Logistic Regression

Chun Li, PhD

Division of Biostatistics

Department of Population and Public Health Sciences

University of Southern California

June 12-16, 2023

Basic Concepts for Binary Outcomes

A **binary outcome** is an outcome variable with two outcome categories.

• Examples: Disease vs. non-disease, success vs. failure, yes vs. no, etc.

We designate one of the two outcome categories as the event of interest.

• We often code the event of interest as 1 and the other category as 0.

Suppose *p* is the **probability** for the event of interest with 0 . Then

- The odds of the event is $\frac{p}{1-p}$, and the log-odds is $\log(\frac{p}{1-p})$.
- The function $log(\frac{p}{1-p})$ is called the **logit** function and is often expressed as logit(p).
- Here, log() refers to the natural logarithm.

Odds Ratios

The probability of the event of interest can differ under different conditions.

The **odds-ratio** (OR) for Condition 1 versus Condition 2 is $OR_{12} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$, where p_k be the probability of the event of interest under Condition k.

- The OR for Condition 2 versus Condition 1 is $OR_{21} = \frac{p_2/(1-p_2)}{p_1/(1-p_1)} = 1/OR_{12}$.
- An OR is always between two conditions, and it depends on the order of the conditions.
- If the two conditions are defined by a binary variable (e.g., sex), with its coding well specified (e.g., 0=F, 1=M), one may say "the OR for sex".
- If the coding is unclear, "the OR for sex" is ambiguous because it could be the OR for man vs. woman or the OR for woman vs. man; if the former is 2 then the latter is 0.5.
- If the conditions are defined by a variable with more than two values (e.g., age), a phrase like "the OR for age" may not make sense (unless under a specific context, say, when linear effect is assumed and the scale of age is specified).

Logistic regression is to model a binary outcome against a set of predictors $\mathbf{X} = (X_1, \dots, X_p)$. Specifically, we model the outcome probability (not the outcome itself) as a function of \mathbf{X} :

$$oldsymbol{p} = \sigma(eta_0 + eta^{ op}oldsymbol{X}) = rac{e^{eta_0 + eta^{ op}oldsymbol{X}}}{1 + e^{eta_0 + eta^{ op}oldsymbol{X}}},$$

or equivalently,

$$\operatorname{logit}(p) = \log\left(\frac{p}{1-p}\right) = \beta_0 + \beta^T \boldsymbol{X}.$$

Here $\beta = (\beta_1, \dots, \beta_p)$ is a vector of coefficients, and $\beta^T \mathbf{X} = \beta_1 X_1 + \dots + \beta_p X_p$. $\sigma(t) = \frac{e^t}{1+e^t}$ is the inverse of the logit function: If $p = \sigma(t)$ then t = logit(p).

Maximum Likelihood Estimation

Suppose we have *independent* observations with

- *Y*, the outcome (1=disease, 0=no disease)
- X₁, age (in years)

1

• X₂, smoking status (1=smoker, 0=non-smoker)

disease	age	smoking
1	25	1
0	30	1
0	27	0
1	25	0
÷	÷	÷

$$P(Y = 1 | X_1 = 25, X_2 = 1) = \frac{e^{\beta_0 + 25\beta_1 + \beta_2}}{1 + e^{\beta_0 + 25\beta_1 + \beta_2}}$$

$$P(Y = 0 | X_1 = 30, X_2 = 1) = \frac{1}{1 + e^{\beta_0 + 30\beta_1 + \beta_2}}$$

$$P(Y = 0 | X_1 = 27, X_2 = 0) = \frac{1}{1 + e^{\beta_0 + 27\beta_1}}$$

$$P(Y = 1 | X_1 = 25, X_2 = 0) = \frac{e^{\beta_0 + 25\beta_1}}{1 + e^{\beta_0 + 25\beta_1}}$$

. . .

The **overall likelihood** is the product of these individual likelihoods. It is then maximized to obtain the **MLEs** for $\beta_0, \beta_1, \beta_2$. (An iterative algorithm will be used.)

The likelihoods for the individuals are

Example R-Code and Results

Suppose the full dataset is $(n = 12)$:		dataset is	<pre>mod1 = glm(disease ~ age + smoking, data=dd, family=binomial) summary(mod1)\$coef</pre>
disease 1 0 0 1	age 25 30 27 25	smoking 1 1 0 0	$\begin{array}{llllllllllllllllllllllllllllllllllll$
0	35	1	table(dd\$disease, dd\$smoking) ## marginal distribution
0	22	1	## ## 01
1	38	0	## 024 ## 142
1	40	0	
1	32	1	The marginal OR for smoking is $\frac{2\times 2}{4\times 4} = 0.25$, which can also be
0	30	1	obtained below:
0	29	0	<pre>mod2 = glm(disease ~ smoking, data=dd, family=binomial) exp(summary(mod2)\$coef[2,1])</pre>
1	37	0	## [1] 0.25

Unadjusted vs. Adjusted ORs

If we fit a logistic regression model of Y on a single variable X_1 , as in

$$logit(P(Y=1|X_1)) = \beta_0 + \beta_1 X_1,$$

then e^{β_1} is the **unadjusted** OR (or marginal OR) for X_1 .

If we fit a logistic regression model of Y on two or more variables X_1, \cdots, X_p , as in

$$logit(P(Y = 1 | X_1, \ldots, X_p)) = \beta_0 + \beta_1 X + \cdots + \beta_p X_p,$$

then e^{β_1} is the **adjusted** OR for X_1 after adjusting for the effects of the other variables (or we can say e^{β_1} is the **adjusted** OR for X_1 while fixing the values of the other variables).

Interpretation of Model Coefficients

Suppose our model is

$$\mathsf{logit}(p) = \mathsf{log}\left(rac{p}{1-p}
ight) = \mathsf{log}(\mathsf{odds}) = eta_0 + eta_1 X_1 + eta_2 X_2.$$

where X_1 is age (in years) and X_2 is smoking status (1=smoker, 0=non-smoker). Then (elaboration on next slide)

- β_1 is the log-OR, and e^{β_1} is the OR, for X_1 (technically, e^{β_1} is the OR for one unit increment of X_1 while keeping X_2 value fixed).
- β_2 is the log-OR, and e^{β_2} is the OR, for X_2 (while keeping X_1 value fixed).
- β_0 is the log-odds, and e^{β_0} is the odds, for the "baseline subject" (which corresponds to $X_1 = 0$ and $X_2 = 0$). In this example, the "baseline subject" does not exist in reality.

Interpretation of Model Coefficients (cont'd)

Consider a subject with $X_1 = x_1$ and $X_2 = x_2$, and a second subject with $X_1 = x_1 + 1$ and $X_2 = x_2$. The OR for the second subject versus the first one is

$$rac{\mathrm{odds} ext{ for second subject}}{\mathrm{odds for first subject}} = rac{e^{eta_0+eta_1(x_1+1)+eta_2x_2}}{e^{eta_0+eta_1x_1+eta_2x_2}} = e^{eta_1}.$$

Thus, β_1 is the log-OR for the second subject versus the first one, or β_1 is the log-OR for increasing X_1 by one unit while keeping all other variables fixed. It depends on the scale of X_1 .

Consider a "baseline subject" with $X_1 = 0$ and $X_2 = 0$. The odds for the subject is

$$e^{\beta_0+\beta_1\cdot 0+\beta_2\cdot 0}=e^{\beta_0}.$$

Thus, β_0 is the log-odds for the "baseline subject" (which may not exist in reality).

Interpretation of Model Coefficients (cont'd)

Consider a model with two binary predictors: sex (0=F, 1=M), smoking status (0=NS, 1=S),

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \cdot \sec + \beta_2 \cdot \operatorname{smoking}$$
$$= \begin{cases} \beta_0, & \text{female non-smoker;} \\ \beta_0 + \beta_1, & \text{male non-smoker;} \\ \beta_0 & + \beta_2, & \text{female smoker;} \\ \beta_0 + \beta_1 + \beta_2, & \text{male smoker.} \end{cases}$$

- e^{β0} is the <u>odds</u> for the "baseline" group of female non-smokers (who have the "baseline" sex and "baseline" smoking status *according to our coding*).
- e^{β_1} is the <u>OR</u> for sex (male vs. female). The OR for sex is the same among non-smokers and among smokers.
- e^{β_2} is the <u>OR</u> for smoking (smoking vs. non-smoking). The OR for smoking is the same among females and among males.

Chun Li, PhD

Suppose We Have X_3 (sex)

Suppose v	ve also	have X_3		
(sex, 1=man, 0=woman):				<pre>mod3 = glm(disease ~ smoking + sex, data=dd, family=binomial) summary(mod3)\$coef</pre>
	iun, o-	=woman).		## Estimate Std. Error z value Pr(> z)
disease	age	smoking	sex	## (Intercept) 0.1811935 1.053815 0.1719405 0.8634843 ## smoking -1.6824533 1.357387 -1.2394796 0.2151679
1	25	1	1	## sex 1.1326672 1.377308 0.8223776 0.4108620
0	30	1	0	Here, $e^{-1.6825} = 0.186$ is the estimated OR for smoking <i>when</i>
0	27	0	1	sex is fixed, and $e^{1.1327} = 3.10$ is the estimated OR for sex
1	25	0	0	when smoking is fixed.
0	35	1	0	
0	22	1	1	<pre>mod4 = glm(disease ~ age + smoking + sex, data=dd, family=binomial)</pre>
1	38	0	1	<pre>summary(mod4)\$coef</pre>
1	40	0	0	## Estimate Std. Error z value Pr(> z) ## (Intercept) -4.5030382 4.5615830 -0.9871657 0.3235614
1	32	1	1	<pre>## age 0.1449225 0.1386784 1.0450260 0.2960109 ## smoking -1.3479594 1.4248541 -0.9460333 0.3441316</pre>
0	30	1	1	## sex 1.3523022 1.4547410 0.9295828 0.3525872
0	29	0	0	Here, $e^{1.3523} = 3.87$ is the estimated OR for sex when both
1	37	0	1	age and smoking are fixed.

Interaction Terms in Logistic Regression

Now consider an interaction model between sex and smoking,

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \cdot \sec + \beta_2 \cdot \operatorname{smoking} + \beta_3 \cdot \sec \cdot \operatorname{smoking}$$
$$= \begin{cases} \beta_0, & \text{female non-smoker;} \\ \beta_0 + \beta_1, & \text{male non-smoker;} \\ \beta_0 & + \beta_2, & \text{female smoker;} \\ \beta_0 + \beta_1 + \beta_2 + \beta_3, & \text{male smoker.} \end{cases}$$

- e^{β_0} is the <u>odds</u> for the "baseline" group of female non-smokers.
- e^{β_1} is the <u>OR</u> for sex among non-smokers. (The OR for sex among smokers is $e^{\beta_1+\beta_3}$.)
- e^{β_2} is the <u>OR</u> for smoking among females. (The OR for smoking among males is $e^{\beta_2 + \beta_3}$.) • e^{β_3} is a ratio of ORs:

$$e^{\beta_3} = \frac{\text{OR for sex among smokers}}{\text{OR for sex among non-smokers}} = \frac{\text{OR for smoking among males}}{\text{OR for smoking among females}}.$$

Interaction Terms in Logistic Regression (cont'd)

When there is an interaction term between X_1 and X_2 ,

- β_1 and β_2 do not reflect the overall effects of X_1 and X_2 , That is, they are not "main effects".
- β₀, β₁, and β₃ are not comparable because they are different concepts and are on different scales:
 - β_0 is a log-odds.
 - β_1 and β_2 are log-ORs.
 - $\beta_{\rm 3}$ is the difference of two log-ORs.
- It is meaningless to make statements like $\beta_1 = \beta_3$ even though they may happen to have the same value.
- It is meaningless to state that "the interaction effect is stronger than the main effect".

R-code for Interaction Models

summary(mod3)\$coef

 ##
 Estimate
 Std.
 Error
 z value
 Pr(>|z|)

 ##
 (Incomposition of the strength of the strengt of the strength of the strength of the strengt of th

We can check the coefficient estimates manually.

```
## disease dist. in baseline of female non-smokers:
## odds = 2/1 = 2 = exp(6.931e-1)
with(dd, table(disease[smoking==0 & sex==0]))
```

```
##
```

```
## 0 1
## 1 2
```

```
## disease-smoking distribution among females:
## OR = (0/2)/(2/1) = 0 = exp(-1.926e1)
with(dd, table(disease[sex==0], smoking[sex==0]))
```

##

- ## 012
- ## 012 ## 120

```
## disease-sex distribution among non-smokers:
## OR = (2/1)/(2/1) = 1 = exp(-1.659e-15)
with(dd, table(disease[smoking==0], sex[smoking==0]))
```

```
## 0 1
## 0 1 1
```

```
## 122
```

The interaction effect is a ratio of two ORs. We need the OR for sex among smokers.

```
## disease-sex distribution among smokers:
## OR = (2/2)/(0/2) = infinity
with(dd, table(disease[smoking==1], sex[smoking==1]))
```

```
## 0 1
## 0 2 2
## 1 0 2
```

The ratio of the last 2 ORs is infinity/1 = infinity, which is estimated as exp(1.857e1) in logistic regression.

Interaction Terms in Logistic Regression (cont'd)

Now consider an interaction model between adult age (a continuous variable with values way above 0) and smoking,

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \cdot \text{age} + \beta_2 \cdot \text{smoking} + \beta_3 \cdot \text{age} \cdot \text{smoking}$$
$$= \begin{cases} \beta_0 + \beta_1 \cdot \text{age}, & \text{non-smoker;} \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \cdot \text{age,} & \text{smoker.} \end{cases}$$

- e^{β_0} is the <u>odds</u> for non-smokers at 0 year old (**nonexistent!**).
- e^{β_1} is the <u>OR</u> for one year older vs. current age among non-smokers. (The OR for one year older vs. current age among smokers is $e^{\beta_1+\beta_3}$.)
- e^{β_2} is the <u>OR</u> for smoking among 0 year olds (**nonexistent!**) (The OR for smoking among x year olds is $e^{\beta_2 + \beta_3 x}$.)
- e^{β_3} is a <u>ratio of ORs</u>:

 $e^{\beta_3} = \frac{\text{OR for one-year-older among smokers}}{\text{OR for one-year-older among non-smokers}} = \frac{\text{OR for smoking among } x + 1 \text{ year olds}}{\text{OR for smoking among } x \text{ year olds}}$

Hypothesis Testing for Coefficents, Confidence Intervals

```
Testing for H_0: \beta_j = 0 vs. H_1: \beta_j \neq 0:
```

summary(mod4)\$coef

##		Estimate	Std. Error	z value	Pr(z)
##	(Intercept)	-4.5030382	4.5615830	-0.9871657	0.3235614
##	age	0.1449225	0.1386784	1.0450260	0.2960109
##	smoking	-1.3479594	1.4248541	-0.9460333	0.3441316
##	sex	1.3523022	1.4547410	0.9295828	0.3525872

The p-value is

- 0.296 for testing if the effect of age is zero
- 0.344 for testing if the effect of smoking is zero
- 0.353 for testing if the effect of sex is zero

Confidence intervals: confint.default() computes CIs assuming asymptotic normality.

95% CIs on the log-odds and log-OR scale
confint.default(mod4)

##		2.5 %	97.5 %
##	(Intercept)	-13.4435765	4.4375001
##	age	-0.1268821	0.4167272
##	smoking	-4.1406222	1.4447034
##	sex	-1.4989379	4.2035422

```
## check mannually for age
c(0.1449225-1.96*0.1386784,0.1449225+1.96*0.1386784)
```

```
## [1] -0.1268872 0.4167322
```

```
## 95% CIs on the odds and OR scale
exp(confint.default(mod4))
```

##		2.5 %	97.5 %
##	(Intercept)	1.450537e-06	84.563278
##	age	8.808375e-01	1.516989
##	smoking	1.591295e-02	4.240594
##	sex	2.233673e-01	66.922968

If the MASS package is installed, confint()

gives CIs based on profile likelihood.

Hypothesis Testing when There is an Interaction Term

Let us revisit the interaction model we used before.

Estimate Std. Error z value Pr(>|z|)(Intercept) 6.931472e-01 1.224745 5.659523e-01 0.5714262 -1 925922e+01 4612 202148 -4 175709e-03 0 9966683 smoking ## -1.659121e-15 1 732051 -9 578940e-16 1 0000000 ## SOY ## smoking:sex 1.856607e+01 4612.202419 4.025424e-03.0.9967882

To test for significance of the interaction term, the p-value is 0.9967882.

However, the two p-values above this number are not p-values for testing the "main effect".

- p = 0.9966683 is the p-value for testing if smoking is significant among women (the "baseline" sex when sex=0)
- p = 1.000 is the p-value for testing if sex is significant among non-smokers (the "baseline" for smoking, smoking=0)

ROC Curve and Its AUC

The **ROC curve** is a graphical display of the predictive performance for logistic regression models if the fitted probabilities are used to classify the subjects.

- For any 0 < t < 1, we can define a classifier Ct, in which a subject is classified as Ŷ = 1 if p̂ ≥ t and Ŷ = 0 if p̂ < t. Comparing Ŷ with the observed Y, we can compute the sensitivity and specificity of Ct. The ROC curve is a plot of sensitivity vs. 1- specificity (equivalently, power vs. type I error rate, or TPR vs. FPR) for all classifiers Ct.
- If there are *n* observations, there are at most n + 1 classifiers and at most n + 1 points on the ROC curve. (Two classifiers are extreme ones: one predicting all subjects as 0 and the other predicting all subjects as 1, which correspond to (0,0) and (1,1) on the ROC curve).

The area-under-curve (**AUC**) of an ROC curve is a summary measure of the ROC curve. It is a measure of concondance between Y and \hat{p} . It is the same as the *C*-index (concordance index).

Irm() for Logistic Regression

The function lrm() in the rms R package can also be used to fit logistic regression. Make sure to run the options(datadist=) line so that we can run summary() on lrm objects,

```
library(rms)
options(datadist=datadist(dd))
mod5 = lrm(disease ~ age + smoking + sex, data=dd)
summary(mod5)
```

## ##		Effe	cts		Res	ponse :	disease	
##	Factor	Low	High	Diff.	Effect	S.E.	Lower 0.95	Upper 0.9
##	age	26.5	35.5	9	1.30430	1.2481	-1.141900	3.7505
##	Odds Ratio	26.5	35.5	9	3.68510	NA	0.319200	42.5440
##	smoking	0.0	1.0	1	-1.34800	1.4249	-4.140600	1.4447
##	Odds Ratio	0.0	1.0	1	0.25977	NA	0.015913	4.2406
##	sex	0.0	1.0	1	1.35230	1.4547	-1.498900	4.2035
##	Odds Ratio	0.0	1.0	1	3.86630	NA	0.223370	66.9230
	154							

mod5\$coef

##	Intercept	age	smoking	sex
##	-4.5030378	0.1449225	-1.3479593	1.3523021

mod5

```
## Logistic Regression Model
   ##
      lrm(formula = disease ~ age + smoking + sex. data = dd)
   ##
   ##
   ##
                            Model Likelihood
                                                Discrimination
                                                                  Rank D
   ##
                                  Ratio Test
                                                       Indexes
   ##
      Obs
                     12
                           LR chi2
                                        3.33
                                                R2
                                                        0.323
                                                                  С
                           d.f.
                                               R2(3,12) 0.027
   ##
       0
                      6
                                           3
                                                                  Dxv
                           Pr(> chi2) 0.3430
                                                R2(3,9) 0.036
   ##
                                                                  gamma
      max [deriv] 4e-06
                                                Brier
                                                        0.193
   ##
                                                                  tau-a
   ##
   ##
                               Wald Z Pr(>|Z|)
                Coef
                        S.E.
      Intercept -4,5030 4,5616 -0,99 0,3236
   ##
   ##
                 0.1449 0.1387 1.05 0.2960
      age
   ##
      smoking
                -1.3480 1.4249 -0.95 0.3441
                 1.3523 1.4547 0.93 0.3526
   ##
      sex
95
   ##
  mod4 = glm(disease ~ age + smoking + sex, data=dd,
                 familv=binomial)
   summary(mod4)$coef
   ##
                   Estimate Std. Error
                                          z value Pr(>|z|)
   ## (Intercept) -4.5030382 4.5615830 -0.9871657 0.3235614
                  0.1449225 0.1386784
                                       1.0450260 0.2960109
   ## age
                 -1.3479594 1.4248541 -0.9460333 0.3441316
   ## smoking
   ## sex
                  1.3523022 1.4547410 0.9295828 0.3525872
```

polr() and orm() for Ordinal Logistic Regression

```
## Simulate a dataset with x and ordinal y
set.seed(20); n = 100
x = rnorm(n) + 10; y0 = 10 + (x-9)^2 + rnorm(n,0,2)
range(y0)
## [1] 6.443783 21.653317
x = out(x0, breakese(0, 0, 12, 15, 100))
```

```
y = cut(y0, breaks=c(0,9,12,15,100))
table(y)
```

```
## y
## (0,9] (9,12] (12,15] (15,100]
## 16 34 32 18
```

In polr() from the MASS package, the model is $G_1(Pr(Y \le y|X)) = \alpha_1 - \beta_1^T X$ (focus on lower side of every dichotomization)

library(MASS)
mod8 = polr(y ~ x) ## default is logit link
summary(mod8)\$coef

##		Value	Std. Error	t value
##	х	1.665099	0.265234	6.277849
##	(0,9] (9,12]	14.268944	2.522839	5.655908
##	(9,12] (12,15]	16.553371	2.651118	6.243921
##	(12,15] (15,100]	18.887341	2.837238	6.656945

In orm() from the rms package, the model is $G_2(Pr(Y \ge y|X)) = \alpha_2 + \beta_2^T X$ (focus on upper side of every dichotomization)

```
library(rms)
mod6 = orm(y ~ x) ## default is logit link
mod6$coef
```

```
## y>=(9,12] y>=(12,15] y>=(15,100] x
## -14.268989 -16.553426 -18.887431 1.665106
## For logit link, lrm() can do it too
mod7 = lrm(y ~ x)
mod7$coef
```

```
## y>=(9,12] y>=(12,15] y>=(15,100] x
## -14.269011 -16.553449 -18.887460 1.665108
```

The models from polr() and orm() focus on different sides of the dichotomizations. They are equivalent when $G_1(t) = -G_2(1-t)$, $\alpha_1 = -\alpha_2$, $\beta_1 = \beta_2$

polr() and orm() for Ordinal Logistic Regression (cont'd)

$\overline{G_1 (\text{polr}) - G_2 (\text{orm})}$	<pre>polr.cloglog = polr(y ~ x, method="cloglog") summary(polr.cloglog)\$coef</pre>
logit logit probit probit	## Value Std. Error t value ## x 0.7972981 0.111467 7.152775 ## (0,9] (9,12] 5.0399438 1.053868 5.636325 ## (9,12] (12,15] 7.4955433 1.056307 7.095593 ## (12,15] (15,100] 8.8876164 1.169070 7.602298
cloglog loglog loglog cloglog	<pre>orm.loglog = orm(y ~ x, family="loglog") orm.loglog\$coef</pre>
	## y>=(9,12] y>=(12,15] y>=(15,100] x ## -5.9399708 -7.4955694 -8.8876413 0.7973004
<pre>polr.probit = polr(y ~ x, method="probit") summary(polr.probit)\$coef</pre>	<pre>polr.loglog = polr(y ~ x, method="loglog") summary(polr.loglog)\$coef</pre>
## Value Std. Error t value ## x 0.9273884 0.1358147 6.828337 ## (0,9] (9,12] 7.9180455 1.3035356 6.074284 ## (9,12]](12,15] 9.2071335 1.3506143 6.816997 ## (12,15] (15,100] 10.5779477 1.4426212 7.332450	## Value Std. Error t value ## x 1.129081 0.1795183 6.289503 ## (0,09] (9,12] 10.316182 1.7631654 5.850944 ## (9,12] (12,15] 11.641869 1.8401061 6.326738 ## (12,15] (15,100] 13.267885 1.9360576 6.853043
<pre>orm.probit = orm(y ~ x, family="probit") orm.probit\$coef</pre>	<pre>orm.cloglog = orm(y ~ x, family="cloglog") orm.cloglog\$coef</pre>
## y>=(9,12] y>=(12,15] y>=(15,100] x ## -7.9016602 -9.1894356 -10.5595105 0.9256388	## y>=(9,12] y>=(12,15] y>=(15,100] x ## -10.31311 -11.63734 -13.26638 1.12872