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Summary. It is common in longitudinal studies to collect information on the time until a key clinical
event, such as death, and to measure markers of patient health at multiple follow-up times. One approach
to the joint analysis of survival and repeated measures data adopts a time-varying covariate regression
model for the event time hazard. Using this standard approach, the instantaneous risk of death at time t
is specified as a possibly semiparametric function of covariate information that has accrued through time
t. In this manuscript, we decouple the time scale for modeling the hazard from the time scale for accrual
of available longitudinal covariate information. Specifically, we propose a class of models that condition on
the covariate information through time s and then specifies the conditional hazard for times t, where t >
s. Our approach parallels the “partly conditional” models proposed by Pepe and Couper (1997, Journal
of the American Statistical Association 92, 991–998) for pure repeated measures applications. Estimation is
based on the use of estimating equations applied to clusters of data formed through the creation of derived
survival times that measure the time from measurement of covariates to the end of follow-up. Patient follow-
up may be terminated either by the occurrence of the event or by censoring. The proposed methods allow
a flexible characterization of the association between a longitudinal covariate process and a survival time,
and facilitate the direct prediction of survival probabilities in the time-varying covariate setting.
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1. Introduction
Methods that can quantify the risk of death or disease as a
function of current or past covariate measures can provide
medical predictions, which are used to guide patient care.
Altman and De Stavola (1994, p. 321) comment: “In clinical
practice individual data are routinely collected at frequent
time points after entry to a study . . . but are rarely examined
in relation to survival. Yet a key clinical question is that of
prognosis, and a means of updating prognosis on the basis of
the latest observations on a patient would be valuable to many
clinicians.” For example, the likelihood of HIV infection ad-
vancing to an acquired immunodeficiency syndrome (AIDS)
diagnosis may depend on a patient’s observed history of CD4
T lymphocyte cell counts (Fusaro, Nielsen, and Scheike, 1993).
Similarly, in cancer screening the advent of new molecular as-
says has led to a number of measurements that may have the
ability to signal cancer onset. For prostate cancer the serum
measurement prostate-specific antigen (PSA) has been stud-
ied (Etzioni et al., 1999; Slate and Turnbull, 2000) and for
ovarian cancer the marker CA-125 has been used as a pos-
sible early indicator of disease (Skates, Pauler, and Jacobs,

2001). These examples illustrate the common biomedical data
structure where a longitudinal measurement is taken at select
follow-up times, and the scientific question focuses on the cor-
relation between the longitudinal series and the time until a
key clinical event.

One approach that links the time until an event to time-
dependent covariates is the proportional hazards model of
Cox (1972). Details of the time-varying covariate proportional
hazards model are given in monographs by Kalbfleisch and
Prentice (1980), Cox and Oakes (1984), and Andersen et al.
(1995). Briefly, in a time-varying proportional hazards model
the instantaneous risk of death is modeled as a function of
the current value of the measured covariate. Let Zi (t) de-
note the value of the covariate for subject i at time t, and let
Ti denote the time until a major clinical endpoint (i.e., dis-
ease or death). Classical survival analysis methods for time-
varying covariates can be used to model the instantaneous risk
of death, or hazard defined as λ{t |HZ

i (t)} = limδ→0
1
δ
P{Ti ∈

[t, t + δ) |HZ
i (t);Ti ≥ t} where we condition on the entire co-

variate history HZ
i (t) = {Zi (u) :u ≤ t}. The hazard may de-

pend on additional aspects of the measured history beyond
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the current measurement. However, for simplicity of presen-
tation, we assume that the hazard depends only on the present
value of the marker. The proportional hazards model assumes
λ{t |Zi (t)} = λ0(t) · exp{β · Zi (t)}, where λ0(t) represents a
baseline hazard function.

The use of the time-varying covariate model typically as-
sumes that Zi (t) is available for all possible times. However, in
practice, we almost never observe Zi (t) continuously in time.
Rather, we commonly measure the covariate process at dis-
crete times si1, si2, . . . , sini

. Altman and De Stavola (1994)
discuss some of the practical issues associated with discrete
covariate measurement. Prentice (1982) discusses issues of
bias that result from mismeasurement of covariates, and the
recent literature has developed models that require a joint
model for covariate process and failure time (Pawitan and
Self, 1993; Tsiatis, DeGruttola, and Wulfsohn, 1995; Faucett
and Thomas, 1996; Henderson, Diggle, and Dobson, 1997;
Wulfsohn and Tsiatis, 1997; Xu and Zeger, 2001; Lin et al.,
2002).

The time-varying covariate hazard model is particularly
useful for estimating regression parameters. However, unlike
Cox models without time-varying covariates, estimates of sur-
vival probabilities are generally difficult to obtain, and require
a model for the covariate process. In practice, we may monitor
a patient’s vital status through time s and have available a dis-
cretely measured covariate history HZ

i (s) = {Zi (sik ) : sik ≤ s}
and seek to estimate patient prognosis on the basis of ob-
served data. For example, when using a model for λ{t |HZ

i (t)}
estimating P{Ti > t |HZ

i (s), 0 ≤ s < t} would require ei-
ther knowledge of the future values of Zi (t), or integration
over the conditional distribution of the future covariate pro-
cess given the history: {Zi (u) :u > s |HZ

i (s)}. Therefore, al-
though a joint model can characterize the distribution of lon-
gitudinal measurements and a survival time, use of a joint
model for predictions requires both correct specification of
the likelihood, and necessitates numerical integration to ob-
tain survival probability estimates. A general method is de-
sired that can directly structure and estimate P{Ti > t |Zi (s),
0 ≤ s < t}, for any pair of survival and measurement times,
(s, t), where s < t.

The prediction of future failure, or “residual lifetime,”
based on a measured past marker process has been an area
of interest in AIDS research (Taylor et al., 1990; Jewell and
Nielsen, 1993; Jewell and Kalbfleisch, 1996). In particular, Shi
et al. (1996) considered parametric models of residual time
to AIDS as a function of months since infection and CD4
measurements. In this manuscript we introduce a semipara-
metric method, which we call a “partly conditional survival
model,” for estimating the prognostic effect of longitudinal
measurements on survival without relying on multivariate as-
sumptions regarding the longitudinal marker process. Here,
we address the question concerning how well a longitudinal
covariate measured at, or up to time s, Zi (s), predicts the
risk of the occurrence of an important clinical event, Ti such
as diagnosis or death, by any future time t. Specifically, we are
interested in the conditional probabilities P{Ti > t |Zi (s), 0 ≤
s < t} that can be computed for any time t > s but condition
only on the marker value through time s. In order to char-
acterize a general conditional survival distribution, we focus

our model on hazard functions of the form

λ{t |Zi(s), 0 ≤ s < Ti}

= lim
δ→0

1

δ
· P{Ti ∈ [t, t + δ) |Zi(s), 0 ≤ s < t}. (1)

The basic idea is that we can consider the marker value at
time s as a “frozen” or baseline measurement rather than
explicitly as a realization of a continuous time stochastic pro-
cess. Also, in a typical survival model, the event time Ti is
usually the time from study entry to the occurrence of the
event. To estimate how well a marker can predict subsequent
survival, similar to the modeling strategy used by Shi et al.
(1996), we suggest modeling the time scale in terms of years
since measurement, Ti − s. As a result there can be multi-
ple derived event times for each individual corresponding to
her/his repeatedly measured marker values, Tik = Ti − sik ,
where sik is the kth marker measurement time. Thus, we cast
the problem of using longitudinal marker values for predict-
ing survival within the general framework of multivariate sur-
vival models. Our partly conditional survival model is similar
to marginal Cox regression models (Wei, Lin, and Weissfeld,
1989; Lee, Wei, and Amato, 1992) in the sense that we do
not make any parametric assumptions about the dependence
among the survival times from one individual. However, the
proposed model is “partly conditional,” because when mod-
eling hazards we do not condition on the full and dynamic
covariate history, HZ

i (t), but rather on a static covariate sub-
set, HZ

i (s) for fixed s < t.
One issue that arises with the use of partly conditional

models is the need to allow regression parameters to de-
pend on both the time of measurement for the predictor and
the time of measurement for the outcome. Pepe, Heagerty,
and Whitaker (1999) give examples where the linear predic-
tor for the mean at time t conditional on covariate informa-
tion through time s takes the form β0(t, s) + β1(t, s) ·Zi (s).
In specific examples, a varying-coefficient model of the form
β1(t, s) = β1(t − s) may be used which assumes that the asso-
ciation between the outcome and the covariate depends only
on their time separation. In the survival setting, we also an-
ticipate the need for time-varying coefficient models because
a time-varying measure may not satisfy the standard pro-
portional hazards assumption. A Cox model with coefficient
functions such as β1(t − s) may be adopted allowing the asso-
ciation between the marker measured at time s, Zi (s), and the
hazard of death at future times t, to change as the distance,
t − s, increases.

A formal definition of our partly conditional survival model
is given in Section 2. In Section 3, we describe the estima-
tion procedures and characterize large sample properties. In
Section 4, we discuss simulations that evaluate both coverage
probabilities and efficiency of the proposed estimation meth-
ods. In Section 5, we illustrate the new methods by analyzing
a well-known data set from HIV research, the Multicenter
Aids Cohort Study (MACS) data.

2. Partly Conditional Models in Survival Analysis
2.1 Notation
Let Ti be the time to diagnosis (or failure) for subject i. We
assume that Ti may be censored at time Ci , and therefore we
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only observe Xi = min(Ti , Ci ) and an associated censoring
indicator ∆i, where ∆i = 1 if Xi = Ti and 0 otherwise. Also,
assume that each subject in the study has a time-dependent
covariate measured Ki ≤ K times during follow-up, where
K is relatively small compared to the total number of sub-
jects n. Let ZT

ik = (ZT
i·a, Zikb , sik ) denote a vector of covariates

associated with subject i measured at time sik , where Zi·a de-
notes a vector of baseline covariates such as treatment or gen-
der, while Zikb , or equivalently Zi (sik ), denotes a time-varying
marker value measured at time sik .

For the longitudinal analysis setting, we need to explicitly
state the model assumptions regarding both measurement and
missingness. First, we assume that the censoring time, Ci , is
independent of the survival time Ti . Second, we assume that
the measurement times, sik , are independent of the longitudi-
nal marker process, Zi (sik ), and the survival time Ti . Finally,
we assume that subjects may have missing marker measure-
ments, but we assume that any such missingness is completely
at random (MCAR). In Section 6, we comment on approaches
that can relax these measurement and missingness mechanism
assumptions.

In the partly conditional survival approach, we focus anal-
ysis on derived survival times. Corresponding to Zik, let Tik

denote the time from sik to Ti , and Cik denote the time from
sik to Ci for censored Ti :Tik = Ti − sik and Cik = Ci − sik .
For failure time Tik , one observes a bivariate vector (Xik , ∆ik),
where Xik = min(Tik , Cik ) and ∆ik = 1 if Xik = Tik > 0 and 0
otherwise. To specify hazards we convert to the derived time
scale, t∗ = t − sik , which measures the follow-up time since
measurement of the marker. We use the standard counting
process notation, where Nik (t

∗) = I(Xik ≤ t∗, ∆ik = 1), and
write dNik (t

∗) for the increment Nik{(t∗ + dt)−} − Nik (t
∗). The

at-risk process is defined as Rik (t
∗) = I(Xik ≥ t∗, Ti > sik ).

In situations where the covariate at time sik is not measured
due to an MCAR mechanism we modify the at-risk process
definition: Rik (t

∗) = I(Xik ≥ t∗, Ti > sik ) × Oik , where Oik = 1
if the kth covariate measurement is available, and Oik = 0 oth-
erwise. We assume that the random vectors (Xi, ∆i, Ri, Zi)
are independent and identically distributed with Zi bounded.
In addition, we assume the censoring time Cik is independent
of Tik conditional on Zik. Because the measurement time, sik ,
is part of Zik, the conditional independence of Tik = Ti − sik

and Cik = Ci − sik follows from the assumption of indepen-
dence for Ti and Ci given the marker process and baseline
covariates.

2.2 Partly Conditional Survival Model
We now propose a class of methods that may be used to es-
timate the survival probability conditional on a longitudinal
marker value, P (Ti > t |Zik, Ti > sik ), or equivalently P (Tik >
t∗ |Zik, Ti > sik ), which we call “partly conditional Cox regres-
sion models.” We define the partly conditional hazard func-
tion λik(t

∗) for the derived survival outcomes Tik as

λik

(
t∗

∣∣Zik, 0 ≤ sik ≤ Ti

)
= lim

δ→0

1

δ
· P

(
t∗ ≤ Tik < t∗ + δ |Tik ≥ t∗,Zik, Ti ≥ sik

)
.

A regression model for the hazard can take the general form:
λik(t

∗ |Zik, 0 ≤ sik ≤ Ti ) = g{λ0(t
∗, s), β(t∗, s)T Zik}, where

g(λ, η) is a link function. The baseline hazard, λ0(t
∗, s), and

the regression coefficient, β(t∗, s), may be functions of both
the time since measurement, t∗, and measurement time, s (or
equivalently t and s). The model is “partly conditional” be-
cause rather than conditioning on the entire covariate history
through time t, the model conditions on the partial history
measured through time s. Although we present a general form,
we will focus on the proportional hazards model.

With the partly conditional model, we address several com-
plications that frequently arise when using survival analysis
with longitudinal measurements. First, we anticipate that the
phenomenon of nonproportional hazards may be more fre-
quently encountered when covariates are updated over time.
To this end, we specify a time-varying coefficient Cox model
which can be used without imposing any functional form on
the coefficient functions. Second, the time at which the mea-
surement is taken, sik , may be associated with the predictive
capacity of Zi (sik ) on survival.

Here, we briefly describe some examples of partly condi-
tional survival models that model both Zi (sik ) and the mea-
surement time sik , in particular we show how the depen-
dence of β(t∗, s) on s can be handled by different model
specifications. The simplest approach would be to create sep-
arate regression models for survival beyond key measurement
times. Such a stratified method would define G “measure-
ment intervals” I1, . . . , IG, that partition time {t0, max(Ti )}
and then adopt the G models:

λik

(
t∗

∣∣Zik, 0 ≤ sik ≤ Ti, sik ∈ Ig

)
= λ0g(t

∗) exp
{
αT

gZi·a + βg(t
∗)Zikb

}
, t∗ > 0. (2)

Here, λ0g(t
∗) is an unspecified baseline hazard function,

whereas αg and βg(t
∗) are unknown regression parameters

that are unique for each measurement interval. If only at
most one measurement per subject fell into Ig, then separate
baseline Cox models could be estimated with standard meth-
ods using the measurement Zikb , where sik ∈ Ig, as a baseline
measurement for interval g, and the residual lifetime, Ti −
sik as the outcome, after restricting to those subjects who
survive long enough to have a measurement recorded in Ig.
Such models are sometimes referred to as “landmark analy-
ses” (Anderson, Cain, and Gelbber, 1983) when only a small
number of measurement times are chosen to identify the time
origins for analysis. The major limitation to a fully stratified
approach is the lack of parsimony with completely unstruc-
tured baseline hazard and relative risks as a function of the
measurement time s. The partly conditional models that we
propose allow adoption of smooth variation in the coefficient
functions βg(t

∗) and the baseline hazards by explicitly mod-
eling the measurement time s.

A second model assumes that the prognostic capacity of
the longitudinal marker is the same regardless of the time
at which it is measured. However, the model may still allow
different baseline hazard functions for different measurement
intervals Ig:

λik

(
t∗

∣∣Zik, 0 ≤ sik ≤ Ti

)
= λ0g(t

∗) exp
{
αTZi·a + β(t∗)Zikb

}
, t∗ > 0. (3)

Alternatively, rather than assuming completely separate base-
line hazards, λ0g(t

∗), we may use the time of measurement as
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a covariate in a model with a common unspecified baseline
hazard. A general form for this model is

λik

(
t∗ |Zik, 0 ≤ sik ≤ Ti

)
= λ0(t

∗) exp
[
αT

1 Zi·a + αT
2 {fj(sik)}pj=1 + β(t∗)Zikb

]
,

t∗ > 0, (4)

where {fj (s)}pj=1 = {f 1(s), f 2(s), . . . , fp(s)}, and fj (sik ) repre-
sent basis functions for some parametric but flexible function
of sik , such as a cubic spline with fixed knots. The model-
ing procedure thus does not rely on the partition of mea-
surement stratum anymore. In the proposed partly condi-
tional approach, we are using regression methods to specify
a general hazard function λ(t∗, s, z) = λi(t

∗ | 0 ≤ s ≤ Ti ,
Zi = z) which can be used to obtain predictions as a function
of residual lifetime (t∗), measurement time (s), and marker
value (z). Jewell and Nielsen (1993) also investigate such pre-
dictive functions and provide “global compatibility criteria”
(their equation (2.4)), which ensures that the function λ(t∗, s,
z) provides mutually compatible conditional survival proba-
bilities. In particular, Jewell and Nielsen (1993) show that
λ(t∗, s, z) must satisfy certain restrictions when averaged
over the survival process and the marker process from time
s to time s + t∗. A direct verification that a given partly
conditional model satisfies the global condition of Jewell and
Nielsen (1993) is not possible because we do not specify the
marker distribution. However, models of the form λ(t∗, s, z) =
λ0(t

∗) exp{αf 1(s) + β(t∗, s) f 2(z)} only impose smoothness
assumptions through the choice of how the measurement time
is incorporated, f 1(s), how the marker is incorporated, f 2(z),
and how the relative hazard changes with residual and mea-
surement time, β(t∗, s). Therefore, these models impose weak
assumptions and should be a good approximation to a range
of assumptions on the marker and survival processes.

Estimation procedures for partly conditional models de-
pend on whether we allow the influence of covariates to vary
with time, β(t∗), or assume a constant covariate effect β(t∗) =
β. We distinguish among three classes of partly conditional
models: proportional hazards; varying-coefficient hazards; and
combined proportional and varying-coefficient hazards mod-
els. For a proportional hazards model, the effects of all covari-
ates, including the longitudinal marker, are assumed constant.
For a varying-coefficient hazards model, the effects of all co-
variates vary with time, and are estimated nonparametrically.
Finally, for a combined proportional and varying-coefficient
hazards model, the influence of only a few covariates varies
nonparametrically over time, while the remaining covariates
have time-invariant effects.

3. Estimation
To estimate the regression parameters and the baseline haz-
ard function, we propose use of “working independence” es-
timating equations applied to the derived failure time data
(Xik , ∆ik, Rik , Zik). Because we have chosen to directly model
the partly conditional hazard function for these multiple cor-
related failure times, a likelihood-based estimation approach
would be analytically and computationally difficult for two
reasons. First, in a likelihood approach a joint model would be
required for the event time and the repeated measures process.

Parameterization of the joint model in terms of the partly
conditional hazards would be analytically difficult as the re-
gression structure we adopt is for pairwise marginal distribu-
tions induced by the joint model. Second, a likelihood-based
approach would generally require proper parametric specifi-
cation of the longitudinal covariate distribution, and the va-
lidity of the induced partly conditional regression estimates
would depend on correct marker model specification. As an
alternative, we develop a direct estimating equation approach
that proves computationally simple and yields consistent es-
timators under correct specification of the partly conditional
regression structure without reliance on any distributional as-
sumptions for the marker process. Sandwich variance estima-
tors permit valid asymptotic inference.

In the subsections below, we discuss the estimation of
regression parameters for three specific model classes. We
first discuss estimation under a standard proportional haz-
ards assumption, and then discuss relaxation to allow a non-
parametric varying-coefficient specification. Finally, we dis-
cuss a model that allows both parametric and nonparametric
components.

3.1 Proportional Hazards Model
For the situation where the proportional hazard assumption
holds, estimation procedures for the partly conditional models
are similar to those for marginal survival models (Wei et al.,
1989; Lee et al., 1992). We assume that the baseline haz-
ard is a function of the time since measurement, t∗ = t − s,
(hereafter referred to as the identical baseline model), or more
generally, a function of both t∗ and s (hereafter referred to as
the stratified baseline model), and the effect of the marker on
the failure time is constant over time. Specifically, the hazard
function for the ith subject and the failure corresponding to
the measurement at sik is

λik

(
t∗

∣∣Zik, 0 ≤ sik ≤ Ti

)
= λ0(t

∗) exp
(
βTZik

)
or in the stratified model

λik

(
t∗

∣∣Zik, 0 ≤ sik ≤ Ti

)
= λ0g(t

∗) exp
(
βTZik

)
where λ0g(t

∗), g = 1, . . . ,G denote the unspecified baseline
hazard function that corresponds to the gth measurement
interval Ig for sik ∈ Ig. The unknown parameter β can be
obtained by solving the “working-independence” estimating
equation:

n∑
i

K∑
k

∫ τ

0

{Zik − Z̄(u)} dNik(u) = 0

where τ = inf[t∗ : E{Rik(t
∗)} = 0], Z̄(u) =

∑G

g=1 S
(1)
g (β, u)/∑G

g=1 S
(0)
g (β, u) under the identical baseline model and Z̄(u) =∑G

g=1 S
(1)
g (β, u)1(sik ∈ Ig)/

∑G

g=1 S
(0)
g (β, u)1(sik ∈ Ig) under

the stratified baseline model, with

S(j)
g (β, u) =

1

n

n∑
l=1

K∑
m=1

Rlm(u) exp
(
βTZlm

)
Z⊗j

lm · 1(slm ∈ Ig).

For a column vector a, a⊗0 refers to a scalar 1, a⊗1 refers to
the vector a, and a⊗2 refers to the matrix aaT.

Large sample distributional theory and robust variance–
covariance estimation can be developed along the lines of the
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marginal survival model of Lee et al. (1992) for the identical
baseline models, or Wei et al. (1989) for the stratified baseline
models.

3.2 Varying-Coefficient Hazards Model
The partly conditional regression model decouples the marker
measurement time, sik , from the time scale for the hazard
model, t∗ = t − sik for t > sik . Therefore, the hazard ratio
corresponding to the longitudinal marker, λik(t

∗ |Zi·a, Zikb =
(z + 1), sik )/λik(t

∗ |Zi·a, Zikb = z, sik ) = HR(t∗) may not be
constant over time, and methods that allow relaxation of the
standard proportional hazards assumption will be important
in practice. For example, Hastie and Tibshirani (1993) studied
a varying-coefficient model of the form:

λik

(
t∗ |Zik

)
= λ0g(t

∗) exp
{
β(t∗)TZik

}
. (5)

A parametric spline basis can be adopted to characterize
β(t∗), or nonparametric smoothing methods can be used.
Here, we modify local linear estimation described by Cai and
Sun (2003) for use in the partly conditional setting. The idea
of local linear estimation is that for a neighborhood around
each time point t∗, u ∈ N (t∗, ε), by Taylor series approxima-
tion, we have

β(u) ≈ β(t∗) + β′(t∗)(u− t∗).

Based on a local “working-independence” partial likelihood
function, we can estimate β(t∗) using a weighted estimating
equation:

n∑
i

K∑
k

∫ τ

0

Kh(u− t∗)
{
Z̃ik(1, u− t∗) − Z̄(u)

}
dNik(u) = 0

(6)

where K(·) is a kernel function with bounded support
on [−1, 1], h is the bandwidth, Kh(x) = K(x/h)/h, and
Z̃ik(1, u− t∗) = Zik ⊗ (1, u− t∗) with ⊗ denoting the Kro-
necker product. Under the stratified baseline model, Z̄(u) =∑G

g=1S
(1)
g {β(t∗), u}1(sik ∈ Ig)/

∑G

g=1S
(0)
g {β(t∗), u}1(sik ∈Ig),

with

S(j)
g {β(t∗), u} =

1

n

n∑
l=1

K∑
m=1

Rlm(u) exp
{
b(t∗)TZ̃lm(1, u− t∗)

}

× Z̃lm(1, u− t∗)⊗j · 1(slm ∈ Ig),

where b(t∗) = {b0(t
∗), b1(t

∗)} = {β(t∗), β
′
(t∗)}. The coeffi-

cient function β(t∗) is then estimated for each t∗ using β̂(t∗) =
b̂0(t

∗).
Cai and Sun (2003) show the pointwise consistency and

asymptotic normality of β̂(t∗) in the univariate case. We mod-
ify their results for the partly conditional setting. The consis-
tency of β̂(t∗) in the multivariate setting can be established in
the same way as in the partly conditional proportional haz-
ards model discussed in the previous section and thus the
proof is omitted here. By imposing a stronger condition, we
can establish the uniform consistency of β(t∗). The result is
useful for the derivation of the large sample distribution for
the survival functions and for estimators in the partly con-
ditional survival models presented in the next section. Fur-

thermore, let ∆(t∗, h, n) = h2µ2
2 β′′(t∗) + op(h

2) denote the fi-
nite sample bias, and µ2 =

∫
u2K1(u)du, it can be shown that

(nh)1/2{β̂(t∗) − β(t∗) − ∆(t∗, h, n)} is asymptotically normal,
with covariance structures which can be calculated explic-
itly using a sandwich-type estimator. Formal statements and
proofs of these properties are given in an unpublished techni-
cal report that can be accessed at http://www.bepress.com/
uwbiostat/paper221/. These asymptotic properties allow
computation of confidence intervals and permit data-driven
bandwidth selection.

Following Cai and Sun (2003), the theoretical optimal
bandwidth can be obtained by minimizing the asymptotic
weighted mean integrated squared error. In the multivari-
ate situation, this quantity depends on the robust vari-
ance estimator and the second derivative of the coefficient
function at point t∗, which are unknown in advance. Data-
dependent procedures for selecting the optimal bandwidth
have been suggested in the literature for nonparametric
function estimation (Hall and Carroll, 1989; Eubank and
Speckman, 1993; Ducharme et al., 1995). Further research on
adapting data-driven automatic procedures to the multivari-
ate survival setting is warranted, and in practice a sensitivity
analysis is suggested.

3.3 Combined Proportional and Varying-Coefficient
Hazards Model

Finally, we consider a class of models that accommodates
the time-varying effect of a longitudinal marker in addition
to other covariates whose effects are assumed independent
of time. For presentation in this section, we only consider
identical baseline hazard models. These models are essentially
partly parametric hazard models as described by McKeague
and Sasieni (1994) and have the following form for the hazard
function:

λik

(
t∗

∣∣Zik, 0 ≤ sik ≤ Ti

)
= λ0(t

∗) exp
[
αT

1 Zi·a + αT
2 {fj(sik)}pj=1 + β(t∗)Zikb

]
,

t∗ > 0. (7)

To estimate the parameters under this model, we use two sets
of estimating equations. Let θ = {α, β(t∗)}, where α = (α1,
α2) is a vector of time-invariant coefficients for Zika = {Zi·a,
f 1(sik ), . . . , fp(sik )}, and β(t∗) is the time-varying coefficient

for Zikb . In general, one can obtain θ̂ by simultaneously solving
the pair of estimating equations for α and β(t∗). A standard
approach to solving these equations would involve backfitting
(Hastie and Tibshirani, 1995) and therefore require iterative
solution to the equations. A computationally simple “one-
step” alternative can yield an asymptotically equivalent esti-
mator. The alternative estimator is defined by the following
steps:

(i) Fit a nonparametric Cox model with all the covariates
Zik. Here, the model is of a purely time-varying form:
λik(t

∗ |Zik, 0 ≤ sik ≤ Ti ) = λ0(t
∗) exp{αT(t∗)Zika +

β(t∗)Zikb}. The resulting estimator β̃(t∗) is consistent
for β(t∗) (see Zheng, 2002 for details).

(ii) Fit a parametric Cox model with Zika as covariate, us-
ing a time-dependent offset β̃(t∗)Zikb. The estimator α̂
obtained from this model is consistent for α (see Zheng,
2002 for details).



384 Biometrics, June 2005

(iii) Fit a time-varying coefficient Cox model with Zikb , us-
ing offset α̂TZika. The new estimate β̂(t∗) is the final
estimate for β(t∗).

3.4 Predictive Survival Functions with a Partly
Conditional Survival Model

Here, we present an estimation procedure for predicting the
survival function for patients with a marker measurement zb

obtained at a certain specific measurement time s, in addition
to a vector of time-invariant covariates za. Let P (Ti > t∗ +
s |Zi = z0, s) = S(t∗ |Zi = z0, s) = exp{−Λ(z0, s)}. Here,
Λ0(t

∗) can be estimated by the natural Breslow-type estima-

tor: Λ̂0(t
∗) =

∫ t∗

0
1

Ĵ∗
n,0(u)

dN̄(u), where

Ĵ∗
n,0(t

∗) =

n∑
i=1

K∑
k=1

Rik(t
∗)

× exp
[
αT

1 Zi·a + αT
2 {fj(sik)}pj=1 + β(t∗)Zikb

]
then

Ŝ
(
t∗ |Zi = z0, s

)

= exp

[
−

∫ t∗

0

exp
[
αT

1 za + αT
2 {fj(s)}pj=1 + β(t∗)zb

]
dΛ̂0(u)

]
.

4. Simulations
4.1 Simulations for Regression Function
We first investigate the performance of the partly conditional
regression estimates with respect to bias, coverage, and ef-
ficiency. Estimation using the derived survival data requires
careful attention to mechanisms that lead to unbalanced clus-
ter sizes (i.e., death and censoring). One goal of the study is to
empirically demonstrate that the proposed methods do indeed
lead to asymptotically unbiased estimation when the number
of contributing observations per cluster is stochastic.

Our partly conditional model does not completely specify
the joint distribution for the event time and the longitudinal
marker process. In the related multivariate survival literature,
it has been noted that it is surprisingly difficult to construct
joint distributions that satisfy the marginal proportional haz-
ards assumptions (Wei et al., 1989; Yang and Ying, 2001). We
show that it is possible to construct a valid joint distribution
where derived survival times simultaneously satisfy the partly
conditional hazards assumption. Consider data with a single
binary treatment group indicator Zi·a, and a single longitu-
dinal marker Zi (sk ) measured at a common set of times s1,
s2, . . . , sK . To generate data [Ti , Zi·a, Zib = vec{Zi (sk )}], we

first create Zib0 = bi +
∑K

j=1 log(Vij)/γ2, where bi ∼ N (µ, σ2)
and Vij ∼ P (ρ), independent positive stable random vari-
ables with index ρ (Hougaard, 1986). A failure time Ti is
then generated with a hazardship λi(t) = λ0(t) exp{(γ1Zi·a +
γ2Zib0)}, with λ0(t) = a. Let Zi (sk ) = Zib0 − log(Vik )/γ2.
This creates a form of exchangeable marker measurements.
For a partly conditional model, we only include for analysis
those Zi (sk ) with sk < Ti . Based on properties of positive
stable random variables the procedure leads to partly con-
ditional hazards of the form λ{t∗ |Zi·a, Zi (sk ), Ti > sk} =
λ0(t

∗ + sk ) ρ{Λ0(t
∗ + sk )}(ρ−1) exp{ργ1Zi·a + ργ2Zi (sk )}. Us-

ing this construction the hazard for Tik = Ti − sk will gen-

erally depend on sK and therefore stratified models similar
to those considered by Wei et al. (1989) would be appropri-
ate. However, if we choose Λ0(t) = (t/a)1/ρ, then λ0(t + sk )×
ρ{Λ0(t + sk )}(ρ−1) = 1/a, and thus a common baseline hazard
is obtained. By varying ρ and σ we can create marker measure-
ments with differing amounts of within- and between-person
variation. For similarity to the MACS CD4 data analyzed in
Section 5, we used µ = 600 and σ = 30. For the induced partly
conditional hazards model, the regression coefficients are α =
ρ · γ1 and β = ρ · γ2.

We evaluate samples with n = 100, 500, 1000 clusters using
a uniform censoring distribution to obtain approximately 0%,
25%, 50%, and 75% censoring. We consider a study where the
markers can be measured up to 10 times per subject. For all
our simulated situations, 500 Monte Carlo data sets are used.
We present results using ρ = 0.6, α = −2, and β = −0.02
(note: We use this coefficient value [scale] because we create
simulations to approximate analysis of CD4 where the marker
ranges from less than 200 to greater than 1000).

With clusters of size 10, the average number of observa-
tions per subject ranges from 1.7 to 6.1, depending on the
censoring level. Table 1 presents the simulation results for a
partly conditional model using a single common baseline haz-
ard. The relative bias is less than 4.3% for all situations, and
tends to decrease with increasing sample size. Coverage prob-
abilities using the robust variance estimator are very close to
the nominal 95% level, whereas coverage probabilities from
a naive independence model are generally below the nominal
level.

We also use simulation studies to assess the performance
of local linear estimation for a time-varying coefficient partly
conditional Cox model. We simulated data according to the
scenario described above, and use a local linear Cox model
with Epanechnikov kernel. We investigate the performance at
two different time points, namely, t∗ = 25 and t∗ = 75. At
each time point, we choose bandwidth h such that 30% of
the data points are included in the local linear estimation.
As a result, at t∗ = 25, the average bandwidth h is about 15,
whereas at t∗ = 75, the average bandwidth h is about 30. The
actual bandwidth may vary slightly from sample to sample.
The results presented in Table 2 indicate that estimates can
be obtained with small bias using the partly conditional ap-
proach. We find −1.17% bias at t∗ = 25 and −3.06% bias at
t∗ = 75. In addition, using robust standard errors to create
95% pointwise confidence intervals yielded empirical coverage
rates of 93.2% and 95.2% at t∗ = 25, 75, respectively.

Finally, we also compare the multivariate approach with
a valid univariate procedure that randomly chooses a single
marker measurement for analysis. In Table 2, we display the
bias and the standard deviation for β̂(t∗) at t∗ = 25 and t∗ =
75. The estimates based on the partly conditional model have
a variance that is 1/2.44 times the variance of the univariate
estimator for t∗ = 25 and 1/3.43 times smaller for t∗ = 75,
demonstrating the potential gain in efficiency through use of
all marker measurements.

4.2 Simulations for Survival Function
We also conduct simulations to investigate the estimation of
partly conditional survival functions.
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Table 1
Simulation results for identical baseline models, K = 10. The partly conditional hazard model is λ0(t

∗) exp{αZi·a + βZi (sik )}.

α = −2 β = −0.02

n % censored AN RBias × 10−2 SE ×10 −3 CP(N) CP(R) RBias × 10−2 SE × 10−5 CP(N) CP(R)

100 0 4.2 1.63 11.31 0.656 0.906 0.13 3.55 0.838 0.942
100 25 3.7 2.18 13.95 0.690 0.924 0.87 4.22 0.888 0.958
100 50 1.5 1.47 14.59 0.940 0.932 2.07 5.95 0.952 0.940
100 75 1.0 2.08 22.39 0.958 0.914 4.21 9.45 0.954 0.924
200 0 4.2 0.63 7.17 0.678 0.930 0.05 2.67 0.794 0.936
200 25 3.7 0.26 9.16 0.724 0.944 0.54 2.97 0.858 0.940
200 50 1.5 0.26 10.58 0.918 0.926 0.68 3.99 0.936 0.930
200 75 1.0 0.61 15.13 0.940 0.934 2.01 5.78 0.956 0.930
500 0 4.2 0.33 4.54 0.652 0.928 0.09 1.53 0.818 0.966
500 25 3.7 0.20 6.27 0.698 0.922 0.07 1.92 0.836 0.932
500 50 1.5 0.47 6.19 0.930 0.948 0.33 2.48 0.934 0.932
500 75 1.0 0.18 9.30 0.940 0.934 0.84 3.48 0.946 0.924

1000 0 4.2 0.20 2.96 0.700 0.956 0.08 1.19 0.782 0.930
1000 25 3.7 0.04 3.83 0.712 0.946 0.01 1.42 0.838 0.944
1000 50 1.5 0.66 4.30 0.942 0.960 0.08 1.63 0.952 0.956
1000 75 1 0.36 6.27 0.960 0.962 0.23 2.33 0.948 0.942

Note: AN is the average number of measurements per subject that is used in the partly conditional model. RBias (relative bias) is the sampling
mean of the ratio |β̂ − β0|/β0. SE is the sampling mean of the robust standard error estimator for β̂. CP(N) and CP(R) are the coverage
probabilities of the 95% confidence intervals corresponding to the naive and robust variance estimates.

In particular, we generate data using a standard joint model
and then use partly conditional methods to directly provide
estimates of conditional survival probabilities. In these simu-
lations, we evaluate the ability of the proposed methods to ap-
proximate the conditional probabilities induced by a standard
joint model. For simplicity, we consider only one marker Zi

that is measured longitudinally and now focus on estimation
of the partly conditional survival probability P{Ti > t |Zi (s),
t > s}. The data generation follows the popular approach
(e.g., Tsiatis and Davidian, 2001) that assumes longitudinal
data follow a linear mixed effects model with measurement
errors and that survival depends on the covariates through
a proportional hazards relationship with the underlying ran-
dom effects. The specific parameters studied are based on the
MACS data. Specifically, {Zi (s) |αi} is generated as Zi (s) =
Wi (s) + εi(s), where Wi (s) = α0i + α1if(s) and f(s) =
log(s/30). The random effects (α0i, α1i) are generated as a
bivariate normal with mean (α0, α1)

T = (0.6, − 0.1)T and

covariance matrix Σα = [
0.832 −0.005
−0.005 0.132 ]. The measurement

error εi(s) is taken to be independent and identically dis-

Table 2
Simulation results for β(t∗) = −0.02 with identical baseline models. n = 200, K = 10. The partly conditional hazard

model is λ0(t
∗) exp{αZi·a + β(t∗) · Zi (sik )}.

Univariate model Partly conditional model

t RBias × 10−2 SEemp × 10−3 SEest × 10−3 CP RBias × 10−2 SEemp × 10−3 SEest × 10−3 CP(R) EF

25 −3.525 2.247 2.547 0.938 −1.170 1.630 1.427 0.932 2.442
75 8.035 4.681 3.801 0.938 −3.055 2.203 2.052 0.952 3.432

Note: RBias (relative bias) is the sampling mean of the ratio |β̂(t∗) − β0(t∗)|/β0(t∗). SEest is the mean of the standard error estimates; SEemp
is the standard error of the estimates of β; EF is the relative efficiency of multivariate model versus univariate model (σ̂2

univ/σ̂
2
mult).

tributed normally with mean 0 and standard deviation σε =
0.1. Given Wi (s), the failure time Ti has a conditional haz-
ard relationship with λi(u) = λ0(u) exp{β∗Wi (u)}, where β∗ =
−1.5. The baseline hazard is λ0(t) = 1/30. Censoring was gen-
erated from a uniform distribution with mean 300, leading to
approximately 75% censoring. For each subject, we assume
the marker Zi is measured 10 times and consider two sce-
narios for the measurement times sik , for k = 1, . . . , 10. In
the first scenario, the marker is measured at a fixed interval
of 6 months, i.e., with sik = 6, 12, 18, . . . , 60 months. In the
second scenario, we consider a marker that is measured irreg-
ularly, with sik = 6 × k + 6 × eik , where eik is the standard
uniform random variate. We carry out simulations for both
scenarios with n = 200 and n = 500.

For a partly conditional model, we assume that only those
Zi (sik ) with sik < Ti are available for analysis. The average
number of observations per subject is 3.5. For the first sce-
nario, because the longitudinal marker Zi (sik ) is measured at
a common set of times s1, s2, . . . , s10, we consider a partly con-
ditional model for Tik and t∗ = t − s of the form: λi(t

∗ |Zik ,
0 ≤ sik ≤ t) = λ0k(t

∗) exp{βZi (sik )}, allowing the unspecified
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Table 3
Simulation results for P{Ti > t |Zi (s), s < T} from model with λi(t

∗) = λ0s(t
∗) exp{βZi (sik )}. s measured at

regular interval. n = 200.

s = 6 s = 24

Z = 1 Z = 2 Z = 1 Z = 2

t∗ = 12 t∗ = 36 t∗ = 12 t∗ = 36 t∗ = 12 t∗ = 36 t∗ = 12 t∗ = 36

S(t) 0.754 0.431 0.937 0.824 0.796 0.506 0.949 0.854

Ŝ(t) 0.753 0.435 0.932 0.814 0.797 0.511 0.945 0.847
SEest 0.039 0.051 0.022 0.048 0.047 0.065 0.019 0.042
SEemp 0.040 0.050 0.023 0.049 0.047 0.064 0.020 0.044
RBias 0.042 0.091 0.02 0.048 0.047 0.102 0.016 0.040

Note: S(t) is the true partly conditional survival probability. Ŝ(t) is the estimated survival probability from the PCS model.
SEest is the sampling mean of the robust standard error estimator for Ŝ(t). SEemp is the standard error of the estimates of Ŝ(t).
RBias (relative bias) is the sampling mean of the ratio |β̂ − β0|/β0.

baseline hazard function to depend on sk . We then estimate
the partly conditional survival probability P{Ti > t |Zi (s) =
z, s < t} with Ŝ(t | s, z) = exp{−Λ̂0k(t) exp(β̂z)}.

For the second scenario, because the measurement times
do not necessarily occur at a common set of times, we
consider a different form of the partly conditional model
for Tik and t∗ = t − s: λi(t

∗ |Zik , 0 ≤ sik ≤ Ti ) = λ0(t
∗)×

exp{βZi (sik ) + γB(sik )}, where B(sik ) denotes a spline func-
tion of sik . That is, rather than stratifying the baseline haz-
ard function by the measurement time s, we now smoothly
capture the effect of s in the regression part of the model.
We estimate the partly conditional survival function with
Ŝ(t | s, z) = exp[−Λ̂0(t) exp{β̂z + γ̂B(s)}]. In both scenarios,
the baseline cumulative hazard Λ0k(t) or Λ0(t) is estimated
with the Breslow-type estimator. A robust variance is calcu-
lated for Ŝ(t | s, z).

With the joint distribution of Ti and Zi (sik ) specified using
a hierarchical model, the analytic form of the true partly con-
ditional survival function is not readily derived. Therefore, we
used numerical methods to compute the target probabilities.
This simulation study evaluates the ability of flexible directly
specified models to estimate conditional survival probabilities.

Table 3 presents the results for simulations from the first
scenario with a sample size of n = 200. We consider both
a subject with a low marker value (z = 1), and a subject
with a high value (z = 2). We estimate their residual survival
probabilities at 12 months and 36 months post-measurement
with measurement times of 6 and 24 months, respectively. In

Table 4
Simulation results for P{Ti > t |Zi (s), s < T} in model with λi(t) = λ0(t) exp{βZi (sik ) + γB(sik )}. s measured at

irregular interval. n = 200.

s = 6 s = 24

Z = 1 Z = 2 Z = 1 Z = 2

t∗ = 12 t∗ = 36 t∗ = 12 t∗ = 36 t∗ = 12 t∗ = 36 t∗ = 12 t∗ = 36

S(t) 0.754 0.431 0.937 0.824 0.796 0.506 0.949 0.854

Ŝ(t) 0.762 0.446 0.937 0.825 0.792 0.498 0.946 0.848
SEest 0.03 0.043 0.019 0.044 0.021 0.029 0.015 0.035
SEemp 0.034 0.049 0.021 0.049 0.027 0.054 0.017 0.042
RBias 0.038 0.094 0.018 0.047 0.027 0.086 0.014 0.039

all cases, the estimated survival probabilities are quite close to
their theoretical counterparts, with the average relative bias
<5% in all except one of the cases. The bias tends to decrease
as the sample size increases to n = 500 (results not shown).
For the second scenario when the marker is simulated with an
irregular measurement interval, we use a partly conditional
model that specifies s parametrically using a natural cubic
spline basis function B(s) with a single knot at s = 24. Similar
to the first scenario, we again observe very small bias in all
cases (see Table 4). In summary, these results indicate that
accurate point estimates can be obtained by directly using
our partly conditional approach.

5. Example
Here, we apply the partly conditional survival model to data
from the MACS, which was reported in detail by Kaslow et al.
(1987). Of the 5622 homosexual/bisexual men enrolled, 3426
were seronegative at baseline and 479 of these became seropos-
itive between 1984 and 1996. Because we focus on the rela-
tionship between T-cell levels and AIDS diagnosis, we adopt
the 1987 CDC definition of AIDS, which relies on symptoms
rather than CD4 lymphocyte counts to define AIDS. Under
this definition, 211 seroconverters developed AIDS during the
study period. The mean time from seroconversion to the on-
set of AIDS among these subjects with observed times is
72 months (SD = 28 months; median = 71 months). The
present analysis uses data from the 438 seroconverters with
dates of seroconversion known to within ±4.5 months. These
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subjects have an average of 13 measurements per person
(N = 3807 total observations).

The objective of the present analysis is to investigate the
relationship between a biomarker such as CD4 count and the
risk of AIDS. We define the measurement time (s) as the
time from seroconversion to the time that the CD4 count
is recorded, and survival time as the time from CD4 count
measurement to the AIDS diagnosis time (t∗ = t − s). We
seek to quantify the predictive value of serially measured CD4
counts. In all analyses, we use CD4(s) equal to the raw CD4
count divided by 300 (approximate standard deviation).

5.1 Partly Conditional Regression Function Estimation
We start by investigating the simplest model that assumes
a common baseline hazard but allows a time-varying coeffi-
cient (model 1): λik(t

∗) = λ0(t
∗) exp{β(t∗)CD4i(sik )}. Sub-

sequent analysis will relax this model to allow dependence
on the measurement time s. For estimation, we use all CD4
measurements after seroconversion and before AIDS diagno-
sis as the time-varying predictor, CD4(s). Estimates of the
function β(t∗) are obtained by fitting a partly conditional Cox
model using local linear estimation. We use the Epanechnikov
kernel K(u) = 0.75(1 − U 2)+ with a bandwidth of 30. The
bandwidth is selected to ensure that we have substantial data
available at each data point for stable estimation. We also
consider other values of the bandwidth to assess the sensi-
tivity of the results to this choice. Eubank and Speckman
(1993) suggest use of an undersmoothed bandwidth h, i.e.,
one that satisfies n1/3h → 0, so that the inherent bias (given
as ∆(t∗, h, n) in Section 3.2) is negligible asymptotically.
The function β(t∗) is estimated at the grid points t∗ = 4 ×
j months, j = 1, . . . , 32. In Figure 1, the estimate of β(t∗)
shows a strong time trend, with diminishing relative risk as t∗
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Figure 1. Coefficient functions and pointwise 95% confidence intervals for the time-varying coefficient of standardized CD4
cell counts.

increases. For example, at any time 0 < s < T , for two indi-
viduals whose CD4 differ by 300, the log relative hazard is the
highest immediately after the measurement is taken (t∗ = 1),
with β̂(1) ≈ −3, and then attenuates steadily over the next
60 months to β̂(60) ≈ −1. Finally, the predictive capacity of
CD4 wanes to nearly 0 when the measurement is more than
60 months old.

To explore the potential gain in efficiency that arises from
using all of the longitudinal data, we compare results from
estimation using only a single randomly selected CD4 mea-
surement per individual. Figure 1 also shows the local linear
estimates using these 438 independent observations. We find
similar point estimates yet narrower confidence intervals when
all 3807 longitudinal measurements are used to estimate β(t∗).
As suggested by our simulation studies, estimation based on
all the available longitudinal data is apparently more efficient.

Next we investigate whether the effect of CD4 depends on
the measurement time s by adopting a model where both
the baseline hazard and the form of the coefficient function,
β(t∗) may depend on s (model 2). We create three groups
of data {Xik , ∆ik, Zi (sik ), sik} based on the CD4 measure-
ment time, sik : group 1 is comprised of CD4 measurements
within the first year after seroconversion (0 ≤ s ≤ 12, n =
392, and N = 686); group 2 is comprised of measurements
between the second and the third year (24 < s ≤ 36, n = 321,
and N = 577); and group 3 contains data from between the
fourth and fifth year post-seroconversion (48 < s ≤ 60, n =
229, and N = 396). Figure 2 shows the coefficient functions
estimated separately for these three groups. It appears that
CD4 measured earlier after seroconversion loses its predictive
power more rapidly than CD4 measured at later times. For
example, for CD4 observed within the first year the log rel-
ative hazard at t∗ = 4 months is β̂(t∗ = 4) ≈ −3, and then
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Figure 2. Coefficient functions for standardized CD4 cell counts using different partly conditional survival models. (a)
Coefficient functions and pointwise 95% confidence intervals for standardized CD4 cell counts measured for s ≤ 12 months,
12 < s ≤ 36 months, and 36 < s ≤ 60 months following seroconversion based on separate partly conditional varying-coefficient
hazards models. (b) Coefficient functions and pointwise 95% confidence intervals for standardized CD4 cell counts based on
a varying-coefficient and a combined proportional and varying-coefficient hazards model.

quickly decays to β̂(t∗) = −1 by 20 months. In contrast, for
measurements taken in the fifth year after conversion we find
somewhat weaker short-term association, β̂(t∗ = 4) ≈ −2, but
a longer follow-up time is required before the log relative haz-
ard decays to −1, with the point estimate crossing −1 after 30
months of follow-up. Essentially, this analysis approach esti-
mates the coefficient function β(t∗, s) in the model λ0(t

∗, s)×
exp{β(t∗, s)CD4(s)}. If a parametric form for β(t∗, s) were

adopted, the simplifying assumption β(t∗, s) = β(t∗) used in
model 1 could be formally tested.

We also consider two intermediate models that differ in the
way they model the measurement time s while retaining a
common estimate for β(t∗). Model 3 assumes different, but
unspecified, baseline functions for CD4 measured at differ-
ent follow-up times. Because subjects in MACS are followed
semiannually, we divide observations into G = 11 strata. An
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Figure 3. Partly conditional survival functions for hypo-
thetical subjects with CD4 cell counts of 725 and 340 at the
time of measurement. (a) Survival estimates based on sepa-
rate varying-coefficient hazards models fit to s ≤ 12 months,
12 < s ≤ 36 months, and 36 < s ≤ 60 months. (b) Survival es-
timates based on a combined proportional varying-coefficient
hazards model.

observation belongs to the gth stratum if it is measured within
the gth year since seroconversion. Specifically, the model takes
the form λik(t

∗) = λ0g(t
∗) exp{β(t∗)CD4i(sik )}. Alternatively,

model 4 uses both the CD4 count and the measurement
time as covariates in a partly parametric Cox model, namely,
λik(t

∗) = λ0(t
∗) exp[αT{fj (s)}pj=1 + β(t∗)CD4i(sik )]. We spec-

ify a flexible parametric model for measurement time, s, us-
ing natural cubic spline basis functions, fj (s), with a single
knot at s = 48. We also conduct analyses with a single knot
at s = 36 and with a pair of knots at s = 16, 36, respec-
tively. These alternative choices for fj (s) result in very mi-
nor differences in the estimated coefficient function β̂(t∗). Be-
cause later follow-up times tend to have shorter survival time
due to administrative censoring, in order to obtain stable es-
timates, we restrict the analysis to a time interval of 0 ≤
t − s ≤ 60. Figure 2 shows the estimated coefficient func-
tions for CD4 along with 95% pointwise confidence intervals
from both the stratified and the partly parametric models.
The two methods give very similar estimated coefficient
functions.

5.2 Partly Conditional Survival Function Estimation
One important objective of our partly conditional sur-
vival model is to estimate the updated survival probability
P{Ti > t |CD4i(s), Ti > s} for an arbitrary pair of sur-
vival and measurement times, (s, t), where s < t. Figure 3
shows the predictive survival probabilities given in terms
of months since measurement, P{Ti > t∗ + s |CD4i(s),
Ti > s}, based on models 2 and 4 described above. Recall
that in our application the survival probability is equiva-
lent to the probability of being free of AIDS. Figure 3 il-
lustrates the estimated probabilities for two hypothetical in-
dividuals: one with a high CD4 value (725) and one with a
low CD4 value (340). We also consider measurement times
of 1-year post-seroconversion, s = 12, and the third, s = 36,
and fifth year, s = 60, after seroconversion. In Figure 3a, we
use model 2 which allows the baseline hazard and the coeffi-
cient function to depend on the measurement time s. We see
that for both individuals, the chance of being free of AIDS
decreases steadily with time, but the individual with a higher
CD4 value is less likely to develop AIDS during the follow-up
period. Furthermore, the predictive survival functions appear
to depend on the time at which CD4 count is measured. For
example, an individual with a CD4 value of 340 measured at
the first year after seroconversion has a chance of developing
AIDS within 4 years of approximately 30%, whereas if the
same value of CD4 is obtained at 3 years post-seroconversion,
then his chance of getting AIDS within the next 4 years is
approximately 60%.

To assess the sensitivity of survival predictions to the choice
of model, we also display estimates based on a more structured
model that assumes a common coefficient function, and uses
the measurement time s as a covariate (model 4). In Figure 3b,
we find estimated survival probabilities that are qualitatively
similar to those from the less structured model, but spe-
cific estimates differ, particularly for longer follow-up times.
For example, the effects of measurement time s on the high
and the low CD4 curves become less evident compared with
panel (a).

If the ultimate goal is to create accurate predictions then
the tradeoff between a potentially less biased but more vari-
able approach (model 2) and a less variable but potentially
biased approach (model 4) may be empirically evaluated us-
ing cross-validation methods if a meaningful measure of the
discrepancy between data and prediction can be adopted.
Unfortunately, there is no well-accepted summary of predic-
tive model accuracy for survival models, although alterna-
tives have been proposed (Heagerty, Lumley, and Pepe, 2000;
Schemper and Henderson, 2000). In addition, empirical eval-
uation of accuracy for varying-coefficient models would be
computationally demanding.

6. Discussion
We have proposed a new approach that can quantify the risk
of a key clinical event at time t as a function of the marker
process accumulated through time s, for any pair of times
(s, t) with s < t. In contrast to the standard time-varying
covariate regression model for the event time, our method de-
couples the time scale for modeling the hazard from the time
scale for accrual of available longitudinal covariate informa-
tion, and thus directly facilitates the calculation of quantities
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such as P{Ti > t |Zi (s), 0 ≤ s < t} without assumptions
regarding the longitudinal marker distribution.

One important feature of our partly conditional model is
that we allow regression parameters to depend on both the
time of measurement for the predictor and the time of mea-
surement for the outcome. In specific applications, a varying-
coefficient model of the form β(t, s) = β(t − s) may be
used which assumes that the association between the sur-
vival outcome and the covariate depends only on their time
separation. For estimation, we extended local linear estima-
tion for the univariate Cox model (Cai and Sun, 2003) to the
partly conditional setting, and we provided detailed estima-
tion procedures for three classes of partly conditional survival
models.

One issue that arises with use of a partly conditional haz-
ard model is the need to model the measurement time s. We
have introduced alternative models that differ in the way the
effect of the measurement time, s, is specified. In general, the
choice of model may depend on the aim of the study and
the specific features of the data structures such as the fre-
quency and spacing of visits. Our example analysis explored
the extent to which results were sensitive to model choice.
Further research to develop methods for model checking and
to define appropriate criteria for selecting models would be
useful.

In this article, we make fairly strong assumptions regarding
both measurement timing and marker missingness. In partic-
ular, we assume that each individual provides a sequence of
measurements at either a set of fixed times, or at times that
occur in a completely random fashion. However, in some ob-
servational studies, individuals are not necessarily followed
at scheduled intervals. Furthermore, the timing at which in-
dividuals are measured may depend on the previous value
of the marker measurement. In the repeated measures set-
ting with outcome-dependent follow-up, it has been demon-
strated that potential bias could be associated with the use of
an estimating equation approach (Lipsitz et al., 2002). Fur-
ther work is needed to evaluate the robustness of our esti-
mation procedure to the timing assumptions, or to develop a
more general method that can relax the measurement timing
assumptions.

Instead of employing a likelihood-based estimation proce-
dure, we develop nonparametric and semiparametric methods.
One advantage of using a semiparametric approach is that it
provides a computationally simple and robust solution. One
potential weakness is that our methods are based on a working
independence assumption, and as such, may be less efficient
than a full-likelihood approach. Future work that compares
our semiparametric approach with specific likelihood-based
alternatives in terms of both efficiency and robustness would
be valuable.
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