
Embedding R within the Apache Web Server:

What’s the Use?

Jeffrey Horner

Abstract

The Apache web server is robust, scalable, and extensible. It is by far
one of the most well-known, widely used and tested Open Source projects.
With the 2.0 release came a powerful, enhanced module API that includes
managing all stages of an HTTP request, an API for programming multi-
processing modules (MPM), and new infrastructure to support serving
multiple protocols, not just HTTP. Many popular scripting/interpreted
languages such as Perl, Python, Ruby, and PHP have been implemented as
Apache modules with great success. Applications utilizing these modules
can be classified in two ways: those that serve dynamic content to web
browsers, and those that serve dynamic content to other applications, e.g.
web services.

This paper discusses the use of embedding R within the Apache web
server. I will show how R users utilize the embedded R interpreter to
create useful applications, both for web browsers and as web services.
Further, I will compare this approach with other R projects involved in
networked interfaces to R.

1 Introduction

The purpose of embedding a programming language inside the Apache 2.0 web
server is the ability to write web applications in a programmer’s language of
choice. Some languages have lots of code libraries, like Perl and Python. Others
were literally invented for programming web applications, like PHP. Still others
are claimed as the ”next best thing since sliced bread...” for web applications,
such as Ruby on Rails. Regardless, choice is good.

But what about R? Are there any good reasons why a statistical language
should be embedded into Apache 2.0? Perl [7], Python [6][9], and PHP[8] in-
terface to R by linking to the R shared library. Ruby[14] has one in the works.
One could use any of these to write a web application and then interface with R
at the language level. However, one would have to know the language. Writing
a web application in R allows statisticians to use a language they are familiar
with, and eliminates the overhead of embedding the interface language run-time
engine.

The R/Apache Integration project[5] was created to embed the R interpreter
inside the Apache 2.0 web. It is composed of two parts. mod R is the Apache

1



2.0 module that embeds the R interpreter, and RApache is the R package that
interfaces R with Apache internals. The following discussion shows its use.
Section 2 will lay out the R/Apache architecture, section 3 will explain how to
write web applications with R/Apache, section 4 will discuss related works, and
section 5 will conclude with some comments on future directions for the project.

2 Architecture

With version 2.0, the Apache developers created a highly customizable and
portable software infrastructure[2]. Nearly every aspect of the web server is
implemented as a module. Multi-processing modules (MPM) [3] were intro-
duced to harness computer architecture dependent processing efficiencies. For
instance, while forking a process on UNIX operating systems is cheap, this is
not the case for Windows. Rather, threads are used for handling web requests
and the ability to re-use sockets is also exploited. The mod R module handles
HTTP requests by handing them to the embedded R interpreter.

Porting Apache to various hardware architectures gave rise to the Apache
Portable Runtime (APR) libraries [13]. APR functions range from memory
management, file and directory management, network IO, to support for hash
tables and string tables.

One important aspect of web application programming is the manipulation
of the request data (or CGI data). This functionality is currently missing from
the Apache 2.0 API and the APR, but is in fact managed in a sub-project,
the libapreq2 library [11]. The RApache R package depends on libapreq2 to
manage all the heavy lifting of the request data, so it will come bundled in the
R/Apache source distribution until it’s rolled into the API.

The following sections discuss where the mod R module fits in with the
MPM’s and how the RApache packages takes advantage of APR and libapreq2.

2.1 Multi-Processing Modules

MPM’s deal with making sure there are enough processes or threads laying idle
to handle incoming web requests. They generally start one parent process and
manage a collection of child processes, threads, or a combination of both. Figure
1 lists the four major MPM’s currently supported by Apache 2.0.

The Worker, Perchild, and WinNT MPM’s all implement threads in some
way. Thus, they are currently unsuitable for embedding R. Worker starts one
parent process which starts a variable number of children. Each child starts a
listener thread and a fixed number of worker threads. As a web request comes it,
one child process will respond. The listener thread dispatches the request to one
of the worker threads. Worker’s advantage is that it can scale rather quickly
since one additional child can handle multiple requests. The disadvantage is
that if one thread dies, the entire process dies, potentially taking down worker
threads actively processing requests.

2



The Perchild MPM starts one parent process and a fixed number of child
processes. Each child will start any number of worker threads as load dictates.
The advantage of Perchild is that collections of children can be assigned a par-
ticular operating system user id. This is useful in virtual server environments
where user specific data must not be seen across server boundaries, i.e. outside
of the child process. The disadvantage is similar to Worker’s, the potential of
losing connections at a fast clip because of just one thread dying. Imagine if one
virtual server had one dedicated child. If it goes down, all connections to the
server are dropped until the parent process successfully starts another child.

The three previous MPMs all work on various UNIX style operating systems,
but Windows gets an MPM all its own, WinNT. As mentioned above, Windows
processes are heavy-weight, meaning they are costly to spawn. Thus the WinNT
parent process starts only one child process with many, many threads.

Parent

Children

Perchild

Parent

Child

WinNT
Parent

Children

Worker

Parent

R R R

Children

Prefork

Figure 1: Apache 2.0 Multi-Processing Modules.

The Prefork MPM implements one parent process managing a collection of
child processes; no threads are involved. It is functionally equivalent to the
original Apache 1.3 architecture, and it is also the MPM needed to run mod R.
As web requests come in, one child is chosen to serve the request, and the
others are kept idle. The parent always keeps around a few idle children to
manage potential load spikes. Thus, preforking hides the cost of forking new
child processes which must potentially initialize language interpreters, as is the
case for mod R.

2.2 The mod R Module

When Apache is built from source files, one MPM is chosen to be statically
compiled into the server. Any number of other types of modules can either
be statically compiled into the server or loaded dynamically at runtime. This
discussion presumes that the mod R module will be loaded at runtime. Consider
the following Apache configuration as it pertains to mod R (refer to [12] for a

3



detailed explanation of the Apache 2.0 configuration files):

LoadModule R_module /usr/lib/apache2/modules/mod_R.so

<Location /test/R>
SetHandler r-handler
Rlibrary GDD
Rsource /var/www/html/test.R
RreqHandler handler

</Location>

To paraphrase the above, the web server first loads the mod R module lo-
cated at /usr/lib/apache2/modules/mod_R.so, looks for the special module
structure variable R_module, and uses it to initialize the embedded R interpreter.
Then, on the first incoming HTTP request for http://localhost/test/R,
mod R will execute:

library("GDD")
source("/var/www/html/test.R")
handler(r)

and on subsequent requests it will execute handler(r) only. The special
request record variable r is described later in section 2.3.

Apache gives each module a chance to handle all incoming requests, even
if the modules has not been configured to do so. The SetHandler Apache
directive can be used to tag requests with a string value. Thus, for all incoming
requests mod R will check if the handler tag is set to r-handler and handle it.
Otherwise it declines.

The mod R directives Rsource and Rlibrary are used to load R code into
the embedded R interpreter. As described above, the code is not loaded until
the first request comes in. This allows the server to start up quickly and to
spawn new children quickly as server load increases. The disadvantage is that a
developer may not know until request time if her/his code contains any errors.
Each directive must appear only once within any <Location> or <Directory>
directive. This restriction may change in future versions.

The mod R directive RreqHandler specifies an R function to use for handling
requests. The function should be defined in one of the files or packages loaded
by the directives above. Otherwise, mod R won’t know about it. It also must
appear only once within any <Location> or <Directory> directive.

Another important component of the Apache module design, and a free
benefit to mod R, is its use of APR’s memory pools. The APR implements a
crafty memory management scheme around the idea of a pool of memory. When
the pool is destroyed, all the memory ever allocated out of it is also destroyed,
or free()’d. This is important as it relates to request processing. Each request
that comes in is attached to a new memory pool. Once the request has been
handled, the request is destroyed along with its pool, warding off any memory
leaks that could potentially happen.

4



2.3 The RApache Package

Once mod R has handed off the request to a function like handler(), the RA-
pache package takes charge of Apache related data and tasks. Since it is so essen-
tial, mod R implicitly loads it, thus one never needs to call library(RApache).

The function handler takes one argument, an RApache request record based
on the Apache structure request_rec. It contains everything a programmer
needs to know about the incoming HTTP request. RApache implements the
request record as an R external pointer of class ra_request_rec and is treated
similarly to an R list. Each list element is a character vector of length one; the
values are described later. Both the $ and [[ indexing operators are available,
however partial completion of element names is not performed. Many of the
elements are simple types, either character vectors, integer vectors, or POSIXct
objects, all of length one. Other elements such as headers_in and headers_out
are of type apr_table.

The APR provides the apr table type, which RApache implements as an R
external pointer. It is also treated similarly to an R list whose elements and
values are character vectors. The $ and [[ indexing operators are also available
and again, partial completion of element names is not performed. Dispatch-
ing is done S3 style on the class attribute apr_table, and each element of an
apr_table is case-insensitive.

RApache also relies on libapreq2 for parsing CGI data, which is built on the
APR. This includes parsers for GET arguments, POST data (which includes
multipart/mixed and application/x-www-form-urlencoded encodings), and
HTTP Cookie headers. libapreq2 turns each of these data points into variables
of type apr_table, which RApache in turn converts into R external pointer
types for R consumption.

3 Application Design

Writing web applications with mod R and RApache is best summed up in the
hello world example:

handler <- function(r){
apache.write(r,"<h1>Hello World!</h1>")
OK

}

which produces the output in Figure 2.
The author presumes the reader has a basic understanding of web application

development and HTTP request and response messages. Please see [1] for a
beginner’s style introduction to HTTP or see [4] for the HTTP 1.1 specification.

The hello world example illuminates three key parts of mod R and RApache
web applications:

• it is defined by an R function which takes one argument, the RApache
request record,

5



Figure 2: Output of hello world handler.

• it utilizes the RApache package functions, such as apache.write(),

• and it returns a value from the available set of RApache return codes.

One can write pretty sophisticated web applications with the current version
of mod R and RApache, far beyond the hello world example. The APPENDIX
provides two other example handlers for the reader to peruse, with source code
and output screen shots.

3.1 The RApache request record

As stated in the previous section, the RApache request record contains every-
thing a programmer needs or wants to know about the incoming request. Its
list elements are:

headers_in: An object of class apr_table containing all the HTTP headers
sent by the client.

headers_out: An object of class apr_table containing all the HTTP headers
to send to the client.

err_headers_out: object of class apr_table containing headers to be sent
when an error occurs; they persist across internal redirects.

proto_num: Integer. Protocol version number of protocol; 1.1 = 1001.

protocol: Character. Protocol string, as given to us, or HTTP/0.9.

unparsed_uri: Character. The URI without any parsing performed.

uri: Character. The path portion of the URI.

canonical_filename: Character. The true filename, we canonicalize r$filename
if these don’t match.

6



path_info: Character. The PATH INFO extracted from this request.

args: Character. The QUERY ARGS extracted from this request.

content_type:Character. The content-type for the current request.

handler: Character. Should always be r-handler. The handler string that we
use to call a handler function.

content_encoding: Character. How to encode the data.

range: Character. The Range: header.

hostname: Character. The server hostname.

user: Character. If an authentication check was made, this gets set to the
user name.

header_only: Logical. HEAD request, as opposed to GET.

no_cache: Logical. This response can not be cached.

no_local_copy: Logical. There is no local copy of this response.

status: Integer. Status line.

method_number: Integer. M GET, M POST, etc. See the RApache documen-
tation for more details.

eos_sent: Logical. A flag to determine if the eos bucket has been sent yet.

the_request: Character. First line of the request.

method: Character. Request method (eg. GET, HEAD, POST, etc.)

status_line: Character. Status line, if set by script.

bytes_sent: Numeric. Number of bytes sent.

clength: Numeric. The ”real” content length.

remaining: Numeric. Remaining bytes left to read from the request body.

read_length: Numeric. Number of bytes that have been read from the request
body.

request_time: POSIXct DateTime object. Time when the request started.

mtime: POSIXct DateTime object. Last modified time of the requested re-
source.

7



3.2 RApache package functions

These functions implement the basics of reading and writing HTTP request and
response messages. See [5] for more complete documentation.

apache.read and apache.readline: These two functions are used to read
in the HTTP request data. They are useful for constructing web service style
applications which consume their messages as XML documents.

apache.get_post and apache.get_uploads: These two functions are also
used to read in the HTTP request data. However, they rely on libapreq2 to take
control and parse the entire incoming request data, so they cannot be used if
apache.read or apache.readline were already called. apache.get_post will
return all the HTTP POST form data as an object of type apr_table, explained
previously. apache.uploads returns an R list of all the files uploaded when
the POST data was encoded as multipart/form-data. Each list element is
itself a list containing the original name of the uploaded file and the temporary
location on the server where the file was uploaded. Programmers can then copy
that temporary file to their desired location since it will be deleted when the
request has been processed.

apache.write: Write data to the outgoing HTTP response message, i.e. the
browser.

apache.get_args: This function also uses libapreq2 to parse the HTTP GET
data. The return value is an object of class apr_table.

apache.get_cookies and apache.add_cookies: Functions for getting and
setting HTTP cookies.

apache.add_header: Adds headers to the HTTP response message.
apache.log_error: Writes messages to the Apache configured error log file.
apache.set_content_type: Sets the content type.

3.3 RApache return codes

Every handler must end by returning an RApache return code from one of two
sets. The first set is related to how the handler actually handles the request.
They are:

DONE The handler has completely handled the HTTP request, and no other
Apache internal request phases should alter it.

DECLINED The handler decided not to do anything to the request, thus
Apache will satisfy it in some other way.

OK The handler has done its part with the request, and it’s okay for Apache to
send it on to the other request phases. In general, handlers should return
this code.

The second set of codes are the actual valid HTTP response codes. See [4]
for more information. They are:

8



HTTP_ACCEPTED HTTP_NOT_IMPLEMENTED
HTTP_BAD_GATEWAY HTTP_NOT_MODIFIED
HTTP_BAD_REQUEST HTTP_OK
HTTP_CONFLICT HTTP_PARTIAL_CONTENT
HTTP_CONTINUE HTTP_PAYMENT_REQUIRED
HTTP_CREATED HTTP_PRECONDITION_FAILED
HTTP_EXPECTATION_FAILED HTTP_PROCESSING
HTTP_FAILED_DEPENDENCY HTTP_PROXY_AUTHENTICATION_REQUIRED
HTTP_FORBIDDEN HTTP_RANGE_NOT_SATISFIABLE
HTTP_GATEWAY_TIME_OUT HTTP_REQUEST_ENTITY_TOO_LARGE
HTTP_GONE HTTP_REQUEST_TIME_OUT
HTTP_INSUFFICIENT_STORAGE HTTP_REQUEST_URI_TOO_LARGE
HTTP_INTERNAL_SERVER_ERROR HTTP_RESET_CONTENT
HTTP_LENGTH_REQUIRED HTTP_SEE_OTHER
HTTP_LOCKED HTTP_SERVICE_UNAVAILABLE
HTTP_METHOD_NOT_ALLOWED HTTP_SWITCHING_PROTOCOLS
HTTP_MOVED_PERMANENTLY HTTP_TEMPORARY_REDIRECT
HTTP_MOVED_TEMPORARILY HTTP_UNAUTHORIZED
HTTP_MULTIPLE_CHOICES HTTP_UNPROCESSABLE_ENTITY
HTTP_MULTI_STATUS HTTP_UNSUPPORTED_MEDIA_TYPE
HTTP_NO_CONTENT HTTP_UPGRADE_REQUIRED
HTTP_NON_AUTHORITATIVE HTTP_USE_PROXY
HTTP_NOT_ACCEPTABLE HTTP_VARIANT_ALSO_VARIES
HTTP_NOT_EXTENDED HTTP_VERSION_NOT_SUPPORTED
HTTP_NOT_FOUND

3.4 The State Problem

One caveat to programming with mod R and RApache is the fact that no data
are shared between the multiple instances of R interpreters embedded in each
Apache process. This caveat exists in other embedded languages as well. For
instance, if one handler stuffs R variables into the R Global Environment during
one web request, depending on which Apache process is chosen, that variable
may or may not exist upon the next web request.

Using HTTP Cookie headers or HTTP GET variables solves this problem
for small amounts of data, and while there are solutions for storing and re-
trieving larger datasets, concurrency issues must be addressed. Using SQL
Databases provides one solution, but some statistical data sets are not amenable
to database storage. Another solution is to use the R functions load and save,
or similar functions that read data from a file or connection, however one or
more web requests accessing or storing the file at the same time may cause
corruption.

The author intends to research this problem for future versions of mod R
and RApache.

9



4 Related Works

4.1 RSOAP

RSOAP is part of the larger project RStatServer [17], which utilizes RSOAP on
the back end to provide a total statistical web application experience. RSOAP
is a web server of sorts that provides an XML SOAP interface to R. Web clients
must construct and consume SOAP encoded messages. RSOAP does not exhibit
the state problem of mod R. When a new web client connects, RSOAP spawns
a new process that handles each and every client request.

RSOAP is best used as a web services style interface to R, while mod R is
more general purpose. With the RApache package, programmers can construct
either traditional style web applications for web browsers or web services style
applications like RSOAP.

4.2 RServe

Rserve provides an interface to R using the traditional client/server paradigm.
Clients written in either Java or C/C++ communicate with an Rserve server
via a custom protocol built on top of TCP/IP. Clients need not worry about
initializing an R session or linking to the R library. Like RSOAP, it forks a new
process for each new client connection, thus the state problem is mitigated.

In order to utilize Rserve in a web application, one must deploy a Java
application server such as Tomcat or JBoss, or write CGI programs in C/C++.

4.3 Other Related Works

There are several other projects related to web programming with R. They are:

• CGIwithR
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/firth/software/cgiwithr/
Allows files containing R code to be treated as CGI scripts. Each HTTP
request must start a new R interpreter.

• R PHP Online
http://steve-chen.net/R PHP/
Allows R code to be submitted to a PHP script which in turn executes
the R interpreter. Each HTTP request must start a new R interpreter.

• Rho
http://www.rho-project.org/
A web-based Java framework for R analysis.

• Rpad
http://www.rpad.org/Rpad/
A web based analysis program. Users interact with R through a cus-
tomized web page. For single user intractive use, a TCL web server is

10



used. Multi-user web based support is available via a Perl interface either
on Apache or IIS. One R interpreter is created to serve all requests.

• Rweb
http://www.math.montana.edu/Rweb
A set of Perl CGI scripts to facilitate a web based interface to R. Again,
each request must start a new R interpreter.

5 Conclusion and Future Work

In its current state, the R/Apache project offers a complete framework for cre-
ating many CGI style and web services style applications written exclusively
in R. No interface language or decoupled networked interface to R is needed.
Also, R/Apache could allow projects like Rserve[15] and RSOAP[17] to leverage
Apache’s very robust and stable networking code base which includes support
for multi-processing modules and even custom protocols.

The first area that can use some exploration is how to maintain state in the
R/Apache framework. One avenue that looks promising is the use of the mem-
cached project (http://www.danga.com/memcached/), a distributed memory
object caching system. This has been used successfully in large web applications
to decrease database load by caching information related to state management.
It’s conceivable that R objects may be stored and retrieved from a memcached
server. Another option is to write a custom Apache MPM based on Prefork
that implements sessions. A session would allow a web client to communicate
exclusively with the same Apache child on each request, allowing for state to be
maintained for the duration of the session. Other areas to explore are database
and file connections.

References

[1] Http: From wikipedia, the free encyclopedia. URL
http://en.wikipedia.org/wiki/HTTP.

[2] Ryan B. Bloom. Apache Server 2.0: The Complete Reference. McGraw-
Hill/Osborne, Berkeley, California, 2002.

[3] Ryan B. Bloom. Multi-Processing Modules, chapter 7, pages 129–160. In
[2], 2002.

[4] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Mas-
inter, Paul Leach, and Tim Berners-Lee. IETF RFC 2616: Hyper-
text transfer protocol – HTTP/1.1. Web Page, June 1999. URL
http://www.ietf.org/rfc/rfc2616.txt.

[5] Jeffrey Horner. The R/apache integration project, 2005. URL
http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/ApacheRproject.

11



[6] Duncan Temple Lang. R/splus-python interface, 2004. URL
http://www.omegahat.org/RSPython/.

[7] Duncan Temple Lang. The R/splus - perl interface, 2005. URL
http://www.omegahat.org/RSPerl/.

[8] Dieter Menne. phpserialize: Serialize R to php associative array, 2005. URL
http://cran.r-project.org/src/contrib/Descriptions/phpSerialize.html.

[9] Walter Moreira and Gregory R. Warnes. Rpy (R from python), 2005. URL
http://rpy.sourceforge.net/.

[10] Francois Pinard. Nrart newton-raphson art. URL
http://pinard.progiciels-bpi.ca/plaisirs/animations/NRart/NRart.html.

[11] Apache HTTP Server Project. Apache http request library. URL
http://httpd.apache.org/apreq/.

[12] Apache HTTP Server Project. Apache http server version 2.0 documenta-
tion. URL http://httpd.apache.org/docs/2.0/.

[13] Apache HTTP Server Project. Apache portable runtime project. URL
http://apr.apache.org.

[14] Kaspar Schiess. R 4 ruby library, 2004. URL
http://r4ruby.rubyforge.org/wiki/wiki.pl.

[15] Simon Urbanek. Rserve – a fast way to provide R func-
tionality to applications. In Kurt Hornik and Friedrich
Leisch, editors, DSC 2003 Proceedings of the 3rd International
Workshop on Distributed Statistical Computing, 2003. URL
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.

[16] Simon Urbanek. Gdd: R package, 2004. URL
http://www.rosuda.org/R/GDD/.

[17] Gregory R. Warnes. Rstatserver project. URL
http://research.warnes.net/projects/RStatServer/.

12



APPENDIX

A: The Test handler

This handler shows a more complete example of how to utilize the RApache
functions to construct web applications:

handler <- function(r)

{

# Grab all incoming HTTP request data

args <- apache.get_args(r)

post <- apache.get_post(r)

cookies <- apache.get_cookies(r)

uploads <- apache.get_uploads(r)

# Test if the GET variable called was set

called <- if(length(args$called))

as.integer(args$called) + 1

else

called <- 1

# Set a cookie with the incremented called value.

# expires in 100 seconds.

apache.add_cookie(r, "called", called, expires=Sys.time()+100)

apache.write(r,"<HTML><BODY><H1>Hello from mod_R</H1>")

# Write out the form for capturing GET,POST, and file uploads

apache.write(r,

’<form enctype=multipart/form-data method=POST action="/test/R?called=’,

called,’">’,

sep="")

apache.write(r,

’Enter a string: <input type=text name=name value="’,

post$name,’"><br>’,

sep="")

apache.write(r,

’Enter another string: <input type=text name=name value="’,

post$name,’"><br>’,

sep="")

apache.write(r,

’Upload a file: <input type=file name=file><br>’)

apache.write(r,"<input type=submit name=Submit>")

# Now write out everything we saw

apache.write(r,’<hr>’)

apache.write(r,"<h2>Args variables</h2>")

apache.write(r,as.html(args));

apache.write(r,"<h2>Post variables</h2>")

apache.write(r,as.html(post))

13



apache.write(r,"<h2>Cookies</h2>")

apache.write(r,as.html(cookies))

apache.write(r,"<h2>File Uploads</h2>")

apache.write(r,as.html(uploads))

apache.write(r,"<h2>Request Record</h2>")

apache.write(r,as.html(r))

apache.write(r,"</BODY></HTML>")

OK

}

The output spans Figure 3 and 4.

14



B: The GD/NRart handler

Here’s another handler: an example of how mod R and RApache can produce
dynamic plots. Unfortunately, it requires a custom modification to the R pack-
age GDD [16]. It also uses NRart [10].

library(GDD)

library(NRart)

r2 <- function(r)

{

step <- 2

args <- apache.get_args(r)

if(length(args$t)){

pstep <- as.integer(args$t)

if (pstep > step && pstep < 121)

step <- pstep;

}

apache.set_content_type(r,"image/png")

GDD(ctx=apache.gdlib_ioctx(r),w=500,h=500,type="png")

nr.movie(x^3 + .28 * tan(x + t) + cos(x + 2*t)*.3i - 0.7,

’t’, seq(0, pi, length=121)[step],

extent=1, steps=3, points=400,

col=rainbow(256), zlim=c(-pi, pi))

dev.off()

OK

}

The Apache configuration file looks like this:

<Location /dynamic/plot.png>
SetHandler r-handler
Rsource /home/hornerjr/R_MODULE/mod_R/test/test2.R
RreqHandler r2

</Location>

See Figure 5 to view the output.

15



Figure 3: Top part of output from the test handler.

16



Figure 4: Bottom part of output from the test handler.17



Figure 5: Output from GDD/NRart handler.

18


