
Paper 10

Taming the Chaos: Managing Large SAS/AF Applications Using Programming
Standards and the Source Control Manager of Version 7 of the SAS System

C. Michael Whitney, Motorola, Austin, TX

ABSTRACT
The use of programming teams offers both advantages and
disadvantages when compared with individual programming
efforts. The team approach allows a wide range of programming
skills and problem-solving perspectives to be applied to a project,
and may shorten development time. On the other hand, team-
developed projects are often marred by differences in
programming styles among developers, resulting in
inconsistencies in the use of variable names, levels of
documentation, and user interface design. Further, without some
form of code management, the risk of inadvertently overwriting
the work of other team members is always present. All of
potential problems can make development and maintenance a
chaotic and frustrating experience.

This paper will discuss how these problems can be minimized, if
not eliminated, by applying some basic programming standards,
and by making use of the new Source Code Management system
that has been released with SAS version 7.

SAS products discussed in this paper include SAS/AF, SCL, and
the Source Control Manager (SCM). The coding practices
discussed in this article are applicable to all versions of the SAS
System, on all platforms, and are aimed at developers with
moderate to advanced SAS/AF & SCL experience. The code
management portion is applicable only to the version of the
Source Control Manager (SCM) that was released with SAS
version 7. Earlier experimental versions of the SCM are not
covered.

INTRODUCTION
Programming standards are essential for producing high quality,
easily maintained software applications. The larger the
application, the more this holds true. Using a code management
system, such as the Source Control Manager provided with SAS
version 7, further enhances maintainability. Such a system
enables a programmer to check code modules in and out of a
software library during development, or when the code needs
updating, in much the same way a book is checked out from a
library. Modules that have been “checked out” cannot be
modified by others until they have been “checked in” by the
current programmer.

The purpose of this article is to provide a framework for high
quality, structured, and easily maintained SAS software.
Uniformity of software development is essential in creating and
maintaining computer systems that operate at peak efficiency.
Due to space constraints, only the Top Down development
approach is discussed. This is the method most applicable to
the programming practices employed at most organizations.
However, the principles discussed here are equally valid when
applied to the Object Oriented development.

Recently, the Motorola Semiconductor Products Sector (SPS)
unified its various Information Technology (IT) divisions into a
global unit, rather than each SPS factory having its own IT team
working independently of the others. One of the many benefits of
this has been a pooling of knowledge as programmers from
differing IT teams have been brought together. This has allowed
us to take the best programming techniques used at the formerly
independent sites, including standards, and come up with a good
unified set of programming practices for our teams.

The guidance presented here has been collected by the author
over the past eleven years, working for the US Air Force, a
consulting firm, and the Motorola SPS IT Engineering Analysis
Tools (EAT) team. It is applicable to any organization, be it
governmental, corporate, or educational.

To be effective, programming standards should apply to all
applications created in your organization. Applications created
without standards applied to them should be brought up to the
standard as maintenance is performed, if possible.

SOFTWARE DEVELOPMENT

SOFTWARE DEVELOPMENT LIFE CYCLE
The software development life cycle begins with a determination
that a software application is required for customer support and
ends with the cataloging of the application into the production
libraries. In the SPS Engineering Analysis section, most projects
begin when a device or product engineer at a factory requests a
new statistical analysis tool, or the addition of new features to
existing applications.

The development life cycle identifies important phases
associated with the process of developing software. When
completed, each phase should significantly reduce future
maintenance costs and minimize the chance for software errors
in the final product. The amount of detail required for each phase
should be directly related to the size and complexity of the
project. Large, complex projects require more extensive
documentation than do small projects.

OVERALL LIFE CYCLE
There are several major phases in the software development life
cycle. Figure 1 provides a summary of this cycle. The following is
a brief description of the major phases:

1. Gather and Define Requirements - The first task is to
determine if existing software can be used to fully or partially
meet the customer's requirements. Analysis and research
are the foundation on which the rest of the project lies.

2. Prepare Initial Design - If software development or

modifications are necessary, the programmer formulates the
initial requirements and designs documentation. The more
detail that can be provided, the more easily understood the
design will be. This design should be presented to the
customer for approval, ensuring that it meets the customer's
requirements.

3. Formal Design and Design Review - The detailed design

is an effort to construct a concise, logical solution to the
problem, which the programmer can easily translate into
code. The design should be approved before coding begins.

4. Test Plan, Coding, and Testing – The appropriate coding

standards should be followed for all production software.
The development and execution of a test plan is essential to
ensure that the customer receives a quality product (both
software and data). Testing should occur any time that
changes are made to the code. After testing is completed,

Applications Development

the software should undergo a review or walk-through prior
to production.

5. Final Code Inspection - This is an intense, line-by-line review
of the software prior to cataloging.

6. Cataloging - This process places approved software into the
Production Software Libraries. It is extremely advantageous to
place production code in libraries where only the software
librarian has write authority. This will prevent accidental
corruption of the source code and ensure that everyone is
running the same version for production.

Top-Down Structured Design
Software should be developed in a top-down structured manner.
Top-down design begins with formulating the solution in terms of
generalized statements. After the general algorithm is developed,
it can be refined by adding the details that are necessary to
perform the general actions. For a complicated problem, this
refinement process may be repeated several times, with each
version containing more detail than the last. The design proceeds
from the top (most general) to the bottom (most detailed), with
the resulting design reflecting the nature of the problem. Top-
down structure makes the program highly readable and easier to
follow.

Structured software consists of separate functional modules. A
module is a subportion of a program and is composed of a
bounded group of instructions with a single identifier. A module
may be a subroutine, function, or driver. In SCL terms, a module
could be a either an SCL program, or a labeled section within an
SCL program. Labeled subsections provide great modularity!
Modules may call other modules, and in many cases, several
modules may be required to complete a single function. Modules
are designed with control flowing from the top to the bottom.

Top-down structured software should adhere to the following
characteristics:

• Cohesion - All modules should perform single functions or
small, related functions that require common data and pass
information from one step to another.

• Coupling - Connections between modules must be obvious
and should be minimized as much as possible for simplicity.
Data will be passed as arguments between modules, when
applicable.

• Limited data exchange - A minimum amount of data
should be passed between modules. If only two variables
out of a 100 variable data set are needed by a particular
DATA step, use the DROP= or KEEP= data set option to
eliminate those variables not needed. Similarly, only those
SCL variables and list pointers that are required for a
particular method to perform its given function should be
passed between methods.

• Exit and entry points - Modules should have one entry
point and one exit point.

• Span of control - Never let a module (except the program
driver) directly control or call more than seven subordinates.

• Scope of effect - Subordinate modules are modules that
make decisions so that other modules can complete a
function. The scope of effect of any module includes all
subordinate modules that are necessary for the completion
of the module’s function.

• Module size - Modules should consist of no more than four
pages (200 lines) of executable code, minus comments.
Modules should not perform more than one unrelated
function, but may handle more than one related function for
the program. If a module grows larger than 200 lines, check
to see if the module is accomplishing more than a single
function. If so, attempt to break it down into single-function

modules. However, do not cut a single-function routine into
multiple pieces simply for the sake of module size.

• Independence - The execution of the module is completely
independent and does not depend on anything that occurred
in previous invocations.

 Top-down structured software is a direct result of the use of
structured techniques and tools such as data flow diagrams, flow
charts, pseudo code, structure charts, data dictionaries, and
organized documentation. It requires forethought and work from
everyone.

 Top-down structured design has the following advantages:

• It allows for reusable modular coding, testing, and

implementation.
• Design problems are detected early, when they are cheaper

and easier to correct.
• Module development allows the programmer to concentrate

solely on individual modules while treating other modules as
black boxes.

• Fewer programming errors are likely to be made due to the
module’s significantly reducing program complexity.

• Modularity makes debugging easier. Problems are quicker
to isolate in any particular module, shortening debug time.

• Modules are used more easily by other programs.

CODING STANDARDS

DOCUMENTATION
All program modules should be documented. The documentation
must be standardized to promote uniformity in the program
library.

At the top of each SCL or SAS program there should be a main
program documentation section, that contains the following
information in order to provide a complete reference of what’s
been done to the code in its lifecycle. Make sure that any
additional information in the documentation section is pertinent.

1. Program or Method Name - name of the module.
2. Support - who, or what organization, ‘owns’ this module.
3. Product - which application does this code belong to?
4. Purpose - a brief, one-sentence description of what the

module does.
5. Usage - how the module is called.
6. Parameters - what is passed into and out of the module.
7. History - details when the code was modified, who did it,

and what was changed. The history section is the key to
modifying or repairing the program properly. All entries in
the history section must be as complete as possible.

Each time the code is modified, an entry should be made in
the history section. History entries should be completed for
each re-cataloging of the program and should include the
following information:
• The date of the modification and project number. In the

IT section of Motorola SPS, we use Rational’s
ClearDDTS™ defect tracking system for documenting
bugs and enhancements requests. Each entry in that
system has a unique tracking number. If your
organization has a similar method of tracking requests,
that number should go here, as well as the name of the
person or persons who worked on the program.

• A complete description of why the program was
modified, what and where changes were made, and the
results of the changes. Also, include any differences
between the old and new versions.

Applications Development

• Additional information may be included in the
documentation as needed, but a good rule of thumb is
to limit the documentation to eight printed pages (400
lines). A general overview of the program is all that is
needed to fulfill documentation requirements.

8. Notes - helpful notes for future maintenance. Typically
you’ll see warnings, or comments about future changes that
should be made to this code. This is also a good place to
list any references used for making the program. Notes may
be entered anywhere in the documentation that is deemed
necessary, but a grouping of the notes is easier to follow.

9. Labeled Code Sections - each labeled section of the SCL
program should be listed here, in a logical order. Sections
should be listed in the order in which they occur in the
program. Whether it’s alphabetical, or broken down as
alphabetical for Frame widgets and non-widgets, or some
other method, is up to you.

10. Data Dictionary - an alphabetical listing of all variables
(including macro variables) used in a program is extremely
useful. The SCL LENGTH code statements can often
double for this purpose, if in-line comments are used after
each LENGTH entry.

Within the body of the program, individual sections of code
should be documented as well, describing the what and why of a
particular code segment. Be as precise as you can -- you may be
the one maintaining that code a year from now, when you've
forgotten just exactly what that segment was supposed to be
doing. Often, an explanation of why something was done is
much more important than what was done – the what may be
readily apparent from the code, but why a code section exists is
not.

Without good documentation, maintenance becomes much more
difficult. We have probably all heard the saying about not
documenting the code being good job security, but even the best
programmers cannot remember every detail about what they
themselves wrote just a few months before. Poor documentation
hurts everyone.

Please see Example 1: Sample Documentation Section

COMMENTING THE PROGRAM
Comments should precede the executable code and be set off in
a uniform manner. In-line comments should be right-justified for
readability. Each block of code should have a preceding block of
comments pertaining to the workings of the code. Blocked
comments ought to be set off with noticeable borders or blank
lines. A continuous line of asterisks is common practice and
provides unmistakable border. Single line comments should be
avoided because they are easy to overlook; however, if
necessary, they should also be set off with noticeable borders or
blank lines to prevent code and comment confusion. Comments
must be clear and concise with consideration for those who have
to maintain or use the program. Having too many comments in a
program is as bad as having too few. Use only enough
comments to make the program understandable.

Please see Example 2: Sample Comments

CODE INDENTION AND COLORING
The purpose of code indention is to improve the readability and
the logical structure of programs through a format that reflects the
logic of the program:

1. Each base SAS DATA and PROC statement, and SCL entry
labeled section should start in column 1.

2. Each subsequent line should be indented evenly.
3. Each DO group level should be indented, with DO

statements starting on a new line for easy visibility.

4. The END statement used to terminate a DO loop should be
indented at the same level as the starting DO statement.

5. Comments should not be indented to match corresponding
code, and must precede the relevant code.

Coloring the SCL code can also improve readability. Our EAT
team uses a gray background color, with code in black text,
comments in blue, and green text for code in submit blocks.
Comments in submit blocks are green as well. One of our
factories IT teams used a black background, yellow text, cyan
comments, and white submit blocks. Any set of contrasting
colors that your programmers can agree upon will work.

NAMING CONVENTIONS
Without a standard set of variable names, code reusability means
that each SCL program must often rename the variables or
parameters of the calling program or macro in order to meet the
naming convention of the calling program. It is much simpler to
use a standard set of names for all programs written in your
organization.

Further, it is useful to adopt a common naming convention for all
of the individual SCL and FRAME components that make up
each application. We’ve implemented the following naming
standards at Motorola SPS IT:
• Product Abbreviations – All major products are identified

by a unique two-character product identifier prefix. For
example, the Engineering Data Analysis System1 (EDAS)
product uses “ED”, while the Data Analysis Reporting Tool2

(DART) uses “DA”. Further, a few two-character codes are
used for non-product-related systems, such as “C_” for
common code, and “UT” for utilities.

• Library and Catalog Names - All libraries and catalogs
associated with a given product use that products prefix.
For instance, the EDAS project code library is “EDASLIB”,
while the EDAS beta code goes into the “ED_BETA” library,
and the EDAS data management library is “ED_MANAG”.
Catalog entries should have the product revision ID in them:
“EDAS50” for the 5.x release of EDAS.

• Entry Names – Use of the SCL SEARCH statement allows
an application to call SAS/AF entries stored in other
libraries, thus increasing the functionality of the application
by taking advantage of a modular design.

Entry names may be specified without specifying which
catalog they are in. By providing a search path, the
application will search a list of specified catalogs one-by-one
until it finds the first entry matching the name specified.
This feature aids greatly in development, since an
experimental entry may be substituted for testing by merely
adding a test catalog earlier in the SEARCH path for the
tester. (The SAS Source Control Manager takes advantage
of this ability).

The drawback is that if you having SCL entries with the
same name in the search path, regardless of the catalog
names, may result in one of the products failing to work
correctly.

For this reason, a portion of the entry needs to reflect the
product to which it belongs, using the same product
identifier as its parent application. For instance, the
FRAME entry and its associated SCL for the EDAS
scatterplot module are called “ED_SCATR.FRAME” and
“ED_SCATR.SCL”. Non-FRAME SCL is differentiated by
not having the underscore: “EDSCATR.SCL”. All of the

1 EDAS was presented at SUGI 16 by Leslie Fowler. (See
reference section)
2 DART is the successor of DevIS, presented at SUGI 21 by Larry
Worley. (See reference section)

Applications Development

EDAS product code is stored in the EDAS50 catalog, in the
EDASLIB library.

• Macro Names and Macro Variables –
• Run-Time and Pre-Compiled Macros - Macros or

macro variables which will exist for a user, such as run-
time or pre-compiled macros, should start with an
underline, followed by the two-character product
identifier. I.e., “_EDMACRO”. The underline makes it
easier to differentiate a macro variable from a normal
one. Since users may also create macros, it is
important that the application’s macros not interfere
with their macros, and vice versa. Most users are
warned not to begin their macros with an underline.
(This is an important point to add to user
documentation for most applications.)

• Compile-Time Macros - Macros or macro variables
which will exist only for the developer to aid in code
generation - but which will not exist in the user’s SAS
environment when the user runs the application -- may
follow any naming convention, since only the
developer’s environment will be affected. The
convention discussed above may be followed, of
course, if there is any doubt about the impact on the
user or other developers.

• Variable Names – Here are a few recommended guidelines
for variable names:
• Avoid using variable names that duplicate SAS

keyword or function names. Although SAS usually
deals with these correctly, it makes reading the code
very difficult.

• Because list manipulation is so important in SCL,
variables which are list identifiers stand out as such
when the last part of the variable is either ...list or ...lst.
These suffixes should be avoided, where possible, for
non-list ids.

• Dataset identifiers associated with a SAS dataset stand
out as such when the last part of the variable is either
...id or ...dsid. These suffixes should be avoided,
where possible, for non-dataset ids.

• Temporary or holder variables can easily be designated
as such by the use of temp, tmp, hold, or hld as part of
their names.

• Single-character variables such as i, j, k, etc., are fine
for loop counters. Try to use more mnemonic names
for important variables.

TESTING THE PROGRAM

CREATING AND TESTING THE TEST PLAN
Create an initial test plan based on the requirements and design
documentation. This plan is a list of the tests to be made to verify
the correctness of the results. The test plan identifies the test
data to be used. Update the test plan as necessary during testing
to reflect the actual testing done. All software requires testing by
both the programming team and the customer before it is run in
production or cataloged. Testing ensures that customer
requirements are met or exceeded as far as possible, that coding
and logic errors are discovered and corrected, and that each
routine does what it was designed to do.

Testing should follow the test plan. Update the test plan when
new or additional tests are required, or if tests described on the
test plan become unnecessary or too difficult or impractical to
perform. As a minimum, software should be tested as follows:

1. Test the program with both test and actual input data.
Testing should include stressing the program with data both
in and out of the testing parameters. This is done to ensure
the program either stops or rejects the bad data.

2. Test all modules to the maximum extent possible with valid
data. If possible, make sure each decision is executed at
least once. Do hand calculations, if necessary, to verify that
each module is functioning properly.

3. Have someone else test your program. Often, another
person can discover awkward or cumbersome procedures or
manage to break the program with erroneous data.

4. After modular testing, test the entire application as a whole
to ensure that all of the modules work together properly. Be
especially aware of the arguments and units being passed
between the subroutines. Often, different arguments are
required for different subroutines. Make sure the correct
arguments with the correct units are passed to each
subroutine.

5. Include an acceptance clause at the end of the test plan.
This should be signed by the customer and the programmer
at the conclusion of testing.

WALK-THROUGHS
A walk-through is a group evaluation of a product at various
stages of its life cycle. Walk-throughs should be formal, properly
structured, and well-documented. Proper structuring will make
the walk-through more beneficial. Walk-throughs allow you to
produce reliable, error free code. They can reduce the average
from three to five errors per 100 lines to as few as three to five
errors per 10,000 lines (Freedman 1990). They can help you
correct design flaws and improve program documentation, as well
as cut production time by as much as 50 percent. They also help
increase the quality of system software. There are several types
of walk-throughs:
• Design walk-throughs focus on the solution to the problem.

This is critical in that it sets the guidelines on how a project
is to be completed.

• Periodic walk-throughs are conducted whenever deemed
necessary. Periodic walk-throughs will tell you where a
project is.

• Final walk-throughs are necessary prior to submitting a
program for a final code inspection. This walk-through will
help find any discrepancies previously missed.

A minimum of three and a maximum of seven individuals should
be involved in any type of walk-through. The size and scope of
the project should determine the number of attendees. One
individual moderates the walk-through. A second individual
should record all pertinent information discussed during the walk-
through, such as recommended changes to the material being
presented. A third individual presents the material.

WALK-THROUGH STAGES
There are three stages in the walk-through process:
1. Review stage - This three to five day period prior to a

walkthrough is used to acquaint each attendee with the
product. Standards, checklists, material to be reviewed, and
any relevant document from prior reviews or walk-throughs
will be looked over during this stage.

2. Walk-through stage - In this stage, each detail of the
product is reviewed. The presenter or moderator guides the
meeting, which should last no longer than one to two hours.

3. Follow-up stage - This is where changes are implemented.
All involved parties are informed of the changes and must
agree to them.

HELPFUL HINTS
Here are a few very simple guidelines to remember while
conducting a walk-through:
• The author is not on trial.
• The product is guilty until proven innocent.

Applications Development

• Choose walk-through participants carefully. Avoid
personality conflicts if at all possible.

• Keep walk-throughs within the predetermined time limits.
Schedule well in advance to ensure that everyone needed
for the walk-through can attend.

• Create and follow a checklist of possible problems.

 There are some people problems to watch out for in reviews and
walk-throughs. Egos can play a factor in that people naturally do
not like to be told they’ve made mistakes. Another problem area
is inexperience at giving and receiving criticism. (Misdirecting
comments at the creator rather than the code can turn the
meeting into a defensive war.) The final problem is apathy - not
trying hard to find errors. (Don't assume that others will find the
same errors that you find.)

 The team only has three decisions to choose from at the
conclusion of a walk-through: accepting the product as is;
accepting the product with revisions, trusting the creator to make
the fixes; or determining that another walk-through is necessary
after the errors have been corrected and the comments for
improving the product have been implemented.

 REVIEWS
 A review is an informal check of a portion of a software program
that can be conducted at any point in the development or
maintenance processes. Very little documentation is needed, and
structure is of no concern. Two or three individuals are sufficient
for a review. Proper use of both reviews and walk-throughs will
result in better software products and reduce long-range
maintenance costs.

 Program reviews may be made at any point in the program
development cycle. The best times to review a program are after
the design is developed, before any formal walk-through or code
inspection, and before cataloging and production. Periodic
reviews of all programs, either being developed or modified, are
essential to ensure adherence to programming standards, that
errors are detected (as undetected errors will haunt you later),
and that documentation is correct. Make entries in the project log
for each review. A properly kept log may help trace any problems
that may arise later on in the project.

 SOURCE CONTROL MANAGER

 FEATURES
 With the release of SAS version 7, SAS Institute has provided a
new tool, the Source Control Manager (SCM), for managing the
SAS/AF source and data files that make up your applications.
Previously released as an experimental tool, the SCM is now fully
integrated with SAS/AF. It provides a robust environment for
developing and maintaining your SAS/AF applications, allowing
you to check code in and out of the library, test changes before
checking code modules back in, carry out revision control and
version labeling, and easily distribute your application. The SCM
environment contains a number of tools for generating reports on
the development library and comparing file differences. Among
these tools, the SCL Static Analyzer tool is especially notable for
its ability to provide a wealth of information about the SCL in a
given catalog.

 The Source Control Manager (SCM) features a point-and-click
interface, with pull-down or pop-up menus through which you can
issue commands. The interface gives you the ability to browse
the software libraries associated with the SCM, and the various
catalogs and entries contained within them.

 The SCM creates a control database that is associated with a
given SAS library. When a developer checks code out of the
SCM, the file is copied to his or her specified work area. The

SCM then updates the control database by placing a lock on the
file so that no one else using the SCM associated with that library
can check out the code until it has been checked back in, thus
preventing overwriting accidents.

 By using the new CATNAME function in conjunction with the
SEARCHPATH function, the SCM allows most code modules to
be tested before it is checked back into the library.

 Each time a file is checked back into the SCM, the previous
version is archived. This provides an easy method of backing
changes back out of the application if needed. The SCM
administrator determines the total number of archives kept.

 Further, the SCM’s version labeling feature allows a ‘snapshot’ to
be taken of the revision numbers of all the modules that make up
an application. This way, if you need to rebuild an earlier release,
the SCM will pull the correct revisions out of the main library and
the archives to build a given release.

 Once a version label has been created, you can copy that version
of your application to a central distribution point, or to remote
computers via SAS/CONNECT.

 USING THE SCM
 The SCM is located on the SOLUTIONS pull-down menu, in the
DEVELOPMENT AND PROGRAMMING sub-menu. Or, you can
type ‘SCM’ on a SAS command line. Optionally, you can specify
the location of the control database when using the command
line, as well by using ‘SCM SCMDATA=CDBLibref’.

 The documentation for the SCM is provided in the form of online
help screens, from the SAS help menu. At the time of this
writing, no documentation was available via the SAS Online
Documentation CD, other than a brief mention of it.

 When you start the SCM for the first time, you will need to
associate a software library with it. Once you have done so, the
SCM will create several datasets that make up the control
database in the library. In this database are stored the list of all
the files that are a part of the project, the location of the
preference files for each person, who has which files locked,
where the archives are to be stored, and more. Each developer
can set preferences as to where his or her work library is located
for each project library. The location of these preference files is
determined when the SCM control database is created, and
defaults to SASUSER. SAS Institute recommends that
SAS/SHARE be used to access the control database library.

 More than one project library can be assigned to a given control
database. To do this, start the SCM with the control database
you want. Then, from the TOOLS pull-down menu, select
ADMINISTRATION UTILITIES. On the SOURCE DATA tab,
new libraries or catalogs can be registered. Select the library or
catalog, provide an archival location, and click the REGISTER
button. You can choose whether or not you want all development
libraries assigned to one SCM control database, or just those
used for a particular project. However, it would appear to be best
to include all libraries needed for a given application if you plan
on using the version labeling feature.

 Once the control database has been set up and configured, it’s
ready to be used by the developers. The programmer will start
up the SCM, and tell it which control database library to use. The
project library associated with that control database will then be
displayed, and if any files have been checked out, those will
appear with an icon of a lock in front of them. Double clicking on
a file name will bring up that file in browse mode. The developer
will need to tell the system where to copy the checked out files
using the OPTIONS item from the pop-up menu, or TOOLS >
OPTIONS from the pull-down menu. This is at a library, rather

Applications Development

than a catalog, level. The SCM will also ask for the developer’s
name, so that it can assign checked out files to the developer.

 SCL STATIC ANALYZER
 Another formerly experimental tool, the SCL Static Analyzer is
now part of the SCM environment. It can tell you a great deal
about the SCL that goes into your application, and works on a
given catalog. When activated, it examines all the SCL in the
catalog, and provides the following statistics: total lines,
instructions, functions, attributes used, and the number of unique
entries, labels and methods, variables, functions, etc. Further, it
can detail the flow of your program, listing all the interrelations
between the various modules that make up your application. All
of the data the program collects is stored in datasets that can be
viewed from within the system by clicking on the VIEW DATA
button. All of the statistics and listings pop up in a compact
tabular view window. Also, the Static Analyzer will provide a list
of warning areas you should look at in your code…including
areas of dead code and uncompiled entries, as well as areas
where the Analyzer can’t find the source entry being called, etc.

 SCM NOTES
 Several notable items:
• When checking out files, be sure not to have the catalog

selected -- you can check out an entire catalog by accident.
• The current release of the SCM doesn’t support creating

copies of a version label if the version label contains multiple
library references.

CONCLUSION
Programming standards provide a means of ensuring that
software written at your organization is of high quality. But in
order for standards to be effective, everyone must follow them.

The SCM provides an elegant solution to the problem of having
program files accidentally overwritten, and provides additional
functionality to the already excellent SAS development
environment.

Unfortunately, due to size constraints, this article could offer only
a brief overview of the software life cycle and the SCM. For more
information on the life cycle and other aspects of programming
standards, you might turn to the Freedman and Dunn’s books
listed below. For more information on the SCM, see the SAS
Online Help files.

REFERENCES
Fowler, Leslie, et al (1991), Data Analysis Applications for the
Semiconductor Industry, Proceedings of the Sixteenth Annual
SAS User’s Group International Conference, pg. 658-662.

Worley, Larry and Nelson, Jim (1996), DevIS: Motorola’s Near-
Real-Time Device and Visualization System Using SAS/AF
Software and SCL, Proceedings of the Twenty-first Annual SAS
User’s Group International Conference, pg. 654-659.

Freedman, Daniel P. (1990), Handbook of Walkthroughs,
Inspections, and Technical Reviews, New York: Dorset House
Publishing.

Dunn, Robert (1982), Quality Assurance for Computer Software,
New York: McGraw-Hill Book Company.

USAFCCC (1995), Communications-Computer Systems
Automated Data System Standards and Procedures, Instructions
33-102, Volumes I-III, Scott AFB.

Motorola SPS IT Engineering Analysis Tools SAS Programming
Standards (1998).

SAS, SAS/AF, SAS/SHARE and SAS/CONNECT are registered
trademarks or trademarks of SAS Institute Inc. in the USA and
other countries.

ClearDDTS is a registered trademark of Rational Software
Corporation

Other brand and product names are registered trademarks or
trademarks of their respective companies.

ACKNOWLEDGMENTS
Thanks go out to Les Bortner for a superb reviewing job and
editing suggestions. Thanks also go to Chris Weyn, Leslie
Fowler and Robert Smith for their reviews of the paper, as well.

CONTACT INFORMATION
(In case a reader wants to get in touch with you, please put your
contact information at the end of the paper.)
Your comments and questions are valued and encouraged.
Contact the author at:

C. Michael Whitney
Motorola SPS
2150 Woodward St.
Austin, TX 78744
Work Phone: (512) 373-3164
Fax: (512) 373-3171
Email: ra6952@email.sps.mot.com

Applications Development

EXAMPLE 1 – SAMPLE DOCUMENTATION SECTION

/*--*/
/* Method: EDASINIT */
/* Support: Mike Whitney, SPS IT Solutions - Engineering Analysis */
/* Product: EDAS */
/* Purpose: the method that starts EDAS50, site configuration */
/* Usage: call method(‘edasinit.scl’,’start’,’load_buffer’); */
/* Parameters: */
/* what_to_do $20: method called by init file that starts EDAS */
/* 'load_buffer' : method called when build code for batch job */
/* 'script' : method called when creating a script */
/* History: */
/* Sep 95 - M. Grover */
/* - Initial coding */
/* */
/* Feb 97 - J. Nelson */
/* - added simple debug listing */
/* */
/* Oct 97 - E. Stokes */
/* - Added code to determine OS and pathname */
/* Created _edstart macro. */
/* */
/* 20 Jan 98 - Mike Whitney - CIMcm0279 */
/* - modified OS pathname building routine, removed */
/* non-functioning SymPut calls. Modified VMS section. */
/* */
/* 23 Jun 98 - Mike Whitney - CIMcm0280 */
/* - tweaked usrtr assignment to correctly reflect the VMS */
/* user path. */
/*--*/
/* Notes: */
/*--*/
/* Labeled Code Sections: (listed in order of appearance) */
/* START – method that starts EDAS */
/* LET - Assign let statements for padas directories */
/* SYMBOLN – build the SAS symbol statements */
/*--*/

length
 ct $3 /* Session settings: graphic char type */
 dsname $17 /* dataset name */
 edasos $8 /* edas' name for the current os */
 fullpath $80 /* physical path of 'padas' subdirectories */
 grcat $17 /* Session settings: graphic catalog */
 ht $3 /* Session settings: graphic text height */
 let_libname $200 /* Libname statement for padas libraries */
 let_statement $200 /* %let macro definition statement */
 listid 8
 ls $8 /* Session settings: line size */
 msg $80 /* Generic Return Message */
 OpSys $35 /* substr of sysccp global macro */
 parmtab $17 /* parameter table name */
 ps $8 /* Session settings: page size */
 rdsname $17 /* raw dataset name */
 sas_user $80 /* physical path of the sasuser directory */
 screenme $17 /* single node dataset name */
 sys_command $200 /* Operating System Command */
 ;

This is an older
SCL entry,
which wasn’t
documented as
well as it could
have been.
The history was
brought up to
date during
recent
modifications

Note the issue
tracking
numbers.

Here the
LENGTH
statement does
double duty as
a data
dictionary.

Applications Development

EXAMPLE 2 – SAMPLE COMMENTS

 control asis;

START: /* Start EDAS */

 method
 optional=what_to_do $20;

/***/
 The following submit block is here to make sure that SAM recognizes
 a new script from an older one. - 1/98 by Chris Weyn
**/

EXAMPLE 3 – CODE INDENTATION
Indented code is easy to read and follow. Only one comment has been left to show how they should be indented.

START:
 if symget(’_eddebug’)^=’ON’ then
 submit;
 options nosource nonotes nosource2;
 endsubmit;

/* Get the physical path of the sasuser directory */

 select (edasos);
 when (’VMS’) sas_user= scan(pathname(’padas’),1,’]’);
 when (’UNIX’) sas_user= pathname(’padas’);
 when (’WIN’) sas_user= pathname(’padas’);
 when (’MAC’) sas_user= pathname(’padas’);
 otherwise;
 end;

 sas_user=lowcase(sas_user);

 if what_to_do ne ’ ’ then do;
 if what_to_do = ‘START’ then do;

 submit;
 %let _eddsnm = &dsname ;
 %let _edrdsnm= &rdsname ;
 %let _edsrnme= &screenme ;
 %let _edprmtb= &parmtab ;
 endsubmit;

 end;
 end;
 else do;

 submit;
 %let _eddsnm= ;
 %let _edrdsnm= ;
 %let _edsrnme= ;
 %let _edprmtb= ;
 endsubmit;
 end;
return;

An in-line
comment used
to briefly
describe the
purpose of the
labeled section.

Commenting
the code as to
why something
was done.

Having the
label in the first
column, and
the rest of the
code indented,
makes the
labels more
noticeable.

For the same
reason,
comments
aren’t indented,
either.

Nested if-then-
do loops

Submit block
contents should
be indented, as
well.

Applications Development

	Main TOC
	Section Contents

