated patients into good and bad
prognosis subgroups. By this criterion, 70 of 93 (75%) patients had a
low (�32.7) and 23 of 93 (25%) a high APC methylation level in lung
cancer tissue. The median overall survival for patients with tissue
APC methylation levels �32.7 was 32.4 months (95% confidence
interval: 14.9 and 42.6), whereas the median survival for those with an
APC methylation �32.7 was not reached. The resulting adjusted P
was 0.006 for overall survival (Log-rank test; Fig. 3A).

For serum- and plasma-methylated APC levels, survival data were
analyzed for 83 of the 89 patients. A methylation ratio of 0.45 best
segregated patients into good and bad prognosis subgroups. Forty-six
of 83 patients (55%) had a low and 37 of 83 (45%) had a high methyl-
ation level. In this subgroup, the median survival was not reached for
both, and no significant differences in survival could be observed
(P � 0.386). The respective survival curves are shown in Fig. 3B.

The importance of APC methylation in tumor tissues as a prognos-
tic factor was next determined by the Cox proportional hazards model
analysis. The logistic regression model included common clinical and
pathological parameters, such as age, gender, histopathological type,
tumor stage, grade of differentiation of the primary tumor, and APC
methylation status. A very strong trend for stage as an independent
prognostic factor was observed (P � 0.052), but only a high APC
methylation level in tumor tissue was of independent prognostic
importance (P � 0.015).

Discussion

Detection of Aberrant Methylation of the APC Promoter 1 A in
Primary Lung Cancer. We detected methylation of the APC pro-
moter 1 A in virtually all studied lung cancer tissues (96%). Our
current observation supports a role for APC promoter methylation in
the development and progression of lung cancer and is consistent with
the results of our previous investigation where APC promoter meth-
ylation was observed in 94% of 91 NSCLC tissues (36). On the other
hand, there are data in other investigations where either 53% of 106
NSCLC samples (37) showed APC methylation, or no methylation of
the APC promoter was detectable in 17 lung cancer samples (29).
These variant results are most likely attributable to increased sensi-

Fig. 2. APC:MYOD1 ratios � 100 on a log scale. Lung cancer tissue and paired serum
and plasma samples from patients with lung cancer positive for methylated APC Promoter
1 A DNA. APC:MYOD1 ratios of serum from healthy control individuals are negative.
Boxes, the number of samples positive for methylated APC promoter DNA. Bars, the
median APC-methylation level within a sample type. Values diagrammed at 0.001 are
zero values, which cannot be plotted correctly on a log scale.

373

DETECTION OF APC PROMOTER METHYLATION IN LUNG CANCER

►Usadel, H., et al. Detection of APC 
Promoter Methylation in Lung Cancer.  
Cancer Research, 62: 371–375, 2002.
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This graphic operates successfully on several levels and it is through this multi-
layering that it provides its value.  At the lowest level are the data themselves, 
the atoms that underlie the experiment.  But these atoms work together to dem-
onstrate the distribution, which is depicted by the aggregate collection and sum-
marized by the median and counts of non-zeros.  Good graphics operate on 
multiple levels, like a good map.  The viewer is rewarded for making the effort 
to look for detail.  If I look carefully at the individual data, I can see the four lung 
cancer tissue data that are not considered positive.  I also see a fifth that is nearly 
at the same level, even though the zero values are artificially placed at 0.001, as 
is described in the caption.  Investment by the viewer results in increased under-
standing. Getting closer improves resolution.

The same thing happens with a good map; zooming in improves resolution. My 
road atlas has subtle little blue buildings showing the rest-stops, if you look 
closely.  At a distance, the major roads are visible.  As one gets closer, more and 
more detail becomes apparent.

Tufte calls this concept “layering and separation”►. Good maps have it. Good 
graphics have it. Reward the viewer’s investment in the data display is the 
principle at work here.

Another way around the high data concentration, or overlap, issue, and some 
other issues, as well, is to plot, instead of the data points themselves, the empiri-
cal cumulative distribution function of the data.  For any data point in the sup-
port set, the empirical cumulative distribution function shows (a function of) the 
number of data points less than or equal to that number.  Thus, we can show the 
cumulative number of points less than or equal to a given point.  If we seek to 
compare multiple such plots, we might seek to scale these plots by the number 
of data points under consideration and hence plot the proportion or percentage 
of the data less than or equal to each value in the data set.

Empirical cumulative distribution functions, sometimes called ECDFs, are ap-
proximations of their corresponding theoretical cumulative distribution func-
tions, or CDFs.  While lay people typically are comfortable with histograms as 
approximations of density functions, ECDFs and CDFs seem to produce more 
confusion and discomfort.  Regardless, there are times when they prove extreme-
ly valuable.  Let us examine the path toward the development of an ECDF.

Recall that we seek to expose the distribution of the data.  To do so, think of the 
data as raindrops (datadrops?) that fall from a distribution (a density) onto a line 
that houses the support set.  The datadrops will be most dense at the highest part 

of the distribution.  The drops pile 
up to estimate the distribution from 
which they came; the datadrops col-
lectively will estimate the density of 
the process that created them.

Our little figure here shows the gen-
erating density function, the distri-
bution that is generating the dat-
adrops.  In reality, this distribution is 
not know.  Some of its attributes 
may be assumed or conjectured — it 
may be assumed to be Gaussian or t 

►Edward Tufte, Envisioning Informa-
tion (Graphics Press, 1990), 53.  

A helpful reviewer has reminded me 
that some people make an effort to 
work around the high data concentra-
tion by using a plot symbol that is a 
small open circle.  In fact, the default 
plot symbol in at least one recent 
release of R is the open circle.  An 
example can be found in the planet 
plot we examined on page 18.  

The plot from the medical journal 
on the preceding page hints of using 
the small open circle symbol but the 
symbols used there differ in two as-
pects.  First, they carry shadows, as we 
discussed previously.  Secondly, they 
are not transparent; they tend to stack 
up upon each other: examine the col-
lection of points at the value of 0.001.

Using transparent circle symbols, ie, 
open circles that would allow a viewer 
to see the circles cross each other, can 
aid in viewing data that are closely 
concentrated but even this trick runs 
into problems when the data get tightly 
congested.  

There is no hard and fast rule to use 
here other than to try a method and 
examine the result.  If a method can 
adequately expose the distribution 
(that is, it exposes the support set 
points and the masses associated with 
those points), then that method must 
be sufficient!

• •• •
• •

•



38  Fundamental StatiSticS conceptS in preSenting data

or chi-square or a mixture or symmetric or whatever  — and we can use these 
assumptions to estimate relevant components of the distribution.  Regardless of 
assumptions that might be made concerning the distribution that is generating 
the data, what is most certain is that the distribution is not known.  So, in reality, 
we do not see the distribution generating the data, we see data falling from a 
cloudy sky, with the clouds obscuring our view of the distribution.  Our objec-

tive is to make inference about 
this hidden distribution, based 
on the distribution of the dat-
adrops that we have seen fall 
from the clouds.

All of this is fine in the case of 
a discrete density.  In this case, 
the datadrops will form perfect 
little stacks on each support 
point, like the piano class data, 
with the height of each stack 
proportional to the estimate of 
the generating density’s height 
at that point.  In the case of 
continuous data, however, the 
picture is not as rosy.  Since the 

datadrops have width that is infinitesimally small, the datadrops in this case will 
not pile up.  They will not form stacks or piles.  They will only form an infinitely 
thin layer of data, one whose depth we cannot measure.

One method used as a work-around is to bin the data.  Think of a data-raingauge:  
the datadrops are collected into a partition of bins that cover the support set; 
each datadrop falls into one, and only one, bin.  This then forces the datadrops 

to stack up.  The binning algo-
rithm maps the data to a dis-
crete support set, allowing us 
to see the distribution.

As with any work-around, bin-
ning can produce problems.  
How many bins?  Should they 
be equally spaced?  If not 
equally spaced, how do we 
scale back the counts in each 
bin?  If the original, hidden, 
data-generating distribution is 
skewed, what do I do with the 
resultant bias?  What do I do at 
the endpoints of the bins?  How 
do I reconcile the fact that two 

datadrops that start to fall near to each other but are captured by different bins 
can end up farther apart in the binned representation than two datadrops that 
start far apart but happen to be in the same bin?

All of these questions are answerable and the statistical literature is rife with an-
swers that produce optimal results in special situations.  Unfortunately, however, 
there is no one binning solution that can be endorsed for all situations.

• •• •
• •

•

••• •
• •

•
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This does not mean that binning should never be used.  It only means that we 
must realize the issues and biases that arise from the decisions we make to dis-
play our datadrops.

Another method for dealing with continuous support sets is kernel estimation, 
where, instead of infinitely small dots that fail to stack, the data are thought to be 
miniature densities in their own right.  So, instead of viewing the data as rain-
drops, think of them like pancakes that are high in the middle and low on the 
outside that will build depth as they overlap each other and form an estimate of 
the density.  Alternatively, think of the datadrops as being made of something 
akin to statistical silly putty, whereas when they strike the ground, they will flat-
ten and squish outward to make a little mound.  These little densities or pan-

cakes or squishes are called 
kernels and the literature is full 
of different kernels one can use 
to help estimate the density.  

Of course, kernels have prob-
lems that are similar to bin-
ning.  How wide should my 
kernel be?  What should be its 
shape?  What should I do with 
the edges of my data support 
set, where the kernel method 
places nonzero estimates out-
side the range of the data?

Again, statistical practice has 
suggestions for optimal ker-

nels in a bevy of different situations; yet, wider kernels tend to oversmooth the 
density, attenuating the bumps, and narrower kernels tend to be too focused 
and overamplify bumps.  And, like binning, many of the choices of kernels are 
arbitrary and there is no one-size-fits-all.  Kernel estimates can be helpful but 
we still need to be cautious of the shy consequences of our sometimes-arbitrary 
decisions.

(E)CDFs become more and more useful as the distribution function generating 
the data becomes more pathological.  Displays of large data sets, data sets with 
both discrete and continuous components, and data sets with uneven clusters of 
points in the support set can be aided by employing ECDFs.

The ECDF can be viewed in our falling datadrops metaphor, but instead of points 
or pancakes, we visualize each datum as a horizontal stick of thickness 1/n and 
infinite length extending from the datum value out to infinity.  Furthermore, we 
will re-sort the data so that they are in order from smallest to largest.  This way, 
the sticks stack themselves up to make a staircase.

What results from this maneuvering is a non-decreasing function as one moves 
from left to right across the support set of the data.  At each datum, the ECDF 
grows by an amount equal to 1/n, where n is the sample size.  This way, there 
need not be any binning nor any arbitrary decisions to get the methods to work.  
All the data at each point in the support set get to contribute to the estimate of the 
distribution function.  If there is point mass at a single point, say in the case of 
zero-point inflation, or if the distribution is continuous, the ECDF will allow the 

• •• •
• •

•
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distribution to be seen.  Every time the ECDF moves up, there is a datum.  Points 
with more data produce bigger jumps.  

The trick to reading an ECDF 
is to remember that the steep-
ness of the ECDF translates 
into data density; uniform 
steepness means uniformly 
distributed data, flatness means 
no data.  

Steepness equals dataness.

Typically we do not keep the 
long bars but only show the 
steps and the ECDF then looks 
like a function, where the ac-
tion is focused on the support 
set.  We can do subtle modifi-
cations to the endpoints and to 

the summation element, like make it 1/(n+1) instead of 1/n, but the fundament 
remains the same: each element in the data set causes the ECDF to rise by one 
unit (or one weighted unit, as in the case of the mean cumulative function, where 
the weighting can be based on the number of units under consideration at that 
time point).  If we don’t want to scale the ECDF to 100%, then the height at each 
location is an indication of the total number of points, instead of the proportion.  
Such a scaling is sometimes useful when counts, instead of proportions, are of 
interest.
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Simple modifications to ECDFs can encode extra information.  This ECDF 
shows the distribution of surface temperature data representing 576 geo-
graphic locations (a 24-by-24 grid) over 72 consecutive months, for a to-

tal of 41,472 data points.  Temperatures are shown in Kelvin; conversion to 
possibly-more-user-friendly units is left as an exercise to the reader.  This ECDF 
adds summary information to the plot, to allow for more information to be trans-
mitted.  We have added the value of the three quartiles, those points that show 
the 25th, 50th, and 75th percentile points (294 K, 297 K, and 299 K, respec-
tively).  The range of the grey data field (from 265 to 315) is shown by the labels 
below the horizontal axis.  The support set is shown as the projection of the 

points onto the horizontal axis.  The color scheme maps blue to the lower tem-
peratures and red to the higher temperatures, with white at the median.

Of course, this plot need not be so large and can be shrunk with essentially no 
loss of information.  Following the “steepness equals dataness” principle, we 
see the majority of the data, surface temperatures in the this case, are in the 
neighborhood of 297 K.  In fact, 50% of the data are tucked within the two ex-
treme quartiles, within 294 and 299.  We can also see relatively uniform spread 
between the two extreme quartiles and some left skewness in the distribution as 
evidenced by the lower curve being less drastic than the top curve.  It appears 
that the left edge has been dragged out, hence the left skewness.
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The surface temperature data are 
only one variable from a collection 
of weather data provided by NASA 
to the ASA for the Data Expo at the 
Joint Statistical Meetings in Seattle 
in August 2006.  In addition to the 
surface temperature data, each of 
24-by-24=576 longitude-latitude pairs 
over a 72 month period contained 
monthly averages for temperature, air 
pressure, ozone, and low, medium, 
and high cloud cover.  The goal of the 
Data Expo was the visual presentation 
of these data so as to detect interest-
ing particulars in the data set.   More 
information can be found at http://stat-
computing.org/dataexpo/2006
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The data set from which these surface temperatures came also includes a number 
of other variables, among them is air pressure.  With these air pressure data we 
see the value that we get from an ECDF, as opposed to what we would have seen 
with a histogram.  Note the mass of data at the 1000 mb point.  This would have 
produced issues with binning in the typical histogram since over 50% of all the 
data are at the value of 1000 mb.  In fact, 75% of the data are at 995 or above, 
yet the support set extends all the way down to nearly 600 mb.  

Learning more about the data set reveals why these anomalies exist in the data: 
the 576 locations where these readings were collected exist over a range of lon-
gitudes running from 56.25W to 113.75W, essentially from the East coast of 
South America to the West coast of North America, and over a range of latitudes 
extending from 21.25S to 36.25N, from central South America to central North 
America.  As such, there are readings over a wide range of land formations, from 
deserts to mountaintops to tropical islands and over broad expanses of ocean.  
The air pressures at 1000 mb reflect readings that are at or near elevations of 
zero; they are the readings that were done at or near sea level.

These air pressure data are highly skewed left; yet, no rational transformation 
of them would make them Guassian or even close to it.  The mixture distribu-
tion, that of point mass at 1000 mb and a greater spread across the other values, 
provides that thorn.

We see with the air pressure data the reasoning behind the beige background to 
the ECDF outside of the grey data field: the white data points that show the me-
dian are thus visible when they lean over the edge of the grey frame.  (In general, 
another principle arises here: Colors show off better against off-whites than 
against bright white.  Use off-whites and beiges and light greys for back-
grounds to frame displays — or let the data do it!)  

Mixture distributions caused by the influence of land and sea effects can also be 
seen in the surface temperature data.  The ECDFs of the partitioned data collec-
tions show the land and sea components.  Most striking is the difference in the 
overall range of the data over the two geological elements.  Over land, the range 
of the data is drastically greater than over the water.  While the center points of 
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the distribution are essentially unchanged, the water temperatures are much less 
disparate.

Of course, these data represent the entire constellation of locations from the 
original data set.  Zooming in on a single latitude and examining effects due to 
time can be carried out via these ECDFs as well.  At the bottom of this page we 
have the surface temperature data at latitude 36.25N, a line the runs roughly 
from Big Sur, California through North Carolina.

The overall data, across all 72 months of data are shown in the lower right corner, 
along with the scale range for the grey data field and the three quantiles.  We see, 
via the values of the quantiles and the overall coloring of the points, that these 
data are pushed in general left of the overall data set.  We should expect as much 
since they are at the northern-most boundary of the complete data set. 

The data for all the January readings are shown in the lower left, with the July 
data in the lower center.  Here we see classic northern hemisphere climate: cool 
in winter (note the preponderance of blue) and warm in the summer (red).  We 
also see the mixture distribution in the January data with the cool water but the 
very cold land.  The July data are also a mixture, although the mixture is less 
pronounced.  Sea and land values across all months shown are in the right-most 
column.  Again, we see increased range of temperatures over land compared to 
over sea.

[Note that there are ten months whose data are not shown; only the extremes in 
January and July have been selected.  All twelve months data are shown in the 
‘All months’ plots.]

The interactions between time and elevation are shown in the four plots in the 
upper left.  We see the consistent cool in January at sea, the even-cooler land 
temperatures on land, the consistent warm at sea in July, and the extreme tem-
peratures in July over land.  These distributions (along with the ten months not 
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shown) combine to produce the overall distribution seen in the lower-right cor-
ner.  The component parts are synthesized to produce the whole; the whole must 
be analyzed to its component parts for us to understand the distribution of the 
data.  

With this new understanding of ECDFs, we can return now to the cell staining 
data.  Recall that there is interest in the effects due to time.  As such, we can 
decompose the data into a collection of ECDFs, again splitting on stain, but this 
time splitting out the time component and drawing the ECDF across the tumor 
types and the replicates.

Again, the stains are the rows but now we have the columns as the times.  The 
distribution of all the time 0 readings is in the first column.  In the first row, we 
see the small clump of data on the low end of the outcome distribution (tumor 
type 4) while the remaining values are clustered near the top.  The other ele-
ments of the first row are eerily similar to the first column.  The four time points 
combine to produce the smooth ECDF in the far right column.

The main effects of time are shown in the bottom row.  The four curves are 
dead-ringers for the combined ECDF in the lower-right corner, implying that 
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the distribution at each is much like that overall, and hence the distributions are 
all similar; there is no noticeable effect due to time.  The ECDFs allow us to see 
points with large amounts of mass; check out stain 5, time 0, or any of the stain 7 
plots.  The stain 8 plots contain most of their mass near zero.

Steepness equals dataness.

With the original cell staining plot and the cell staining ECDF plot, and also with 
the date and land/sea ECDF plot, we are beginning to see the value of a concept 
Tufte refers to as small multiples►.  We have one type of plot, either the scatter 
plot in the cell staining data, or the ECDF plot in the other data presentations, 
that is repeated over and over again.  The layout of the small multiples acts to 
index the distributions being exposed, typically with the indices being sources of 
variation that are relevant in the mental model for understanding the data.

Again, the data display is the model, as it exposes the sources of variation and 
describes each source’s contribution to the total.

The small multiple concept is also exposed in the ROP table, where the strata 
are the multiples and the birth weight category is the source of variation that 
indexes them.

The idea of using small multiples allows us to make multiple comparisons with-
in our field of vision.  Once we learn one of the plots, we can allow our eyes 
to range over the display to look for comparisons and contrasts.  Tufte says in 
Envisioning Information that Comparisons must be enforced within the scope of 
the eyespan.  [This is one reason that paper, with its remarkably high resolution, 
provides such a superior medium for graphic presentation in comparison to the 
computer screen.  While the typical computer screen may present a million pix-
els, run-of-the-mill ink-jet printers can function at well over a million pixels per 
sqaure inch, allowing typical increases in resolution, and hence understanding, 
on the order of 100 times.  Large format paper provides even larger gains.]

Small multiples should be arranged so as to facilitate the comparison of most 
interest to the viewer.  In the ROP data table, the fundamental comparison was 
then versus now.  With the temperature data, we can compare January with July 
and also land with sea.

When more than two sources of variation are present, critically thinking about 
the comparison task that the viewer is going to make will allow the author of the 
graphic to make the fundamental comparison the tightest or closest comparison.

If we were to look at the temperature data at a latitude other than the 36.25N 
location we looked at previously, we would have three sources of variation: time, 
land/sea, and latitude.  We would then need to decide how to arrange the small 
multiples so as to put the elements of the primary comparison in close proximity.  
Note that there is no one right way to do this other than to understand what com-
parisons are of interest to the audience.  It also may be necessary to construct 
multiple versions of the same plot (as we did with the cell staining data) to allow 
different questions of the data to be answered. 

►Tufte, VDQI, 42 and elsewhere.  Also, 
Tufte devotes a full chapter to the 
small multiples concept in Envisioning 
Information.  

William Cleveland, without using the 
small multiples term explicitly, uses 
the concept extensively throughout 
Visualizing Data (1993) and The Ele-
ments of Graphing Data (1994), both 
published by Hobart Press.  Cleveland 
refers to small multiples as ‘multiway 
plots’ and ‘panels’.

Leland Wilkinson, in The Grammar 
of Graphics (Springer, 1999), uses the 
concept of a ‘frame’ to describe “a 
coordinate system applied to tuples 
whose entries are limited to intervals”.  
This allows one to partition the data to 
demonstrate differences in the distribu-
tions based on the levels of the framed 
variables.

Wainer, in “Improving Graphic 
Displays by Controlling Creativity” 
in the Spring 2008 issue of Chance, 
discusses the value in repeating pre-
sentation form: “This makes it easier 
on the reader who only has to master 
the design once…”.
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A list of the principles, found on the indicated page in bold
6. The exposition of the distribution is paramount.

9. Show the atoms; show the data.

11. Each datum gets one glob of ink.

22. Erase non-data ink; eliminate redundant ink.

25. Take time to document and explain; integrate picture and text; put words on your dis-
plays; tell the viewer what the plot is and what to see; engage the viewer.

27. Attempt to show each datum; show the atomic-level data.  Avoid arbitrary summariza-
tion, particularly across sources of variation.

30. The data display is the model.

35. Time series make fine accounting but poor scientific models.

35. Avoid arbitrary summarization, particularly across sources of variation.

37. Reward the viewer’s investment in the data display.

40. In viewing CDFs, steepness equals dataness.

42. Colors show off better against off-whites than against bright white.  Use off-whites and 
beiges and light greys for backgrounds to frame displays — or let the data do it!

45. The data display is the model.

54. The data display is the model.

54. First Think.  Then Plot.  Then Think Again.

55. Plot cause versus effect.

57. Typically, color ought be used for response variables, not design variables — but not 
always.

63. We understand the individual responses by comparing them to a distribution of like 
individuals.

64. Avoid red and green as comparators.  Colorblindness is too common to justify the red-
green contrasts.  And avoid garish color schemes; try to use subtler colors.

66. Data presentation layouts and designs should be driven by intended use.

66. Time series make fine accounting but poor scientific models.

72. Design first on paper with a pencil and eraser; use a white board.  Think about what you 
want to do and show, not just what you can do with the standard charting icons in the graph-
ing instant wizard machine.  If the tool doesn’t let you do it, get a different tool.

86. The data display is the model.

—. If everything is bold, then nothing is bold.  Colors matter.  Type faces matter.  Type sizes 
matter.  Presentation order matters.  Have a reason for the choices you make.

—. How often do we really need to report more than 2 significant digits?

—. Use bigger sheets of paper.  8.5in-by-11in is too small!
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Companies with sales forces send information to these sales forces.  And 
they hope that the sales forces read the information that they send and 
then act accordingly.

One pharmaceutical company with whom I consulted spent considerable sums 
of time and money developing a set of monthly reports of prescriber habits 
(which prescribers wrote prescriptions for which products) that were sent to the 
sales force monthly.  Six reports had been developed.  Four of them represented 
a cross between two methods of summarization, “Us” versus “Them”, and “Pre-
scriber” versus “Territory”: “Our” sales at the Prescriber level, “Competitive” 
sales at the Prescriber level, Our sales at the Territory level, and Competitive 
sales at the Territory level.  There was also a report of Competitive Sales to Man-
aged Care Organizations and a report of District Sales for Us.  A territory was a 
collection of prescribers; a district was a conglomeration of territories.

The purpose of these reports to the field was to provide the field agents with 
valuable information that would help determine which prescribers to visit and 
what to say to them.  This, in the end, would improve sales of the company’s 
products and result in higher bonuses and commissions for the field agents.

The data in the reports were consolidated on a monthly basis and presented as 
monthly totals.  In essence, they represented an accounting of the sales within 
and across prescribers and territories.  As with most accounting, the counting 
component took some time.  Hence, data for, say, March were collected through-
out March and cleaned and checked and counted in April and released in, typi-
cally, early May.  April data were processed in May and released around the first 
of June.  May data were processed in June and released around the first of July.  
And so on.  There was a lag time of approximately one month between when the 
books closed on a “data month” and when the data were available to be released 
to the field.

When the company released the data to the field agents, the data were sent elec-
tronically and the company decided to check to see who looked at what reports 
and when.  So the field agents’ laptops were equipped with software that tracked 
when they looked at each report, every time they looked at a report.  As the con-
sulting statistician, I was given these “who-looked-at-what-and-when” data and 
was asked to determine if the field agents were looking at the reports and using 
them.  The company sought “80% utilization”, whatever that means.

There were literally hundreds of thousands of data records, each one indicating 
a “who” (the id of a looker), a “what” (which report the looker looked at), and 
a “when” (the precise date and time when the looker looked at what was looked 
at).  The report that had been accessed was indexed by the type of report (one of 
the six reports listed above) and the data month it represented.

How to report such data?

The atomic-level data here are impulse data, little blips of action that occur at 
a specific point in time.  The IT group had been able to easily account the data, 
counting how many blips of each type occurred during an arbitrary interval of 
time.  As such, they could compute “numbers of hits” during any given day or 
week or month and plot pretty 3-D spinning hexagonal bar-graphs and show 
them over time, a nearly content-free presentation that was accompanied with 
plenty of pomp.  Was it possible to show more detail, a closer image of the data 
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atoms?  Could we understand more about the data than just an accounting?

The following plot shows the report utilization for the time frame from 1 May 
through 21 October for the Monthly Prescriber “Us” Sales and Activity Re-
port, one of the six reports being examined.  (The precise year and company 
name have been obscured on confidentiality grounds and the precise data have 
been tweaked.)  The plot shows seven time series, one for each of the six most-
recent data months and one for the entirety across all data months, based on the 
9238 field agents in the data set during that time frame.

The time axis depicts the individual days, with weekdays in blue and weekends 
in dusty sandy color.  Month boundaries are shown with the light grey vertical 
lines; this time axis is consistent throughout the six data months and the compos-
ite.  Each little vertical bar on a given day shows the proportion of field agents 
who looked at that report on that day, with no line meaning zero and a line all 
the way to the top of that month’s range being 100%.  The shaded region directly 
behind the vertical bars marks 25% utilization.

Rising from each skyline of little bars is a smoke-trail that represents the cu-
mulative utilization; it shows the cumulative proportion of field agents utilizing 
that report from that data month at that time point.  This ECDF is color-coded to 
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change from red to yellow at 50% and from yellow to green at 80% utilization; 
the people investigating the utilization data had “dashboards” and “metrics” that 
sought certain levels of usage — red is bad, yellow is caution, green is good.  
The most recent cumulative percentage of utilization is labelled at the far right, 
so that the graphic also contains some functionality as a look-up table as we can 
tell exactly what the utilization levels were for the data months in the report.

Moving from left to right, and generally from top to bottom, a wonderful rich-
ness in the utilization data emerges.

The March data month reports were released likely on a Sunday, 2 May.  The 
Monday and Tuesday that followed, 3 and 4 May, both saw approximately 20% 
of the field agents use the fresh reports, as the bars there look to be approximately 
80% of the 25% band.  The jump in cumulative utilization seems slightly higher 
on Monday than on Tuesday, even though the individual days’ utilizations seems 
slightly higher on Tuesday than on Monday, implying that some people who 
looked at the reports on Tuesday had already viewed them on Monday.  Utiliza-
tion of this report drops over the course of this week, with days later in the week 
showing lower utilization than days earlier in the week, a pattern that is repeated 
across many of the weeks under consideration.

Within a week of the apparent release (I was never told exactly when the reports 
were made available, as this was a source of some contention between different 
groups within the company), the overall utilization of this report passes 50%, as 
the line changes from red to yellow.  But the rate of new looks, as revealed by 
the slope of the cumulative line, and the total number of lookers, as revealed by 
the little blue and sandy bars, is declining now that these data are more than a 
week old.

Starting with the third week in May, usage is reasonably stable, but there are 
few new users.  The new users seem to show up more often on Mondays, as this 
uptick in the cumulative line seems steepest.  Weekends are drastically different 
from weekdays.  

But the end of May brings the advent of the April data month data, apparently a 
day or so early (!) as there is a spike in utilization of the April data month data 
on the last day of May, a Monday.  Utilization of April’s data looks quite like that 
for March’s data, with the exception of the first week, with the first Monday’s 
utilization of April’s data lower than the first Monday’s utilization of March’s 
data.  Perhaps the early arrival of the reports caught the users off-guard, or per-
haps Memorial Day observances took priority over viewing Monthly Territory 
Sales and Activity reports.  

Regardless, the cumulative line grows to at least 50% in a week and then tapers 
off, much like what happened to March’s data.  We see, however, six weeks of 
non-trivial usage of the April data before it becomes obsolete (due to the arrival 
of May’s data) instead of the five we saw with the March data.  This is a conse-
quence of the early release of the April data month data, along with what appears 
to be late release of the May data month data.

The May data month data appear to have been released on the Tuesday after 
the 4th of July holiday break.  With the 4th landing on a Sunday, the following 
Monday was an off day. The May data month data are pushed to 50% cumula-
tive utilization in about a week as well, with no individual day have more than 
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the typical 20% usage.

We might now glance down to the cumulative row and note the dramatic spikes 
when new data were released and the within-week declines and the dismal week-
ends, although Sunday does seem to trump Saturday.

We might also glance to the top and notice the curious case of the March data 
month data still being used by at least someone after the April data month data 
had been released, and after the May data month data, and so on.  Someone was 
still using the March data month data in early October, after five updated ver-
sions of this report had been issued!  Why?

Looking at the May data month, the eagle-eye might notice some curiosities in 
the May data month utilization before the May data were released.  Note the 
very, very small tick on approximately 19 May, and again on (approximately) 
14, 23, 24, and 30 April:  the May data month data had been viewed nearly two 
months before they were released!?!  Furthermore, now note with some horror 
that all of the cumulative lines are red and show some utilization prior to the 
reports actually being issued!

This glaring error must certainly point to faulty programming on the author’s 
part, right?  On the contrary, an investigation into the utilization database, sort-
ing and then displaying the raw data based on date of report usage, revealed that 
hidden within the hundreds of thousands of raw data records were some reports 
that were accessed prior to the Pilgrims arriving at Plymouth Rock in 1620!  
How could such a thing be so?

The answer is that I lied when I told you that the database held a record of the 
date and time each report was accessed.  I told you that because that is what I 
had been told.  The truth is that the database held a record of the data and time 
that was present on the field agent’s laptop each time the report was accessed.  
Some of the field agents’ laptops, therefore, held incorrect date and time values.  
Viewing all the atomic-level data reveals this anomaly.  Simply accounting the 
number of impulses in a certain time interval does nothing to reveal this issue 
with data.

But I know that it is not possible for those usages to take place before the reports 
were released, so why not just delete all the records that have dates prior to the 
release date, since they must be wrong?  True, deleting all the records prior to 
the release would eliminate that problem, but such a solution is akin to turning 
up the car radio to mask the sounds of engine trouble.  The relevant analysis 
question that has been exposed by actually looking at the data is why are these 
records pre-dated?  

We see variation in the data; we need to understand these sources of variation.  
We have already exposed day-of-the-week, weekday/weekend, and data-month 
variation.  What is the source of the early dates?  Are the field agents resetting 
the calendars in their computers?  Why would they do that?  Is there a rogue 
group of field agents who are trying to game the system?  Is there some reward 
they are perceiving for altering the calendar?  Is there a time-zone issue going 
on?  Are the reports released very early in the morning on the east coast, when 
it is still the day before on the west coast?  And, most vitally, how do we know 
that the data that appear to be correct, actually are correct???
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The process that generated the early usage data was the same process that gen-
erated the correct-looking data; why hold suspect only those data that appear 
out of line?  How do we know that a usage record that appeared two days after 
release really occurred two days after release and not two weeks after release?  

The original accounting of these impulse data counted the raw number of hits on 
each report during each calendar month.  Looking at the bottom “All data 
months” row, we see the daily usages, summed across all the data months, that 
would be used to generate such counts.  

The accounting time series plots showed a spike in usage of this report in Au-
gust, with a dips in July and September.  Such a dramatic change caused much 
consternation in the company.  Why were these changes appearing?  Do we 
need more training?  Was there an important announcement?  Were new agents 
coming on line?

We can see now, using the daily data and splitting on the data months, why these 
blips occurred.  The May data month data were released later than might be typi-
cal in July, after the July 4th holiday, on a Tuesday, 6 July.  This left some residual 
usage four weeks later, during the first week in August.  Furthermore, July data 
month data were released early, in late August, stealing some of September’s 
usage and assigning it to August.  

So, August got increased hits due to differences in release dates and calendar 
quirks.  There were no problems with training or announcements or new agents.  
Accounting processes (using arbitrary calendar month cut-offs) out-of-step with 
the data release process (subject to whims due to holidays and weekends) pro-
duced what appeared to be variation between data months when no such dif-
ferences existed!  The arbitrary binning served only to cover and obfuscate the 
variation sources inherent in the data as they were being generated.

But this is only one of the six reports upon which we could report usage data.  
The complete constellation of the six reports is also available.

The next page shows all six reports, organized onto a grid.  For the bottom four 
reports, the right column is Us and the left column is Them while the bottom 
row shows data concerning the Prescriber reports and the middle row shows the 
Territory-based data.   The top two reports show the two other report data: the 
Managed Care data and the District data.  The latter is of special interest to Dis-
trict Managers.  At the top of the report is a (partially blanked) title, along with 
contact information with regard to the author.  The bottom of the page provides 
a quick summary of the plots (one that was constant across all runs of these re-
ports on reports), some comments regarding what to see or note (“The managed 
care report shows substantially lower use than the other five reports.”), some 
credit to others involved in making the report possible, and a date/time stamp.  

Each of the six plots is identical in form to the others and differs only in content. 
Once we have learned to read the Monthly Territory Sales and Activity report, 
we can now read the five others.  

Being able to see all the plots on one page facilitates comparisons and con-
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trasts between the usage patterns of the different reports.  First, note that not all 
data months in all the reports show the dramatic, off-the-chart early usage.  The 
Monthly Territory Competitive Sales report  (middle left) usage has two data 
months (May and June) that show early, but not pre-May early, usage.  The 
Monthly Prescriber Managed Care Competitive Sales report (upper right) and 
the Monthly District Sales and Activity report (upper left, used exclusively by 
District Managers, those employees overseeing the field agents), show reduced 
early usage too.  Perhaps the District Managers, those in charge, are the more 
grown-up ones, playing fewer games with the calendars.  The reduced early 
usage in the Monthly Prescriber Managed Care Competitive Sales report (note 
that the cumulative usage proportions are all less than 35%) may be explained 
by its lower overall usage; with fewer people using the report, we are less likely 
to have people with wayward calendars using the report.

We also note that something is odd with the March data month for that report, 
as its usage is nil.  Later investigation revealed that this report was released in 
conjunction with the April data month version of the same report and was only 
released as a shell.

The take-up rates of the five reports we have not examined are considerably 
lower than the take-up rates for the Monthly Territory Sales and Activity report 
(middle right) that we examined in detail earlier.  Whereas the first report we 
examined reached 50% usage in approximately one week, the report below it 
(lower right) takes approximately two weeks to reach 50% saturation, with three 
weeks for the lower left, and nearly a month (or longer!) for the Monthly Terri-
tory Competitive Sales report (middle left).

Why should we see such an interaction between Us/Them (column) and summa-
rization level (Prescriber/Territory) when it comes to report usage?  The answer 
can be found by following the money.

While the company sought to improve the company’s bottom line, the field 
agents were typically just as centrally focused.  Field agents’ bonuses were 
based on their sales in their territory.  As such, the Monthly Territory Sales and 
Activity report (middle right) carried the information that was most closely a 
surrogate for the field agents’ bonus check amount.  Next closest to home was 
the data based on the individual prescribers, as these numbers could point to 
which prescribers were doing what.  Further down were the data in the lower left 
report, those data that showed what competitors’ products the prescribers were 
writing.  And last was how the competitors did on the Territory level; sometimes 
this report failed to generate 50% utilization.

Note the anomaly with the upper left report and the start of usage with the June 
and July data months.  Where the other reports suffered from the aberrant ac-
counting / arbitrary binning problem we discussed earlier, this report, due to 
the fact that it was produced through different means by a different group and 
released at a different time, suffered no similar problem.  The time series report 
of hits in a month showed no spike in August and dip in July and September.

The note at the bottom of the report discusses issues with the denominators: field 
agents come and go — getting a count is a more difficult endeavor than one 
might imagine.  As such, the number listed in the report (9238) was an estimate 
that was often contested and whose refinement was a constant work-in-progress.  
And the stated goal of 80% utilization was in constant flux.
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This report, then, shows a model for varying utilization proportions.  The data 
display is the model.  In general, in a data display, the display design param-
eters show the sources of variability: rows, columns, sort orders, subrows, sub-
columns, locations, shape, etc.  Distributions of responses (variability) can be 
connoted by location, color, item size, shape, etc.  The layout of such a model 
should be driven by its intended use and such a layout should facilitate the com-
parison of interest, typically a comparison of distributions.

Our display here shows that our model supposes the differences in utilization 
proportions are functions of report, data-month, and date of usage.  Furthermore, 
we see that the report component can be viewed as having further sub-com-
ponents of Us versus Them, Prescriber versus Territory, and the interaction of 
those components.  Utilization also depends on field agents versus managers.  

And hiding deep inside all of this is a strange and funky interaction between 
release date and day of the week and weekday/weekend and month boundaries.  

We cannot pretend that the usage data can be understood by just accounting; it’s 
more complicated than that►.

This report of the usage of the six reports can be adapted easily to use at varying 
levels of the organization.  It can be rerun on, say, a District Manager level, so 
such a manager can see what his or her field agents are doing.

Or it can be split based on the products being addressed by the field agents.  Per-
haps the field agents representing different products behave differently.

At the lowest level of detail, this report can be run all the way down to the indi-
vidual field agents and we could find out which ones are doing untoward things 
with their computers.  Zooming in on the atomic-level data while preserving 
the form will allow us truly to do analysis of the data.  Zooming all the way out 
and blurring the message in the data by computing arbitrary monthly summaries 
only covers the variation sources we are trying to expose by collecting the data 
in the first place.  The most obvious feature of the data display that the canned 
program had produced, the surge of use in August and the dips in July and Sep-
tember, had really nothing to do with the actual data themselves.  This feature 
wasn’t even a feature of the data at all; it was a consequence of the arbitrary 
binning that came from a desire to produce monthly totals in a canned database 
reporting tool.

Just because the reporting tool that comes with the database program can cut the 
data easily by monthly boundaries and produce pretty 3-D spinning hexagonal 
bar-graphs doesn’t mean that that is the right model for the data.

I have a t-shirt that I got free from Springer.  The shirt promotes the R statistical 
language and environment and contains the slogan “First plot; then model.”  I’m 
thinking that even this mantra needs to be rewritten because it ignores the most 
fundamental component of data analysis, one that is fostered and improved by 
graphic presentations of data: thinking.  The slogan should read

First Think.  Then Plot.  Then Think again.

►Edward Tufte, 2008.  “Grand truths 
about human behavior” <www.ed-
wardtufte.com/bboard/q-and-a-fetch-
msg?msg_id=0002XS> [cited 11 June 
2008].  Among the other Grand 
Truths are All the world is Multivari-
ate, Much of the world is distributed 
lognormal, Rehearsal improves perfor-
mance, and Richard Feynman’s “For 
a successful technology, reality must 
take precedence over public relations, 
for Nature cannot be fooled.”

Wanting it to be so, does not necessar-
ily make it so.
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When making comparisons, we often seek to make a comparison of dis-
tributions.  As such, we need to worry about more than just the mean 
or the median.  Plotting the raw data, the data atoms, allows us to un-

derstand the entire distribution.

A researcher approached the Biostatistics Clinic with a question regarding the 
number of narcotics prescriptions certain prescribers were writing.  In the past, 
some of the prescribers had received letters from the State telling them that Big 
Brother knew that they had been writing lots of narcotics scripts.  Some pre-
scribers got these letters, some did not.  What was the effect of this intervention 
(the letter) on the writing of narcotics prescriptions?

The data consisted of a prescriber id, a number representing the number of nar-
cotics prescriptions before the letter went out, a number of representing the num-
ber of narcotics prescriptions after the letter went out, and a flag to indicate 
whether or not that prescriber was on the list of those who were to get a letter.

The determiner for getting a letter was based on the rate of narcotics prescrip-
tions, not on a random assignment.  Therefore, getting a letter was a consequence 
of number of narcotics prescriptions: more prescriptions means you got a letter.

The data then are bivariate in nature, with a ‘before’ component and an ‘after’ 
component.  The first plot of the data was simply that scatter plot.

We have here the 
‘before’ and ‘after’ 
values as shown by 
the colored dots.  
The slanty lines 
show equality and 
10% increases and 
decreases.  If our 
data display here 
is the model, then 
we are implying 
that the number of 
narcotics scripts 
written after is a 
function of number 
of narcotics scripts 
written before, 
since we put cause 
on the horizontal 
axis and effect on 
the vertical axis.  
Plot cause versus 
effect.  

We have also lightly shaded the plotting region so as to soften the data against 
the background.  The red and blue dots contain an additional piece of informa-
tion.  The red dots are those prescribers who were on the list to get the letter, 
while the blue dots did not get a letter.  The marginal means are shown labelled 
in red and blue and their intersections are marked with the cross-hairs.  Immedi-
ately, then, we can see that the threshold for getting a letter appears to be in the 
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neighborhood of 150, although that threshold is not absolute.  We also see a ‘no 
letter’ blue dot prescriber at 400.    

But the question of interest, at least to those who were sending out the letters, 
was related to change in number of scripts, so we can change the plot to look at 
‘change’ as a function of ‘before’.

Here we have 
change as a func-
tion of before.  This 
allows us to see the  
smaller differences 
better across the 
range of the before 
values.  The mean 
changes are shown 
now along the ver-
tical axis, as 3 for 
the red group and 
9 for the blue group.  
The cross-hairs still 
mark their intersec-
tions.

The slanty lines 
have become more 
horizontal, with the 
plus and minus 10% 
lines meeting at, 
and diverging from, 
the origin.

The outliers near zero (increases in the neighborhood of 100 prescriptions!) show 
some monstrous gains that may or may not have been as evident in the previous 
plot.  A drop of nearly 75 prescriptions in the blue group is visible too.

Statisticians are certainly tempted in situations such as these to fit regression 
models, to estimate the mean value of change for a given value of before.  We 
can see from the plot that the mean change is an increase of 9 for the blues and 
an increase of 3 for the reds.  Did the letters have an effect?  Any competent 
statistician can get his or her computer to fit the regression and determine if 9 is 
significantly greater than 3.  But is that the question that we want to ask here?

The mean, as we have mentioned earlier, is a sufficient statistic for lots of well-
behaved distributions, hence its appeal as a theoretical quantity for examination.  
But real life looks like the data above.  Is the mean relevant here?  Again, mean if, 
and only if, total must carry the day here, implying that we should be interested 
in comparing, between the red and blue groups, the mean increase in narcotics 
prescriptions if and only if we are interested in the comparing the total increase 
in narcotics prescriptions between the red and blue groups.

So herein lies the rub with a study such as this one: the red group (the treated 
group) is different from the blue group (the control group) on the basis of the 
before level; those prescribers with higher before values tended to get the letter.  
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Did the letter keep some red prescribers from writing illicit prescriptions and 
flying off the charts, like those blue prescribers who went from near zero to 100?  
Can we be interested in the mean or total value for those who got letters when 
we know that letter-writing was not randomized?

Look at the data; what do you think?!?

But the point, as regards the presentation of data, is that there are more data in 
this data set, a variable I have not discussed yet.  This additional variable maps 
each prescriber into a group of like prescribers.  These different prescriber types, 
as presented in the data set, are: MD, PA, RN, LPN, NP, and DO.

The tendency is often to create six different symbols, say, crosses, hashes, open 
dots, closed dots, and whatnot, and then use those symbols to depict the different 
levels of presciber type.

Well, this certainly 
doesn’t make things 
any easier.  Regard-
less of the fact that 
I failed to provide 
a legend to tell the 
viewer which sym-
bol shows which 
group, the busyness 
of the overlapping 
symbols makes the 
plot no more valu-
able than the previ-
ous plot where all 
the symbols are the 
same.  So we will 
need to do things 
differently.

Generally, using dif-
ferent plotting sym-
bols, whether they 
be based on shape 
or color or both, to 
denote sources of variation does not work well unless there is dramatic spatial 
separation between the groups under consideration.  That is why the color-cod-
ing used to reflect the letter-getting status worked but the symbol-shape-coding 
used to reflect prescriber group failed.  Typically, color ought be used for re-
sponse variables, not design variables — but not always!

Recall that the prescriber type is a source of variation, a partition of the data set, 
a way to generate component parts that contribute to the whole.  The overall plot 
then is a plot of a mixture distribution, where the different prescriber types each 
contribute to the distribution.

We should be able then to break out these components into small multiples and 
see the individual components.  If we assign a consistent scale across the com-
ponents and revert to the simple red and blue dots, we get the following six 
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58  Fundamental StatiSticS conceptS in preSenting data

components.

Here the small multiples concept reveals its value, allowing us to see all the 
prescriber groups in comparison to one another; still, it would be nice to be able 
to compare them all to the composite mixture distribution.  We could do this by 
adding another panel to the plot or, better yet, by embedding the mixture in the 
individual panels.  We will add the missing points to each panel in a light grey, 
essentially highlighting each prescriber group and sending the comparators to 
the background, thus allowing us to make comparisons to the distribution as a 
whole.
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The point here is that we understand individuals by way of reference to a distri-
bution of like individuals.  What appears at the outset to be simply a distribution 
of prescribers is, upon closer examination, a mixture distribution.  Keeping the 
relevant background distribution in play aids in make comparisons.

We might call this concept “you are here”, with the idea being that we show a dis-
tribution of responses, of which one point, or collection of points, is highlighted.  
The improvement in understanding comes from showing these collections in a 
small multiples format and showing the individuals under consideration against 
a background of all others, thereby highlighting additional sources of variation.  
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This layering and separation, in conjuction with the small multiples splits, gives 
us more than either technique alone.

We can clean up the panels and integrate them into one complete plot.  Remov-
ing redundant labels on both the horizontal and vertical axes, creating a proper 
label for the vertical ‘change’ axis, and adding labels to the six panels so as to be 
able to tell which group is which leads to the plot below.

Of course, this is not a finished product; some work remains undone.  The labels 
are simply the labels that were found in the original data set.  We must contact 
the researcher if we are going to get the precise definitions although some ra-
tional guesses might yield Medical Doctor, Physician’s Assistant, Registered 
Nurse, Licensed Practical Nurse, Nurse Practitioner, and Doctor of Osteopathic 
Medicine.  A proper title will need to be generated and we will need to get exact 
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details about what these counts actually are.  Are they totals over a year or aver-
ages or what?  What exactly constitutes a narcotic prescription?  And who are 
these prescribers and how did they get into this data set?

Further, the grid lines and the slanty reference lines may or may not be overbear-
ing, depending upon the final printing or screen view of these plots.  An issue 
with variation in printing is that what one sees on the screen is not always what 
comes out on the paper.  Finding a solution based on the final medium of presen-
tation is never easy, certainly when the final medium is not known.

The small multiples you-are-here plot shows us that the MDs are the dominant 
group in the types of prescribers.  They also include almost all the prescribers 
who were on the list to get a letter.  One LPN, three NPs, and two DOs fill out 
the collection of letter-getters.  Notice that there are no PAs nor RNs amongst 
those being tracked by Big Brother.

Our grid of prescriber groups is artificial in its 3-by-2 construction; perhaps a 
rearrangement to 1-by-6 or 6-by-1, with a sensible ordering across those groups, 
would help the understanding.  (Our 3-by-2 grid is one of convenience to fit the 
plots onto the page.)  More discussions with the eventual users of the plot will 
be needed to answer these questions.

You-are-here can be used whenever responses are complicated by issues 
with overlapping plots.  Sharon Phillips, a colleague at Vanderbilt Uni-
versity Medical Center, offers up a draft you-are-here plot showing the 

relationship between resting metabolic rate (RMR) in kilocalories per day and 
body mass in 22 obese patients in a weight loss study as another example.

The data are serial readings across time.  There are three time points (baseline, 
6 months, 12 months) for each patient, each of which indexes a bivariate read-
ing of resting metabolic rate and body mass.  The researchers are interested in 
looking at how body mass, which is dropping over time in a weight loss study, 
impacts resting metabolic rate.

Body mass can be decomposed (analyzed!) into fat mass and fat-free, or lean,  
mass, so that the sum of the two is the overall body mass►.

Each patient, then, lives somewhere in the bivariate plane, and follows a path 
across the relationship between the two variables.  As a group, the patients con-
stitute a distribution of such paths.  A spaghetti plot of the data would do little 
to help us understand the nuances of the data atoms, although such a plot might 
demonstrate some overall patterns present in the data.

Change from baseline to 6 months is shown with the red arrow; change from 
6 months to 12 months is shown with the blue arrow.  Patients with missing data 
points will be missing some changes; as such, some patients only show raw data 
points: baseline in red, 6 months in blue, 12 months in black.  

There are two sets of plots.  The first (on the left) shows resting metabolic rate as 
a function of the fat-free mass; the second (on the right) shows RMR as a func-
tion of the fat mass.  The two sets of plots then show two different models for 
RMR, one using lean mass as a covariate, one using fat mass as a covariate.

The two models show different relationships.  Looking at the left set of plots, the 

►Technically, this isn’t true.  Body 
mass is composed of fat mass, fat-free 
mass, and the mass of the head, so 
technically, fat mass plus fat-free mass 
equals body mass minus head mass.  
For purposes of this example, however, 
we will work as if fat mass and fat-free 
mass sum to the body mass.  Es-
sentially, we are working with the 
assumptions that all these patients do 
not have heads!
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lean mass provides a consistent, positive correlation between mass and RMR.  
Patients in general show much more dramatic changes between baseline and 
6 months than they do from 6 to 12 months, as evidenced by the typically longer 
red arrows compared to the blue.  Patient 4 (top row, second from left) is some-
what of an outlier, as this patient’s blue arrow shows a dramatic uptick in the 
second half of the six months.  Other than that, the left plot shows little variation 
in the relationship between mass and RMR.

There are four patients missing all their values, as listed at the bottom of the plot.  
Patients 8, 10, and 16 are missing at least one time point.  

If this were a final version of the plot, we might soften the boundaries on all the 
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plots, or put them on a soft beige or off-white, and change the fonts to something 
more readable.  But the lesson here focuses on the nature of the you-are-here 
mentality: we understand the individual responses by comparing them to a 
distribution of like individuals.

The plot on the right shows fat mass as a predictor of RMR.  This plot shows 
dramatically greater variation both across patients, as exposed by the disparity 
in the grey background distribution, and within patients, as exposed by the stron-
ger changes between the pre- and post-6-month paths.  Putting the collection of 
plots on facing pages allows us to compare individual patients’ mass-type/RMR 
relationships.
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The explanation as to why these patients show such disparity when examined 
on the basis of fat mass and so little variation when using fat-free mass as a 
covariate centers on the understanding that the patients lean mass structures 
were highly consistent; it is when looking at these patinets’ fat masses that we 
note the differences.  The lean mass patients individually enclosed within the fat 
mass patients were very much the same!

And a note of color choices: Avoid red and green as comparators.  Color-
blindness is too common to justify the red-green contrasts.  And avoid gar-
ish color schemes; try to use subtler colors.  Remember, the goal is the expo-
sition of the distribution of the data.  Don’t drown out the data with colors that 
are too loud.
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So, why are these two plots here?  After Sharon provided me with the plots on 
the previous spread, she sent me these with the explanation that her colleagues 
agreed that softening the boundaries was a good idea but they also wanted the 
scales placed on each of the small multiples; they were worried that the readers 
would have difficulty making the comparisons without them.  <sigh.>

Compare these pages to the previous ones Sharon produced: are these focused 
on the data elements or on the residual clutter of the redundant design?  Note 
how the data are now visually crowded out, how the repetitive scale labels take 
center stage, and how our ability to understand the individual responses by com-
paring them to a distribution of like individuals is markedly limited.
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On drawing the right plot to answer the question, and asking the right 
question:  We should not expect every plot, regardless of how fancifully 
drawn, to answer all the questions we can pose to the data it presents.  

Data presentation layouts and designs should be driven by intended use.  
(Note the differences between a list of phone numbers sorted by name and a list 
of phone numbers sorted by number.)

Here are some more wonderful homework data, and some thoughts on what the 
graphs are and are not.  The original assignment:

So our student again has dutifully produced the “line graph” and we see a time 
course of Lindsey’s illness.  Note that Lindsey’s temperature peaked on Wednes-
day A.M. at 102.4.  In the interest of time, we will assume that the units are 
degrees Fahrenheit.  Note also that this time series (even with all the foibles 
surrounding the heavy gridlines, and labeling between the lines (in the spaces) 
instead of on the lines, and the temperature value of “normal” on Monday A.M., 
whatever that means) provides simply an accounting of Lindsey’s fever trends.  
To do any analysis of these data, we will need additional information, such as 
when she went to a doctor, if at all, what medications or treatments she received, 
if any, and so on.  There is variation in the data; what caused that variation?  Our 
model cannot be “time caused the variation”: time series make fine accounting 
but poor scientific models.

The question continues, however:

Of course, here we see the issue with the undefined “normal” reading on Mon-
day A.M.: how can we compute distance from normal if normal is not defined?  
This is where parents become valuable in homework, as most parents can 
help and reply that normal is 98.6.  Simple subtraction yields the distance be-
tween 102.4 (the maximum value during the sickness; why should we be using 
the maximum???) and ‘normal’: 3.8.  



principleS For conStructing Better graphicS 67

The final question demonstrates that those posing the questions do not under-
stand that the line graph does not answer all the questions:

Daddy, what’s the answer to this one?

Goodness, I’m not sure.  What do you think?

I don’t know.  All I can see is that it is highest on Wednesday A.M.  Should I put 
“in the morning”?

So the answer has to do with defining “tend to be higher”.  We could compute 
the means for morning and for afternoon.  Or we could use the maximum, or the 
minimum, or any other summary measure.

What we have, though, is a distribution of temperatures in the morning and a 
distribution of temperatures in the afternoon.  We are asked to compare these 
two distributions.

We might be tempted, as is evidenced by the doodling on the original question, 
to reduce the data to matched pairs.  Note the penciled-in hooks connecting the 
morning and afternoon data on each day and the Lower (in the morning), Higher, 
and Same designations next to each pair: three L’s, one H, and one S.  So the 
temperature tended to be higher in the afternoon (lower in the morning)?

But why the arbitrary grouping within named days?  Why not match Monday 
afternoon with Tuesday morning, and Tuesday afternoon with Wednesday morn-
ing, and so on?  If we do things that way, we get two mornings higher and two 
afternoons higher …

What we really need is a straight up comparison between morning and afternoon, 
since that’s what the question asked.  Using highly technologically ad-
vanced tools known as paper and pencil, we get a plot with morning and 
afternoon as the sources of variation; time has been taken out of consid-
eration.  (For the sticklers, we will also leave out autocorrelation.)

So I asked her which group looks higher and she circled the AM group.  
Why?  Because it had the highest point.  I thought, so be it, I’m not going 
to bias her understanding of data by telling her that people like the mean.  
Why mess up a good thing?

We could argue and discuss the merits and perils of using different sum-
maries to describe those distributions but at least we have a picture that 
compares the distributions, at least we can see about what we would be 
arguing.  She wrote:

Some of the clip-art 
on the original home-
work page.  How this 
helps the students un-
derstand graphics, or 
mathematics, or medi-
cine, or data analysis, 
or statistics is beyond 
me.  What it tells me 
is that the writers of 
this homework piece 
are not particularly 
serious about what 
they are teaching our students.

Readers might be interested to note 
that the question on drawing the line 
graph was considered to be “four light 
bulbs” in difficulty:

while the interpretation question that 
so vexed our student and her father 
was considered to be “two light bulbs” 
in difficulty: 

Go figure.
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level data.  We have layering and separation; our graphic works at several lev-
els from the individual datum level, to distributions (with the inclusion of the 
percentiles), to a grand overview.  The model-based predictors show us what is 
gained or lost when taking a modelling approach and reinforce that the exposi-
tion of the distribution, not the summaries of the distribution, is paramount.

And there is one other feature of our graphic that is either fortuitous or a conse-
quence of good design or further evidence that the author is not working with a 
full deck:  when the graphic is put together, overall it becomes a metaphor for 
the data themselves.  Is it only coincidence that the long thin bands on the plot 
resemble an arm, the original source of the data themselves?  Should the final 
design invoke an image of the original source of the data?

There is a lesson about design and planning here as well:  Design first on paper 
with a pencil and eraser; use a white board.  Think about what you want to 
do and show, not just what you can do with the standard charting icons in 
the graphing instant wizard machine.  If the tool you have doesn’t let you 
do it, get a different tool.

Most statistical software allows the user access to more fundamental drawing 
components and functions and have the facility to allow the user to operate in a 

“go here, do this” framework.  All the plots we have seen have been composed 
of simple dots, lines, boxes, and connected curves.  Once one does the computa-
tions in a statistics package, getting the information onto the page is typically 
just a matter of some simple algebra, cleverness, and programming.  More often 
than not, the static routines built into statistical software will only take you so 
far; more work will be required to get the information onto the page.

Complicated data presented as serious evidence require serious tools.  We often 
present complicated multivariate data; why do we expect that a simple pre-fab-
ricated graphing instant wizard machine will be able to give us what we want?  
Learn to use the primitive tools in the software.
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speedbump.com, 2007-08-24

This image is copyright protected.  The 
copyright owner reserves all rights.
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Calls to the call center are databased; that is, every call that comes into 
the call center has its relevant information stored: where did the call 
originate, who answered, in what category was the question, when did 

the call start, when did it stop, and so on.  Some of these calls generate “cases”; 
there is action that needs to be done after the call.  Call centers are interested 
in measuring their capabilities and oftentimes, as in this instance, the time until 
a case can be called “closed” is a metric that these centers use to grade them-
selves.

 As the consulting statistician, I was told that the leaders of the call center were 
interested in reducing the time to closure for the incoming calls.  Of course, I 
was told the mean time to closure was some number of minutes, either 2 or 20 
or 200 or something, I forget; it really doesn’t matter for this discussion.  They 
told me the mean, so naturally I asked for the raw, atomic-level data.  

They gave me the data: a printout from an SQL routine that told me, accurate to 
twenty decimal places (I am not making this up!), the mean time to closure.

No, I need the data that you used to get these means; do you have that data?

After several weeks, I was given a data set with hundreds of call durations.

Do you have the start and stop times from which you calculated these durations, 
the actual times the calls came in and when the cases were opened and closed?

After several more weeks, I finally got the data: among other things, start and 
stop times for each of the calls.  A plot of these data is at right.

The horizontal axis shows the day and time during the week when the call “came 
in” and a case was created.  Note that no calls came in on Saturday, as the call 
center was closed.  The vertical axis shows the time until the case that was gen-
erated from that call was closed.  Note that the time until closure ranges from 

“negative” to “> 90 days”.  From this distribution, the call center had been cal-
culating means as a summary measure for that distribution.  [Remember: mean 
if, and only if, total.]

The horizontal axis has been marked with two relevant time points, namely 8am 
and 8pm, the times when the permanent and contract call staff answered calls.  
From 8pm until midnight, only contract staff handled all the incoming calls.

The vertical axis is not your typical linear or logarithmic axis.  It shows continu-
ous time but the mapping becomes more compressed as time increases in an ef-
fort to avoid bunching up the atomic data ink dots in this highly, highly skewed 
distribution.  Within each band, time is uniformly spaced; however, these even-
length bands do not contain the same amount of total time.

Some observations are in order, once we can see the atomic-level data:

There is point mass at zero.  Note that this is not approximately zero, but actually 
zero.  A look at the raw data revealed that the time of closure was identical to 
the time of opening these cases.  They are not rounded to zero; they are exactly 
zero, down to the precision of the data collection device, the timeclock on the 
computers where these cases were logged.  Note that this point mass only occurs, 
however, between 8am and 8pm.
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There are values in excess of 90 days.  All these values, except the one that was 
generated late on a Sunday evening, occur between 8am and 8pm.

The non-uniform scaling of the vertical axis produces a non-uniform window 
that demonstrates the absence of any closures taking place on weekends.  Note 
that for cases that were opened late on Sunday, there are no closures in the time 
window that spans 5 to 7 days into the future.  This is because such closures 
would necessarily occur on Saturday or early on Sunday, at times when the call 
center is not in operation.

This sliding weekend effect appears to get wider as the week goes on, a con-
sequence of the unequal spacing on the vertical axis.  Cases being opened on 
Friday get closed within slightly more than 4 hours, or they don’t get closed until 
after the weekend.  As the time scale becomes more compressed, we can see day/
night differences; look, for example, at Thursday and the nearly parallel curves 
showing the case closures 4, 5, 6, and 7 days after the cases were opened.

Note that those cases that were opened late in the day on Friday (after approxi-
mately 5pm) were either closed quickly, within about 15 minutes, or were de-
layed until Sunday.  Very few cases were opened after 8pm on Friday.

Once again, our data display is the model so our model here states that case-
creation time is a source of variation in time to closure.  A lesson one can learn 
from these data is that the call center might be able to reduce its average time to 
closure simply by tinkering with the days and hours that the center is staffed.

But from a data point of view, one must be concerned with the presence of the 
negative times to closure and the point masses at zero.  I investigated these 
anomalies by tracing the data back through its sources until I found the database 
programmers huddling in the basement of the building.  After showing them the 
plot and explaining the problem, they told me why such an instance should not 
be viewed as a problem at all: the server that collected the case-open times and 
the server that collected the case-close times weren’t necessarily the same server.  
As such, because the servers weren’t necessarily sychronized, it was possible to 
have negative values sometimes.  That is ok, they said.  We usually just delete 
the negative values from the database, since we know they cannot be right.

How can one know, then, I asked, that values that are at, say, 74 seconds shouldn’t 
really be at 98 seconds because the clocks are out of sync by 24 seconds?

There is no way to tell, I was informed, because it is not possible to know which 
server is making the time stamp.  But I was assured that this wasn’t a problem 
because values of  74 seconds are possible but values of -20 seconds are not!

And what of the point mass at zero?  Surely the server synchronization problem 
didn’t explain that too?

I went to talk to the people who actually took the calls and opened and closed the 
cases.  The call reps took calls over headsets and were talking while looking up 
various pieces of information.  If a case was to be opened, that is, if the call reps 
couldn’t derive the answer in real time, then they filled out an on-screen form 
and sent it into “the system”.

But some of the senior permanent staff had figured out a trick.  Because calls 
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came fast and furiously during the day and time-on-hold and number-of-rings-
before-answering were also gradable metrics, the call reps learned to do what 
they could to keep their non-talk time to a minimum.  And this meant making 
sure the computer was ready when the calls came in and setting things up so as 
to not have to wait for the computer to respond when they needed information.

What all this meant is that the experienced permanent staff had learned to open 
up oodles of the on-screen case-open forms at the start of their shift, before their 
session of call-taking began, filling their large computer screens with empty 
case screens.  By doing so, they were avoiding a certain downtime while fielding 
calls by having these forms open, instead of waiting for the case form to open 
when they first answered the call.

They also found a way to close a case immediately upon opening it (or open it as 
it closed), so that they would get credit for resolving issues, and resolving them 
quickly, in the event that they were able to answer the question without actually 
creating a case.  So, in essence, the zero-length cases were a different kettle of 
fish altogether, an artifact not of the way cases were perceived by management 
but as a way to keep the system running, and not getting bogged down in waiting 
for the computers.

Learning that there were two different types of operators of the system, I won-
dered if operator type was a source of variation.  We can split the data, then, on 
the basis of contract or permanent staff and look at the resulting distribution of 
times to closure for each group.

For simplicity’s sake, I simply re-ran the previous plot twice, once subsetting on 
only those cases taken by the contracted staff and once subsetting on only those 
cases taken by the permanent staff.  The two re-runs are shown on the following 
spread (reduced to fit and allow for some text).
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Cases for the contract staff are on the left and cases for the permanent staff are 
on the right and the side-by-side differences are astounding.  The compelling 
distribution we saw in the last plot is really a mixture distribution from two 
highly different processes.  The process on the left shows the variance that is 
naturally in the process when one fills out the on-screen forms according to plan 
while the process on the right shows the use of the trickery of data entry on the 
part of the permanent call reps.

The left distribution shows essentially none of the zeros but all of the negatives.  
Obviously, then, there is something about the way the permanent staff are trick-
ing the system that allows them to avoid the obvious server synchronization 
problem; whether or not their non-negative times are biased by synchronization 
issues cannot be assessed.

The distribution of times to closure for the permanent staff is stunning in its 
uniformity, once the point mass is taken out of consideration.  These permanent 
staff created all but three of the cases that have dragged on for over 90 days.  

Are these two staffs behaving 
differently or are they getting 
calls of different natures?  Are 
the “tough” calls being sent more 
often to the permanent staff?  Is 
there any selection bias in whom 
gets what type of call?

Are the staffs even doing the 
same thing?  The presence of 
the point mass at zero for the 
permanent staff and the nega-
tives for the contract staff and 
the disparities in the distributions 
lead one to wonder if these are 
really the same process.  Should 
both groups really be combined 
in an effort to examine times to 
closure?

And what of the mean time for the 
total mixture distribution?  Does 
the trick employed by the perma-
nent staff carry enough weight 
to offset the impact caused by 
the over-90 days cases?  Could 
we lower the mean significantly 
(whatever that means) by just 
teaching the contract staff the 
trick with the on-screen win-
dows?  If that were enough to 
impact the mean time to closure, 
what does that say about the pro-
cess as a whole and the use of the 
mean as a summary statistic for 
measuring performance?
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A few notes on features of the plots themselves.  Note that we could have em-
ployed a you-are-here method to these plots by putting the complementary data 
points in the background of the plots.  Unfortunately, when these plots were 
made, I had not yet envisioned that idea.

The time demarcations are alternating, light-weight stripes in the background, 
improving our ability to focus on the data.  Again, like a good wait-staff, they are 
there when you need them, but essentially invisible when you don’t.

The original plots, subsets of which are shown here, included titles and credits 
and explanations like the mixture distribution, so as to provide background in-
formation that supports the data and their interpretation.

The vertical axis is neither linear nor logarithmic but a hybrid that allows us 
to deal with the point mass, the anomalies (negatives and over-90s), and the 
extreme skewness in the data.  The linear scaling between connection points 
allows us the ability to easily interpolate between the connection points if we 
need to do so.
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82  Fundamental StatiSticS conceptS in preSenting data

ing reading, as we know that time to the next reading is at least partially dictated 
by the starting reading, certainly in the case of hypoglycemia.  Regardless, we 
will plot the glucose readings as functions of the time between readings, so as to 
maintain design consistency.]

The plots of starting reading against time between and ending reading against 
time between are shown at right.

The plot of the starting glucose readings against time follows the same general 
format as the change versus time plot.  The points and lines and shading still 
mean the same thing as before with the exception of two additional reference 
lines marking 80 mg/dl and 110 mg/dl on the vertical axis.  These are consid-
ered by the investigators to be normal ranges; the investigators sought to keep 
patients within this range.  

Of note now is the difference between the mean and median values.  The skew-
ness in the data pulls the mean above the median.  This skew is also present in 
the greater distance between the 95th percentile value and the median as com-
pared to the distance between the 5th percentile value and the median.

We also see the reduced value of starting glucose values at approximately 
45 minutes, a consequence of the protocol seeking to retest hypoglycemic pa-
tients at an earlier time point.  The extra mass at that time point has a sharp 
cutoff at the 80 mg/dl line, indicating the threshold below which quick retests 
for hypoglycemia were mandated.

Careful examination of the atomic-level data reveals what is likely a detection 
limit phenomenon in the neighborhood of 10 mg/dl.  Both the start and end read-
ings show some readings all at the same distance from the horizontal axis.  What 
is the impact of such a threshold?

Note the number of individual ending data points below the hypoglycemic 
threshold value of 80 mg/dl.  While one might argue that it is only approxi-
mately 5% of the total, with over 50,000 data points, 5% is over 2500 individual 
data.  So that means we have records of 2500 hypoglycemic events.

While the mean, if not within the normal 80-110 range, is certainly close to being 
considered normal, the variation is dramatic.  The raw number of hypo- and hy-
perglycemic events is staggering.  What we see, as we have seen before, is that 
the mean is not the distribution.  As statisticians, we are called to understand the 
distribution, not just the mean.  Nothing makes this more evident than actually 
seeing the distribution.  While this protocol keeps the average near the normal 
range, keeping the distribution within the normal range is a more difficult task.  
I can put my feet in the oven and my head in the freezer and on average have a 
normal body temperature, but that hardly implies that I am comfortable.



principleS For conStructing Better graphicS 83

Time between readings (hours)

S
ta

rti
ng

 g
lu

co
se

 re
ad

in
g

0
50

10
0

15
0

20
0

25
0

30
0

0 1 2 3 4 5 6 7 8

Time between readings (hours)

E
nd

in
g 

gl
uc

os
e 

re
ad

in
g

0
50

10
0

15
0

20
0

25
0

30
0

0 1 2 3 4 5 6 7 8
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In the surgical intensive care unit (SICU), one issue is the amount of nutrition 
each patient there receives relative to the amount that the caregivers desire 
for the patient. This “amount of nutrition” is typically expressed as a “per-

cent of goal”. Ideally, the physicians would like all the patients at some minimal 
amount of nutrition but other factors, such as swelling or infection or whatnot, 
can hamper this effort.

I was presented with a collection of data that gave, for each of the first 14 days 
since start of stay in the SICU, the “percent of goal” for each patient. Several 
dozen patients have data in this col-
lection. Some have data on just one 
day; some have data on almost all 
the days; there is not a consistent 
number of patients on any given 
day. The goal here is to talk about 
the presentation of data and the im-
pact of summary measures.

This first plot shows the median 
percent of goal for each of the first 
14 days. One can see rather variable 
median percents of goal over the 
first 4 or 5 days, followed by a gen-
eral, but not monotonic, rise in the 
percent of goal over the last week. 
On day 14, the median percent of 
goal is 90%, perhaps an indication 
that all is well. After all, the median 
percent of goal is nearly 100%, so 
we must be doing well, right?

The second plot adds to the medians the 10th and 90th percentile points. Now 
we see evidence of the distribution of the percents of goal. None of us would 
admit now that we didn’t realize that there just had to be spread in the data; we 
probably just didn’t realize how big 
it could be.

But recall that the median is the 
point where 50% of the data lie on 
each side; as such, having, even at 
day 14, a median of 90% implies 
that 50% of the patients who have 
data that day have a percent of goal 
that is less than 90%. How much 
less than 90%? Well, the 10th per-
centile is about 20% of goal. Yikes. 
Even though the median is 90%, 1 
in 10 patients is getting less than 
20% of what he or she should re-
ceive on day 14.

And compare days 1 and 2: real 
high then real low. That seems per-
haps like odd behavior. Perhaps 
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more digging is needed.

The third plot adds all the actual data points to the summaries that have just been 
discussed. The points have been horizontally “jittered” slightly so that identical 
values don’t obscure each other. All sorts of discoveries are available now to 
those who will take the effort to look:

Day 1 has only two data. Perhaps the median and the 10th and 90th percentiles 
(however they may be estimated from a sample of size 2) aren’t very good sum-
mary measures. In fact, on day 1 we have three summary measures to show only 
two data. Goodness. That’s just silly.

Day 2 has a whole bundle of data from 10% to 40% of goal.

The minimum on day 14 is a lowly 10% while more than 50% of the points are 
above 90% of goal.

On day 10, two patients actually have values above 100%, and there is also a 
datum over 100% on day 11.

There is a growing proportion of patients who have 100% of goal achieved as 
the study goes on.

All of these discoveries are available once we view the data on the atomic level; 
we have done data analysis. Investigation of these peculiarities of the data is 
perhaps the fundamental component of data analysis. We reveal the anomalies 
in the data through analysis, the study of the component parts.
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86  Fundamental StatiSticS conceptS in preSenting data

Some other miscellaneous plots, with various features that can be de-
scribed:

The data display is the model.  Note that the shape of the bivariate 
density changes with changing values of the parameters.  What we see 
in the plot is a consequence of the changing levels of the parameters.  
The model for understanding the density then is described by the lay-
out.

On the next spread, the data themselves show us a Cochran-Mantel-
Haenszel test.  The differing baseline levels are the strata, summing 
up to produce the distribution at the top.  The distribution at the top is 
decomposed into sources of variation due to treatment, baseline, and 
remission status. 
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zero mean are uniform although conditional densities need not be so.  Power to detect means of 0.2 and 0.8 is approximately 7% and 20%, respectively. 
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90  Fundamental StatiSticS conceptS in preSenting data

Estimates and confidence intervals for patients grouped by reason for treatment 
(Hirshsprungs, Large Intestinal Atresia, etc.) and two different time frames 
(Then and Now).  Note the missing mortality data for one of the time frames.
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Times series make for fine accounting but are not models that improve under-
standing unless auxiliary data are added.
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Insulin rate versus change in blood glucose for 64 ICU patients.  Red dots are 
values that fell out of range, arrow direction shows high or low.  Black values 
are values that were augmented with dextrose.  Blue values are values that fell 
within normal range.  Eight-digit number is patient identifier, two digit number 
is slope of simple linear regression (mg/dl/insulin-unit), showing how far blood 
glucose changed per unit dose of insulin.  Patients are sorted by increasing slope.  
Horizontal reference line shows zero change.
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94  Fundamental StatiSticS conceptS in preSenting data

Distribution of number of prescriptions per prescriber over a two-year period for 
four vendors of prescription data.  Note how Vendor C looks different and has no 
data on odd values of the support set; only even numbers are present.  Further in-
spection of the data on an atomic level revealed duplicated data in the database.

Number of prescriptions per patient.  Note the double data for “AdvancePCS”.
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What summary statistic should be used to index these data?  At least the authors 
have allowed us to agree or disagree with their choice of the Pearson correlation 
p-value coefficient and have shown us the data.



96  Fundamental StatiSticS conceptS in preSenting data
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This plot shows the distribution of tibial arterial calcification (TAC) scores for 
patients in differing Rutherford categories, a measure of limb ischemia.  Pa-
tients with no limb ischemia are in group 0 while those with the greatest level of 
ischemia are in group 6.  Individual patients are shown as individual dots, with 
box and whisker plots that display the median, 25th, 75th, 10th, and 90th percentile 
estimates, summarizing the distribution of the nonzero TAC scores.  One hun-
dred twenty-three patients have a zero TAC score in Rutherford category 0, with 
fourteen in category 1-2, five in category 3-4, and none in category 5-6.  As the 
Rutherford category increases, two effects are seen: the proportion of patients 
with nonzero values increases and the overall level of the TAC score increas-
es.  This mixture distribution of the TAC scores has an impact on the eventual 
analysis and modeling of the TAC scores, as standard methodologies must be 
modified to deal with the complexities in the distributions.  Note the violation of 
summarization across a source of variation principle with the collapsing of the 
Rutherford categories from 7 levels to 4 levels.  The presentation using the non-
collapsed data was not quite as pretty or simple, as it show increases that were 
not as uniform.  “It will be difficult for the doctors who read it to understand,” 
said the investigator, himself an M.D.  Why should we expect data from highly 
complicated biological processes to be simple and easy to understand?

On the opposing spread, a similar plot with a different rendering of the box-and-
whisker plots, probably preferred due to its quieter nature, softer presentation, 
and stronger focus on the data themselves, except that the author accidentally 
hid median lines in the boxes!
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Tufte presents six Principles of Analytical Design in a so-named chapter 
in Beautiful Evidence.  They are worthy of exposition here, if only to en-
tice the reader to obtain Tufte’s fourth book and read of them fully.  He 

discusses and describes them in detail when discussing Minard’s map of Na-
polean’s Russian campaign during 1812.

Here are his Principles of Analytical Design, which may or may not be Funda-
mental Statistical Concepts in Presenting Data.  Regardless, the idea of analysis, 
as we have seen, is to understand the whole by decomposing into component 
parts.  As such, these analytical design principles should be in play when we 
consider what statistical principles we seek to employ. 

Principle 1: Show comparisons, contrasts, differences.

Principle 2: Show causality, mechanism, structure, explanation.

Principle 3: Show multivariate data; that is, show more than 1 or 2 variables.

Principle 4: Completely integrate words, numbers, images, diagrams.

Principle 5: Thoroughly describe the evidence.  Provide a detailed title, indicate 
the authors and sponsors, document the data sources, show complete measure-
ment scales, point out relevant issues.

Principle 6: Analytical presentations ultimately stand or fall depending on the 
quality, relevance, and integrity of their content.
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More on the blood-splatter plot.  Below is the original change in glucose by time 
between readings plot, just the raw data atoms, no summaries.  At right are two 
collections of small multiples, partitioning the grand plot below into a number 
of groups based on a covariate.  Each panel in the small multiples plot shows 
the distribution along with the mean time and change value in blue (numbers are 
located at their value) and percentiles of the distribution shown by the dark lines 
overlaying the red dots.

The collection on top splits on the basis of the amount of insulin given during 
the interval, rounded to the nearest unit.  The collection on the bottom splits on 
the “multiplier”, a parameter computed at each interval as part of the updating 
algorithm.

Note that the top plots show that insulin level is a source of variation in the 
change value, as the distribution moves down as the values of insulin move up.  
In contrast, the lower plots show little to no difference in change values as the 
multiplier changes.

Note also the covariance between the covariate and time: as the covariate value 
increases, the time between readings decreases.
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Notes


