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Linear Regression

When the outcome is a continuous variable, we may use linear regression. The model is

Y = β0 + βT X + ε = β0 + β1X1 + · · ·+ βpXp + ε,

where the residual ε has mean 0 and variance σ2. Here β = (β1, . . . , βp) is a vector of
coefficients, and βT X = β1X1 + · · ·+ βpXp.

When we have independent observations {(yi , xi) : i = 1, . . . , n}, the model is often fit with
least squares, which is to identify β̂0 and β̂ such that they minimize

∑n
i=1(yi − β0 − βT xi)2.

An implicit assumption here is that all observations have similar residual variances.

In linear regression, we allocate one degree of freedom (DF) to each predictor variable to
model its linear effect.

We now go beyond linearity and model the nonlinear effect of a predictor.
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Nonlinear Effects
An example of nonlinear effects.
par(mar=c(4,4,1,1))
with(ISLR::Auto, plot(horsepower, mpg, bty='n'))

50 100 150 200

10
20

30
40

horsepower

m
pg

Options:

Add a quadratic term
(or a quadratic term + a cubic term)

Polynomial regression with d ≥ 4 (x)

Step function (piecewise constant) (x)

Natural splines (or smooth splines) (X)

Local regression (X)
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Polynomial Regression
A simple approach to modeling nonlinear effect of a variable X1 is to add a quadratic term, X 2

1 ,
to the model (2 DFs for X1), as in:

Y = β0 + βT X + ε = β0 + β11X1 + β12X 2
1 + β2X2 + · · ·+ βpXp + ε,

Occasionally, a cubic term, X 3
1 , may be added, with 3 DFs for X1.

But polynomial regression with a higher degree (≥ 4) is generally not recommended, because

A high-degree polynomial is difficult to interpret.

A polynomial with K degrees has the same DFs as a natural spline with K + 1 knots, but
the latter has much better flexibility and interpretation.

Polynomials allow high leverage data to have too much impact on the result.

Data at one end could influence the shape of the fitted curve on the other end, because a
polynomial is a “global” function.
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We now demonstrate the last two points. We first simulate some data (n = 100), then fit
polynomial regression with d = 10 and d = 5 (black). We remove an observation that has one
of the most extreme x (two lowest x and two highest x), and refit the models (red and green).
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Step Functions

A step function transforms a quantitative predictor into a categorical variable. For example,
“age group” is sometimes used as a predictor variable instead of age itself. Using a step function
on a predictor variable results in a piecewise constant model.

It can lead to distortion and loss of information. For example, when using age group in
decades as a predictor, we implicitly assume that ages 41 and 49 (8 years apart) have the
same effect, while ages 49 and 51 (2 years apart) have different effects.

By assuming a constant effect over an interval we may miss a trend inside the interval.

Too few categories may over-simplify the effect of the variable. Too many categories uses
many DFs.

A step function with K categories has the same DFs as a natural spline with K knots, but
the latter has much better flexibility and interpretation.

Categorization of a variable may be useful for reporting results, but often not helpful for analysis.
Chun Li, PhD Linear Regression with Nonlinear Effects June 12-16, 2023 6 / 27



Splines

A spline is a piecewise polynomial function,
with constraints at the connecting knots to
ensure the function is smooth.

There are often 3 constraints at every knot t:
The function has same value at t,
Its first derivative has same value at t,
Its second derivative has same value at t.

The rationale of these constraints is shown in
Figure 5.2 of Elements of Statistical Learning,
2nd Edition.
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Cubic Splines

Cubic splines are splines that are piecewise cubic functions.

A cubic spline with K knots has K + 1 intervals.

A cubic spline with K knots has K + 3 DFs attributable to the variable.
[Each interval has 4 parameters (because a cubic function has 4 coefficients). There are 3
constraints at every knot. So, there are 4(K +1)− 3K = K +4 DFs, which include one DF
for the intercept. Therefore, K + 3 DFs are attributable to the variable.]

One set of K + 3 basis functions is:

x , x2, x3, (x − t1)3
+, · · · , (x − tK )3

+,

where t1 < . . . < tK are the K knots, and (x − t)3
+ = (x − t)3 when x ≥ t and 0 when

x < t. The function (x − t)3
+ is called truncated power basis function at t.

B-splines provide another set of basis functions.
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Natural Splines / Restricted Cubic Splines
In cubic splines, the internal intervals have constraints on both sides, but the two end intervals
have constraints on only one side, leaving them too flexible. This is addressed by natural splines.

Natural splines (also called restricted cubic splines or RCS) are cubic splines but with linear
functions (instead of cubic functions) for the leftmost and rightmost intervals.

A natural spline with K knots has K − 1 DFs attributable to the variable.
[A natural spline has 2 fewer parameters for each end interval than a cubic spline with the
same number of knots.]

One set of K − 1 basis functions is: N1(x) = x , and

Nj+1(x) = (x − tj)3
+ −

tK − tj
tK − tK−1

(x − tK−1)3
+ + tK−1 − tj

tK − tK−1
(x − tK )3

+,

for j = 1, . . . ,K − 2, where t1 < . . . < tK are the K knots. rms::rcs() uses a scaled
version of this set as basis functions.

splines::ns() uses B-splines to generate a different set of basis functions.
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Example Basis Functions
B-splines for ns(horsepower, df=5) Fitted model using these splines
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Number of Knots and Positions of Knots

The number of knots depends on how many DFs you can, and want to, “spend” on a variable.

The total number of DFs you can “spend” depends on the sample size and the number of
predictor variables.
For a variable of interest with a clear nonlinear effect, we may want to spend a few DFs on
it by modeling its effect with natural splines.
For a covariate you just want to adjust for, you may or may not model its nonlinear effect.
The number of knots can be treated as a hyperparameter, which may be selected through
cross-validation.

Positions of knots:

Ideally, knots should be placed at where the function may change rapidly.
Sometimes, they are chosen at certain default quantiles.
It is recommended that the smallest knot and the largest knots are put close to or at the
ends, because otherwise there might be a visible linear portion at the ends.
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ns() and rcs() in R
Suppose we want to spend 5 DFs on variable X . Then there will be 6 knots.

In ns() from the splines R package:

We can specify DF: e.g., ns(x, df=5). The knots include 2 boundary knots fixed at the
very ends by default (i.e., min(x) and max(x)), and internal knots chosen at evenly spaced
quantiles (e.g., 20th, 40th, 60th, 80th percentiles in this example).
We can also specify the positions of the knots explicitly: e.g.,
ns(x, knots=c(60,80,150,180)) # leave boundary knots at default
ns(x, knots=c(60,80,150,180), Boundary.knots=c(20,270))

In rcs() from the rms R package:

We can specify the number of knots: e.g. rcs(x, parms=6). The knots are chosen to be
the quantiles at 0.05 and 0.95, and other quantiles evenly spaced in between (e.g., 5th,
23th, 41th, 59th, 77th, 95th quantiles in this example).
We can also specify the knots explicitly: e.g. rcs(x,parms=c(20,60,80,150,180,270))
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ns() and rcs() in R (cont’d)
## Simulate a dataset with x and y
set.seed(20); n = 100
x = rnorm(n) + 10; y = 10 + (x-9)ˆ2 + rnorm(n,0,2)
par(mar=c(2,2,1,1))
plot(x, y, bty='n')

## Fit spline models using ns() and rcs()
library(splines); library(rms)
ns.mod1 = lm(y ~ ns(x, df=5))
rcs.mod1 = lm(y ~ rcs(x, parms =

quantile(x, c(.05, .1, .3, .7, .9, .95))))

## Draw the fitted spline functions
idx = order(x)
points(x[idx], fitted(ns.mod1)[idx], type='l', col=1)
points(x[idx], fitted(rcs.mod1)[idx], type='l', col=2)
legend('topleft', col=1:2, lty=1, bty='n',

legend=c("ns.mod1", "rcs.mod1"))

The models are different because they use different
knots. 7 8 9 10 11 12
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ns() and rcs() in R (cont’d)
Once the knots are the same, ns() and rcs()
give the same model.

## internal knots from ns(x, df=5)
K1 = with(attributes(ns(x, df=5)), knots)
## boundary knots from ns(x, df=5)
K2 = with(attributes(ns(x, df=5)), Boundary.knots)

## Fit a rcs() model with knots obtained above
rcs.mod2 = lm(y ~ rcs(x, parms=c(K1,K2)))
all.equal(predict(ns.mod1), predict(rcs.mod2))
## [1] TRUE

## Fit a rcs() model with knots explicitly specified
rcs.mod3 = lm(y ~ rcs(x, parms=

c(range(x), quantile(x, c(.2, .4, .6, .8)))))
all.equal(predict(ns.mod1), predict(rcs.mod3))
## [1] TRUE

rcs.mod4 = ols(y ~ rcs(x, parms=
c(range(x), quantile(x, c(.2, .4, .6, .8)))))

all.equal(predict(ns.mod1), predict(rcs.mod4))
## [1] TRUE

But they can have different coefficients.
summary(ns.mod1)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.2236594 1.526001 8.0102549 3.038494e-12
## ns(x, df = 5)1 -1.5380952 1.503016 -1.0233394 3.087738e-01
## ns(x, df = 5)2 0.8478543 1.836584 0.4616475 6.454007e-01
## ns(x, df = 5)3 2.6454132 1.316994 2.0086752 4.744040e-02
## ns(x, df = 5)4 2.5691541 3.542401 0.7252580 4.700955e-01
## ns(x, df = 5)5 11.0401089 1.548482 7.1296356 2.041734e-10

summary(rcs.mod2)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.537554 11.403157 2.59029611 0.01111521
## rcs(x, parms = c(K1, K2))x -2.435050 1.405077 -1.73303679 0.08636844
## rcs(x, parms = c(K1, K2))x' 7.122827 4.074437 1.74817462 0.08369878
## rcs(x, parms = c(K1, K2))x'' -1.947134 89.126924 -0.02184675 0.98261651
## rcs(x, parms = c(K1, K2))x''' -118.320587 243.258608 -0.48639836 0.62781685
## rcs(x, parms = c(K1, K2))x'''' 176.117066 208.297990 0.84550536 0.39997582

This is because they use different basis functions
for their splines. In other words, they have
different parameterizations for their splines.
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Interpretation of Models with Splines

It is often difficult to interpret the spline
coefficients because each coefficient is for a
single basis function.

Variables with splines should be evaluated as a
whole instead of over individual coefficients.

Evaluation of the effect of a variable: Pick
a reference value x0. Compare the effect at any
other x value with that at x0. For the example
on the right, we set x0 = 10.

x0 = data.frame(x=10)
xgrid = data.frame(x=seq(7, 12, 0.1))
cc = predict(ns.mod1, newdata=xgrid) -

predict(ns.mod1, newdata=x0)
par(mar=c(4,4,1,1))
plot(xgrid$x, cc, type='l', xlab='X',

ylab='Relative effect on Y')
abline(h=0, col='grey', lty=2)
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Confidence Intervals

To add confidence intervals, we can use rcs()
and fit the model with ols(). Then we can use
summary() on the model to extract information
for the confidence bands.

rcs.mod4 = ols(y ~ rcs(x, parms=
c(range(x), quantile(x, c(.2, .4, .6, .8)))))

x0 = data.frame(x=10)
xgrid = data.frame(x=seq(7, 12, 0.1))
cc2 = predict(rcs.mod4, newdata=xgrid) -

predict(rcs.mod4, newdata=x0)

CI = matrix(0, nrow(xgrid), 2)
for(i in 1:nrow(xgrid)) {
CI[i,] = summary(rcs.mod4,

x=c(10,10,xgrid$x[i]))[6:7]
}

par(mar=c(4,4,1,1))
plot(xgrid$x, cc2, type='l', ylim=range(CI),

xlab='X', ylab='Relative effect on Y')
abline(h=0, col='grey', lty=2)
points(xgrid$x, CI[,1], type='l', col='grey')
points(xgrid$x, CI[,2], type='l', col='grey')
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Testing for Significant Nonlinearity

To test if the extra DFs are significant, we can
use a likelihood ratio test, in which we compare

the model with splines (the full model)

the model with only the linear term (the
null model)

We can use anova() for this test.

## the null model
mod0 = lm(y ~ x)

anova(mod0, ns.mod1)
## Analysis of Variance Table
##
## Model 1: y ~ x
## Model 2: y ~ ns(x, df = 5)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 98 501.51
## 2 94 370.74 4 130.77 8.2892 9.025e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(mod0, rcs.mod1)
## Analysis of Variance Table
##
## Model 1: y ~ x
## Model 2: y ~ rcs(x, parms = quantile(x, c(0.05, 0.1, 0.3, 0.7, 0.9, 0.95)))
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 98 501.51
## 2 94 374.43 4 127.08 7.976 1.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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AIC for Selection of DF
We can determine how many DFs are the most adequate
by using AIC (Akaike’s Information Criterion).
ns.aic = NULL
for(df in 1:10) {
ns.aic[df] = AIC(lm(y ~ ns(x, df=df)))

}
which.min(ns.aic)
## [1] 2

plot(1:10, ns.aic)
abline(h=ns.aic[which.min(ns.aic)], col='grey')

For this data, the minimum AIC occurs when df = 2.
Thus we choose the spline model with 2 DFs.

Note: The AIC for df = 4 is slightly higher than that for
df = 2. If it were slightly lower than that for df = 2, we
would have still chosen 2 DFs because it is a more
parsimonious model.

AIC = -2 x log-likelyhood + 2 x #par
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Chun Li, PhD Linear Regression with Nonlinear Effects June 12-16, 2023 18 / 27



Other Options: Smoothing splines

Smoothing splines start with a very different motivation. Consider all smooth functions g(x)
such that g ′′(x) exists. We optimize the following:

minimizeg

n∑
i=1

(yi − g(xi))2 + λ

∫
g ′′(t)2dt.

A high |g ′′(t)| reflects a quick change of g ′(t), which happens when g(t) is bumpy. So∫
g ′′(t)2dt is a way to measure the overall level of bumpiness/roughness of g(t).

The roughness of g(t) is penalized by multiplying it with λ, which is then added to the
sum of squared residuals.

It can be shown that the best fit ĝ(x) is a natural spline with all xi being knots. So, a
smoothing spline is a regularized natural spline.

Smoothing splines are a version of generalized ridge regression.
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Effective Degrees of Freedom

It is difficult to specify the penalty λ in smoothing splines. Fortunately for every λ, there is a
corresponding effective degrees of freedom. The higher effective DF the rougher the function
is. The effective DF can be any number in (1, nx ], where nx is the number of unique x values.

In R, we can use smooth.spline(x, y, df=) to fit smoothing spline models.
require(ISLR)
sms.df4 = with(Auto, smooth.spline(horsepower, mpg, df=4))

Alternatively, we can specify the smoothing parameter spar=, which is a value in (0, 1]. The
lower spar the rougher the function is.
sms.spar.5 = with(Auto, smooth.spline(horsepower, mpg, spar=.5))
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Other Options: Local Regression

Local regression is moving-window weighted regression. For every x0 in the range of x , we fit
a local weighted regression model to obtain the fitted value ĝ(x0). We then move on to the
next value and repeat the process.
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Local Regression

From Introduction to Statistical Learning with R, Figure 7.9.
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Other Options: Local Regression (cont’d)

Need to specify:

Span: Fraction of data used for every local regression model.
Regression model: piecewise constant, linear, or quadratic.
Kernel: It determines how data within the span are weighted as a function of relative
distance from x0.

In loess(), the default is local quadratic model using 75% neighboring data fitted with least
squares (i.e., no additional weighting). This often yields a very smooth function.

In lo() from the gam R package, the default is local linear model using 50% neighboring data.
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Generalized Additive Models
Generalized additive models (GAMs) have the form

y = β0 + f1(x1) + · · ·+ fp(xp) + ε,

where f1(), . . . , fp() can be different functions with different levels of smoothness. If fk(xk) = xk ,
only linear effect is modeled on variable xk .

One can plan on the number of DFs spent on each predictor.
Can be fit using backfitting (or LS when all the functions are explicit).
Flexible modeling of the effects of individual predictors. The functions can be global or
local or piecewise. A function can also be over two or three predictor variables.

Backfitting is an iterative algorithm for fitting additive models. For example, suppose our
model is y = β0 + f1(x1) + f2(x2) + f3(x3) + ε. Given the current estimates β̂0, f̂1, and f̂2, we
calculate partial residuals ri = yi − β̂0 − f̂1(xi)− f̂2(xi) and then fit ri to f3(xi) to obtain a new
estimate f̂3. We then repeat this process to estimate another component in the model. Repeat
several cycles until convergence.
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gam() in R

In gam() from the gam R package, we can use:

s(x) for a smoothing spline for x ,
lo(x) for a loess fit for x ,
Other basis generators such as ns(), bs(), and poly(),
Traditional model terms such as x (linear effect if x is quantitative, or categorical effect if
x is qualitative), I(x>10), and interaction term x1*x2, etc.

Here are two example GAM models:
library(gam)
library(ISLR)
gam.m3 = gam(wage ~ s(year,4) + s(age,5) + education, data=Wage)
gam.m4 = gam(wage ~ ns(year,4) + lo(age,span=0.4) + education, data=Wage)
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Interaction Terms in Linear Regression
Consider an interaction model between sex and smoking,

E (Y ) = β0 + β1 · sex + β2 · smoking + β3 · sex · smoking

=


β0, female non-smoker;
β0 + β1, male non-smoker;
β0 + β2, female smoker;
β0 + β1 + β2 + β3, male smoker.

β0 is the mean outcome for the “baseline” group of female non-smokers.
β1 is the effect of sex among non-smokers. (The effect of sex among smokers is β1 + β3.)
β2 is the effect of smoking among females. (The effect of smoking among males is
β2 + β3.)
β3 is a difference of effects:

β3 = effect of sex among smokers− effect of sex among non-smokers
= effect of smoking among males− effect of smoking among females.
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Interaction Terms in Linear Regression (cont’d)

When there is an interaction term between X1 and X2,

β1 and β2 do not reflect the overall effects of X1 and X2, That is, they are not “main
effects”.

β0, β1, and β3 are not comparable because they are different concepts and are on different
scales:

β0 is mean outcome.
β1 and β2 are effects (i.e., difference of mean outcomes).
β3 is the difference of two effects (i.e., difference of two differences).

It is meaningless to make statements like β1 = β3 even though they may happen to have
the same value.

It is meaningless to state that “the interaction effect is stronger than the main effect”.
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Interaction Terms in Linear Regression (cont’d)
Now consider an interaction model between adult age (a continuous variable with values way
above 0) and smoking,

E (Y ) = β0 + β1 · age + β2 · smoking + β3 · age · smoking

=
{
β0 + β1 · age, non-smoker;
(β0 + β2) + (β1 + β3) · age, smoker.

β0 is the mean outcome for non-smokers at 0 year old (nonexistent!).
β1 is the effect of one year older vs. current age among non-smokers. (The effect of one
year older vs. current age among smokers is β1 + β3.)
β2 is the effect of smoking among 0 year olds (nonexistent!) (The effect of smoking
among x year olds is β2 + β3x .)
β3 is a difference of effects:

β3 = effect of one-year-older among smokers− effect of one-year-older among non-smokers
= effect of smoking among x + 1 year olds− effect of smoking among x year olds.
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