
Logistic Regression

Chun Li, PhD

Division of Biostatistics

Department of Population and Public Health Sciences

University of Southern California

June 12-16, 2023

Chun Li, PhD Logistic Regression June 12-16, 2023 1 / 21



Basic Concepts for Binary Outcomes

A binary outcome is an outcome variable with two outcome categories.

Examples: Disease vs. non-disease, success vs. failure, yes vs. no, etc.

We designate one of the two outcome categories as the event of interest.

We often code the event of interest as 1 and the other category as 0.

Suppose p is the probability for the event of interest with 0 < p < 1. Then

The odds of the event is p
1−p , and the log-odds is log( p

1−p ).

The function log( p
1−p ) is called the logit function and is often expressed as logit(p).

Here, log() refers to the natural logarithm.
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Odds Ratios

The probability of the event of interest can differ under different conditions.

The odds-ratio (OR) for Condition 1 versus Condition 2 is OR12 = p1/(1−p1)
p2/(1−p2) , where pk be the

probability of the event of interest under Condition k.

The OR for Condition 2 versus Condition 1 is OR21 = p2/(1−p2)
p1/(1−p1) = 1/OR12.

An OR is always between two conditions, and it depends on the order of the conditions.

If the two conditions are defined by a binary variable (e.g., sex), with its coding well
specified (e.g., 0=F, 1=M), one may say “the OR for sex”.

If the coding is unclear, “the OR for sex” is ambiguous because it could be the OR for man
vs. woman or the OR for woman vs. man; if the former is 2 then the latter is 0.5.

If the conditions are defined by a variable with more than two values (e.g., age), a phrase
like “the OR for age” may not make sense (unless under a specific context, say, when linear
effect is assumed and the scale of age is specified).
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Logistic Regression

Logistic regression is to model a binary outcome against a set of predictors X = (X1, . . . ,Xp).

Specifically, we model the outcome probability (not the outcome itself) as a function of X :

p = σ(β0 + βT X) = eβ0+βT X

1 + eβ0+βT X ,

or equivalently,
logit(p) = log

( p
1− p

)
= β0 + βT X .

Here β = (β1, . . . , βp) is a vector of coefficients, and βT X = β1X1 + · · ·+ βpXp.

σ(t) = et

1+et is the inverse of the logit function: If p = σ(t) then t = logit(p).
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Maximum Likelihood Estimation

Suppose we have independent
observations with

Y , the outcome (1=disease,
0=no disease)
X1, age (in years)
X2, smoking status
(1=smoker, 0=non-smoker)

disease age smoking
1 25 1
0 30 1
0 27 0
1 25 0
...

...
...

The likelihoods for the individuals are

P(Y = 1|X1 = 25,X2 = 1) = eβ0+25β1+β2

1 + eβ0+25β1+β2

P(Y = 0|X1 = 30,X2 = 1) = 1
1 + eβ0+30β1+β2

P(Y = 0|X1 = 27,X2 = 0) = 1
1 + eβ0+27β1

P(Y = 1|X1 = 25,X2 = 0) = eβ0+25β1

1 + eβ0+25β1

· · ·

The overall likelihood is the product of these individual
likelihoods. It is then maximized to obtain the MLEs for
β0, β1, β2. (An iterative algorithm will be used.)
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Example R-Code and Results
Suppose the full dataset is
(n = 12):

disease age smoking
1 25 1
0 30 1
0 27 0
1 25 0
0 35 1
0 22 1
1 38 0
1 40 0
1 32 1
0 30 1
0 29 0
1 37 0

mod1 = glm(disease ~ age + smoking, data=dd, family=binomial)
summary(mod1)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.3391574 4.1972874 -0.7955513 0.4262929
## age 0.1262221 0.1312073 0.9620052 0.3360470
## smoking -1.0657874 1.2922082 -0.8247799 0.4094965

Note that e−1.0658 = 0.344 is the estimated OR for smoking when
age is fixed (i.e., within every age group). It is often different from
the marginal OR for smoking.
table(dd$disease, dd$smoking) ## marginal distribution
##
## 0 1
## 0 2 4
## 1 4 2

The marginal OR for smoking is 2×2
4×4 = 0.25, which can also be

obtained below:
mod2 = glm(disease ~ smoking, data=dd, family=binomial)
exp(summary(mod2)$coef[2,1])
## [1] 0.25
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Unadjusted vs. Adjusted ORs

If we fit a logistic regression model of Y on a single variable X1, as in

logit(P(Y = 1|X1)) = β0 + β1X1,

then eβ1 is the unadjusted OR (or marginal OR) for X1.

If we fit a logistic regression model of Y on two or more variables X1, · · · ,Xp, as in

logit(P(Y = 1|X1, . . . ,Xp)) = β0 + β1X + · · ·+ βpXp,

then eβ1 is the adjusted OR for X1 after adjusting for the effects of the other variables (or we
can say eβ1 is the adjusted OR for X1 while fixing the values of the other variables).
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Interpretation of Model Coefficients

Suppose our model is

logit(p) = log
( p
1− p

)
= log(odds) = β0 + β1X1 + β2X2.

where X1 is age (in years) and X2 is smoking status (1=smoker, 0=non-smoker).

Then (elaboration on next slide)

β1 is the log-OR, and eβ1 is the OR, for X1 (technically, eβ1 is the OR for one unit
increment of X1 while keeping X2 value fixed).

β2 is the log-OR, and eβ2 is the OR, for X2 (while keeping X1 value fixed).

β0 is the log-odds, and eβ0 is the odds, for the “baseline subject” (which corresponds to
X1 = 0 and X2 = 0). In this example, the “baseline subject” does not exist in reality.
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Interpretation of Model Coefficients (cont’d)

Consider a subject with X1 = x1 and X2 = x2, and a second subject with X1 = x1 + 1 and
X2 = x2. The OR for the second subject versus the first one is

odds for second subject
odds for first subject = eβ0+β1(x1+1)+β2x2

eβ0+β1x1+β2x2
= eβ1 .

Thus, β1 is the log-OR for the second subject versus the first one, or β1 is the log-OR for
increasing X1 by one unit while keeping all other variables fixed. It depends on the scale of X1.

Consider a “baseline subject” with X1 = 0 and X2 = 0. The odds for the subject is

eβ0+β1·0+β2·0 = eβ0 .

Thus, β0 is the log-odds for the “baseline subject” (which may not exist in reality).
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Interpretation of Model Coefficients (cont’d)
Consider a model with two binary predictors: sex (0=F, 1=M), smoking status (0=NS, 1=S),

log
( p
1− p

)
= β0 + β1 · sex + β2 · smoking

=


β0, female non-smoker;
β0 + β1, male non-smoker;
β0 + β2, female smoker;
β0 + β1 + β2, male smoker.

eβ0 is the odds for the “baseline” group of female non-smokers (who have the “baseline”
sex and “baseline” smoking status according to our coding).

eβ1 is the OR for sex (male vs. female). The OR for sex is the same among non-smokers
and among smokers.

eβ2 is the OR for smoking (smoking vs. non-smoking). The OR for smoking is the same
among females and among males.
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Suppose We Have X3 (sex)
Suppose we also have X3
(sex, 1=man, 0=woman):

disease age smoking sex
1 25 1 1
0 30 1 0
0 27 0 1
1 25 0 0
0 35 1 0
0 22 1 1
1 38 0 1
1 40 0 0
1 32 1 1
0 30 1 1
0 29 0 0
1 37 0 1

mod3 = glm(disease ~ smoking + sex, data=dd, family=binomial)
summary(mod3)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1811935 1.053815 0.1719405 0.8634843
## smoking -1.6824533 1.357387 -1.2394796 0.2151679
## sex 1.1326672 1.377308 0.8223776 0.4108620

Here, e−1.6825 = 0.186 is the estimated OR for smoking when
sex is fixed, and e1.1327 = 3.10 is the estimated OR for sex
when smoking is fixed.

mod4 = glm(disease ~ age + smoking + sex, data=dd, family=binomial)
summary(mod4)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.5030382 4.5615830 -0.9871657 0.3235614
## age 0.1449225 0.1386784 1.0450260 0.2960109
## smoking -1.3479594 1.4248541 -0.9460333 0.3441316
## sex 1.3523022 1.4547410 0.9295828 0.3525872

Here, e1.3523 = 3.87 is the estimated OR for sex when both
age and smoking are fixed.
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Interaction Terms in Logistic Regression
Now consider an interaction model between sex and smoking,

log
( p
1− p

)
= β0 + β1 · sex + β2 · smoking + β3 · sex · smoking

=


β0, female non-smoker;
β0 + β1, male non-smoker;
β0 + β2, female smoker;
β0 + β1 + β2 + β3, male smoker.

eβ0 is the odds for the “baseline” group of female non-smokers.
eβ1 is the OR for sex among non-smokers. (The OR for sex among smokers is eβ1+β3 .)
eβ2 is the OR for smoking among females. (The OR for smoking among males is eβ2+β3 .)
eβ3 is a ratio of ORs:

eβ3 = OR for sex among smokers
OR for sex among non-smokers = OR for smoking among males

OR for smoking among females .
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Interaction Terms in Logistic Regression (cont’d)

When there is an interaction term between X1 and X2,

β1 and β2 do not reflect the overall effects of X1 and X2, That is, they are not “main
effects”.

β0, β1, and β3 are not comparable because they are different concepts and are on different
scales:

β0 is a log-odds.
β1 and β2 are log-ORs.
β3 is the difference of two log-ORs.

It is meaningless to make statements like β1 = β3 even though they may happen to have
the same value.

It is meaningless to state that “the interaction effect is stronger than the main effect”.
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R-code for Interaction Models
mod3 = glm(disease ~ smoking * sex, data=dd,

family=binomial)
summary(mod3)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.931472e-01 1.224745 5.659523e-01 0.5714262
## smoking -1.925922e+01 4612.202148 -4.175709e-03 0.9966683
## sex -1.659121e-15 1.732051 -9.578940e-16 1.0000000
## smoking:sex 1.856607e+01 4612.202419 4.025424e-03 0.9967882

We can check the coefficient estimates
manually.
## disease dist. in baseline of female non-smokers:
## odds = 2/1 = 2 = exp(6.931e-1)
with(dd, table(disease[smoking==0 & sex==0]))
##
## 0 1
## 1 2

## disease-smoking distribution among females:
## OR = (0/2)/(2/1) = 0 = exp(-1.926e1)
with(dd, table(disease[sex==0], smoking[sex==0]))
##
## 0 1
## 0 1 2
## 1 2 0

## disease-sex distribution among non-smokers:
## OR = (2/1)/(2/1) = 1 = exp(-1.659e-15)
with(dd, table(disease[smoking==0], sex[smoking==0]))
##
## 0 1
## 0 1 1
## 1 2 2

The interaction effect is a ratio of two ORs. We
need the OR for sex among smokers.
## disease-sex distribution among smokers:
## OR = (2/2)/(0/2) = infinity
with(dd, table(disease[smoking==1], sex[smoking==1]))
##
## 0 1
## 0 2 2
## 1 0 2

The ratio of the last 2 ORs is infinity/1 =
infinity, which is estimated as exp(1.857e1) in
logistic regression.
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Interaction Terms in Logistic Regression (cont’d)
Now consider an interaction model between adult age (a continuous variable with values way
above 0) and smoking,

log
( p
1− p

)
= β0 + β1 · age + β2 · smoking + β3 · age · smoking

=
{
β0 + β1 · age, non-smoker;
(β0 + β2) + (β1 + β3) · age, smoker.

eβ0 is the odds for non-smokers at 0 year old (nonexistent!).
eβ1 is the OR for one year older vs. current age among non-smokers. (The OR for one year
older vs. current age among smokers is eβ1+β3 .)
eβ2 is the OR for smoking among 0 year olds (nonexistent!) (The OR for smoking among
x year olds is eβ2+β3x .)
eβ3 is a ratio of ORs:

eβ3 = OR for one-year-older among smokers
OR for one-year-older among non-smokers = OR for smoking among x + 1 year olds

OR for smoking among x year olds .
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Hypothesis Testing for Coefficents, Confidence Intervals

Testing for H0 : βj = 0 vs. H1 : βj 6= 0:

mod4 = glm(disease ~ age + smoking + sex, data=dd,
family=binomial)

summary(mod4)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.5030382 4.5615830 -0.9871657 0.3235614
## age 0.1449225 0.1386784 1.0450260 0.2960109
## smoking -1.3479594 1.4248541 -0.9460333 0.3441316
## sex 1.3523022 1.4547410 0.9295828 0.3525872

The p-value is
0.296 for testing if the effect of age is zero
0.344 for testing if the effect of smoking is
zero
0.353 for testing if the effect of sex is zero

Confidence intervals: confint.default()
computes CIs assuming asymptotic normality.
## 95% CIs on the log-odds and log-OR scale
confint.default(mod4)
## 2.5 % 97.5 %
## (Intercept) -13.4435765 4.4375001
## age -0.1268821 0.4167272
## smoking -4.1406222 1.4447034
## sex -1.4989379 4.2035422

## check mannually for age
c(0.1449225-1.96*0.1386784,0.1449225+1.96*0.1386784)
## [1] -0.1268872 0.4167322

## 95% CIs on the odds and OR scale
exp(confint.default(mod4))
## 2.5 % 97.5 %
## (Intercept) 1.450537e-06 84.563278
## age 8.808375e-01 1.516989
## smoking 1.591295e-02 4.240594
## sex 2.233673e-01 66.922968

If the MASS package is installed, confint()
gives CIs based on profile likelihood.
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Hypothesis Testing when There is an Interaction Term

Let us revisit the interaction model we used
before.

mod3 = glm(disease ~ smoking * sex, data=dd,
family=binomial)

summary(mod3)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.931472e-01 1.224745 5.659523e-01 0.5714262
## smoking -1.925922e+01 4612.202148 -4.175709e-03 0.9966683
## sex -1.659121e-15 1.732051 -9.578940e-16 1.0000000
## smoking:sex 1.856607e+01 4612.202419 4.025424e-03 0.9967882

To test for significance of the interaction term,
the p-value is 0.9967882.

However, the two p-values above this number
are not p-values for testing the “main effect”.

p = 0.9966683 is the p-value for testing if
smoking is significant among women (the
“baseline” sex when sex=0)
p = 1.000 is the p-value for testing if sex is
significant among non-smokers (the
“baseline” for smoking, smoking=0)
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ROC Curve and Its AUC

The ROC curve is a graphical display of the predictive performance for logistic regression
models if the fitted probabilities are used to classify the subjects.

For any 0 < t < 1, we can define a classifier Ct , in which a subject is classified as Ŷ = 1 if
p̂ ≥ t and Ŷ = 0 if p̂ < t. Comparing Ŷ with the observed Y , we can compute the
sensitivity and specificity of Ct . The ROC curve is a plot of sensitivity vs. 1− specificity
(equivalently, power vs. type I error rate, or TPR vs. FPR) for all classifiers Ct .

If there are n observations, there are at most n + 1 classifiers and at most n + 1 points on
the ROC curve. (Two classifiers are extreme ones: one predicting all subjects as 0 and the
other predicting all subjects as 1, which correspond to (0, 0) and (1, 1) on the ROC curve).

The area-under-curve (AUC) of an ROC curve is a summary measure of the ROC curve. It is a
measure of concondance between Y and p̂. It is the same as the C -index (concordance index).
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lrm() for Logistic Regression

The function lrm() in the rms R package can
also be used to fit logistic regression. Make sure
to run the options(datadist= ) line so that
we can run summary() on lrm objects,

library(rms)
options(datadist=datadist(dd))
mod5 = lrm(disease ~ age + smoking + sex, data=dd)
summary(mod5)
## Effects Response : disease
##
## Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
## age 26.5 35.5 9 1.30430 1.2481 -1.141900 3.7505
## Odds Ratio 26.5 35.5 9 3.68510 NA 0.319200 42.5440
## smoking 0.0 1.0 1 -1.34800 1.4249 -4.140600 1.4447
## Odds Ratio 0.0 1.0 1 0.25977 NA 0.015913 4.2406
## sex 0.0 1.0 1 1.35230 1.4547 -1.498900 4.2035
## Odds Ratio 0.0 1.0 1 3.86630 NA 0.223370 66.9230

mod5$coef
## Intercept age smoking sex
## -4.5030378 0.1449225 -1.3479593 1.3523021

mod5
## Logistic Regression Model
##
## lrm(formula = disease ~ age + smoking + sex, data = dd)
##
## Model Likelihood Discrimination Rank Discrim.
## Ratio Test Indexes Indexes
## Obs 12 LR chi2 3.33 R2 0.323 C 0.750
## 0 6 d.f. 3 R2(3,12) 0.027 Dxy 0.500
## 1 6 Pr(> chi2) 0.3430 R2(3,9) 0.036 gamma 0.500
## max |deriv| 4e-06 Brier 0.193 tau-a 0.273
##
## Coef S.E. Wald Z Pr(>|Z|)
## Intercept -4.5030 4.5616 -0.99 0.3236
## age 0.1449 0.1387 1.05 0.2960
## smoking -1.3480 1.4249 -0.95 0.3441
## sex 1.3523 1.4547 0.93 0.3526
##

mod4 = glm(disease ~ age + smoking + sex, data=dd,
family=binomial)

summary(mod4)$coef
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.5030382 4.5615830 -0.9871657 0.3235614
## age 0.1449225 0.1386784 1.0450260 0.2960109
## smoking -1.3479594 1.4248541 -0.9460333 0.3441316
## sex 1.3523022 1.4547410 0.9295828 0.3525872
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polr() and orm() for Ordinal Logistic Regression
## Simulate a dataset with x and ordinal y
set.seed(20); n = 100
x = rnorm(n) + 10; y0 = 10 + (x-9)ˆ2 + rnorm(n,0,2)
range(y0)
## [1] 6.443783 21.653317

y = cut(y0, breaks=c(0,9,12,15,100))
table(y)
## y
## (0,9] (9,12] (12,15] (15,100]
## 16 34 32 18

In polr() from the MASS package, the model
is G1(Pr(Y ≤ y |X )) = α1 − βT

1 X
(focus on lower side of every dichotomization)
library(MASS)
mod8 = polr(y ~ x) ## default is logit link
summary(mod8)$coef
## Value Std. Error t value
## x 1.665099 0.265234 6.277849
## (0,9]|(9,12] 14.268944 2.522839 5.655908
## (9,12]|(12,15] 16.553371 2.651118 6.243921
## (12,15]|(15,100] 18.887341 2.837238 6.656945

In orm() from the rms package, the model is
G2(Pr(Y ≥ y |X )) = α2 + βT

2 X
(focus on upper side of every dichotomization)
library(rms)
mod6 = orm(y ~ x) ## default is logit link
mod6$coef
## y>=(9,12] y>=(12,15] y>=(15,100] x
## -14.268989 -16.553426 -18.887431 1.665106

## For logit link, lrm() can do it too
mod7 = lrm(y ~ x)
mod7$coef
## y>=(9,12] y>=(12,15] y>=(15,100] x
## -14.269011 -16.553449 -18.887460 1.665108

The models from polr() and orm() focus on
different sides of the dichotomizations. They
are equivalent when
G1(t) = −G2(1− t), α1 = −α2, β1 = β2
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polr() and orm() for Ordinal Logistic Regression (cont’d)

G1 (polr) G2 (orm)

logit logit
probit probit
cloglog loglog
loglog cloglog

polr.probit = polr(y ~ x, method="probit")
summary(polr.probit)$coef
## Value Std. Error t value
## x 0.9273884 0.1358147 6.828337
## (0,9]|(9,12] 7.9180455 1.3035356 6.074284
## (9,12]|(12,15] 9.2071335 1.3506143 6.816997
## (12,15]|(15,100] 10.5779477 1.4426212 7.332450

orm.probit = orm(y ~ x, family="probit")
orm.probit$coef
## y>=(9,12] y>=(12,15] y>=(15,100] x
## -7.9016602 -9.1894356 -10.5595105 0.9256388

polr.cloglog = polr(y ~ x, method="cloglog")
summary(polr.cloglog)$coef
## Value Std. Error t value
## x 0.7972981 0.111467 7.152775
## (0,9]|(9,12] 5.9399438 1.053868 5.636325
## (9,12]|(12,15] 7.4955433 1.056307 7.095993
## (12,15]|(15,100] 8.8876164 1.169070 7.602298

orm.loglog = orm(y ~ x, family="loglog")
orm.loglog$coef
## y>=(9,12] y>=(12,15] y>=(15,100] x
## -5.9399708 -7.4955694 -8.8876413 0.7973004

polr.loglog = polr(y ~ x, method="loglog")
summary(polr.loglog)$coef
## Value Std. Error t value
## x 1.129081 0.1795183 6.289503
## (0,9]|(9,12] 10.316182 1.7631654 5.850944
## (9,12]|(12,15] 11.641869 1.8401061 6.326738
## (12,15]|(15,100] 13.267885 1.9360576 6.853043

orm.cloglog = orm(y ~ x, family="cloglog")
orm.cloglog$coef
## y>=(9,12] y>=(12,15] y>=(15,100] x
## -10.31311 -11.63734 -13.26638 1.12872
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