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Bayesian information criterion for
longitudinal and clustered data
Richard H. Jones*†

When a number of models are fit to the same data set, one method of choosing the ‘best’ model is to select the
model for which Akaike’s information criterion (AIC) is lowest. AIC applies when maximum likelihood is used to
estimate the unknown parameters in the model. The value of �2 log likelihood for each model fit is penalized by
adding twice the number of estimated parameters. The number of estimated parameters includes both the linear
parameters and parameters in the covariance structure. Another criterion for model selection is the Bayesian
information criterion (BIC). BIC penalizes �2 log likelihood by adding the number of estimated parameters
multiplied by the log of the sample size. For large sample sizes, BIC penalizes �2 log likelihood much more than
AIC making it harder to enter new parameters into the model. An assumption in BIC is that the observations are
independent. In mixed models, the observations are not independent. This paper develops a method for calculat-
ing the ‘effective sample size’ for mixed models based on Fisher’s information. The effective sample size replaces
the sample size in BIC and can vary from the number of subjects to the number of observations. A number of
error models are considered based on a general mixed model including unstructured, compound symmetry (ran-
dom intercept), first-order autoregression with observational error and random intercept and slope. Copyright
© 2011 John Wiley & Sons, Ltd.
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1. Introduction

An overall, likelihood-based, model selection procedure, which is quite helpful in many applications
is Akaike’s information criterion (AIC) [1–5]. AIC is based on information and decision theories and
attempts to prevent overparameterization of a model. AIC penalizes �2 ln likelihood, (`), for the number
of parameters fit to the data to avoid over fitting:

AICD `C 2 .number of estimated parameters/:

The number of estimated parameters included both parameters in the linear model and parameters in the
covariance structure. For every model under consideration, AIC is calculated and the model that has the
lowest value of AIC is selected as the ‘best’ model. All models must be fit to the same outcome variables.

Akaike’s information criterion has received some criticism in the time series analysis literature
because it is not a consistent estimate of the order of an autoregression. If an autoregression has true
order p and the number of observations on the time series goes to infinity, the AIC does not always
select order p. Sometimes, it chooses too large an order.

Akaike [6] and Schwarz [7] independently developed a Bayesian information criterion for model
selection, now referred to as BIC (and sometimes referred to as SC or SIC for Schwarz information
criterion). For sample sizes of eight or more, BIC has a higher penalty for overfitting compared with
AIC,

BICD `C .lnnT/ .number of estimated parameters/; (1)
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where nT is the total number of observations assumed to be independent. For clustered or longitu-
dinal data, the observations are usually not independent and a modification of nT is necessary. This
modification will be denoted by ne for ‘effective sample size’.

Today’s computers can and do handle very large data sets. A problem with very large sample sizes
using conventional Neyman–Pearson methods is that very small departures from the null hypothesis can
be significant, even though these small departures are too small to be of practical importance. In fact,
as Kass and Raftery [8] discussed, the null hypothesis can be rejected even when the evidence in the
data favors the null hypothesis. They discussed the Bayes factor, which is the posterior odds of the null
hypothesis when the prior probability on the null is one-half. They stated that BIC gives a rough approxi-
mation to the logarithm of the Bayes factor. BIC should be seriously considered for model selection with
very large sample sizes. Even for moderate sample sizes, BIC should be considered because it penalizes
�2 log likelihood more than AIC.

Longitudinal and clustered data pose the problem of obtaining the appropriate value of nT in Equation
(1). In SAS (SAS Institute Inc., Cary, NC, USA) PROC MIXED [9], if the model has independent errors
(no random or repeated statements), SAS correctly uses for nT the total number of observations on all
subjects. However, if there is a random or repeated statement in the model, SAS uses the number of sub-
jects or clusters, which in the notation here ism instead of nT. This is a very conservative approach. The
effective sample size, ne, would usually be between these extremes. SAS PROC MIXED has both the
maximum likelihood option (ML) and the restricted ML option (REML) with REML being the default.
REML is applicable for comparing models only when the fixed effects remain the same. In this paper,
I allow the fixed effects to vary during the optimization and use ML. The error models considered here
have been discussed by Jennrich and Schlucher [10], Diggle [11], and Jones and Boadi-Boateng [12].

2. Effective sample size for Bayesian information criterion

A general linear mixed model with Gaussian errors for subject i is [13, 14]

yi D XiˇCZi� i C �i ; (2)

where yi is a column vector of length ni of the response variables for subject or cluster i . Xi is an ni �p
matrix of known or observed independent variables, and ˇ is a column vector of length p of the regres-
sion coefficients of these fixed effects to be estimated. Zi is an ni � q matrix for the random effects,
� i , which are assumed to be independently distributed across subjects with distribution � i � N.0;G/.
The error vector, �i , is assumed to be independent across subjects with distribution �i � N.0;Ri /. The
covariance matrix of the response variable, yi , is

Vi D ZiGZ0i CRi :

I assume that the first column of the Xi matrices are columns of 1s. This means that the intercept is
included in the model. The Xi matrices can be partitioned into the first column of 1s and the p� 1 other
columns,

Xiˇ D
�

1i X�i
� " ˇ0

ˇ�

#
:

Here, 1i is a column vector of 1s of length ni for subject i , X�i is Xi with the first column removed,
and ˇ� is ˇ with the intercept removed. The normal equations to be solved to obtain the weighted least
squares estimate of ˇ are 

mX
iD1

"
10iV
�1
i 1i 10iV

�1
i X�i

.X�i /
0V�1i 1i .X�i /

0V�1i X�i

#!"
b0

b

#
D

 
mX
iD1

"
10iV
�1
i yi

.X�i /
0V�1i yi

#!
:

The upper left-hand corner of the matrix on the left is Fisher’s information for the intercept [15, pp.
72 and 327]. This is the sum of the elements of V�1i summed over subjects. This information measure
depends on the units used for the observations, that is, meters or feet. The use of the correlation matrix
corresponding to the V matrix resolves this problem of different units of measurements. Let Ci be the
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correlation matrix corresponding to Vi . Consider the V matrix for a single subject. Let the square roots
of the diagonal elements of V be

�j D
p

Vjj :

Divide the element j; k of the V matrix by �j�k . This produces the correlation matrix, C, corresponding
to the covariance matrix V. The unit free measure of information uses the correlation matrix rather than
the covariance matrix, and the effective sample size can be defined to be

ne D

mX
iD1

10iC
�1
i 1i : (3)

This is the sum of the elements of C�1i , summed over subjects.
If Ci is the identity matrix, Ii , of size ni by ni for subject i ,

10iC
�1
i 1i D ni ;

that is, if the errors are uncorrelated with constant variances, the effective sample sizes are the actual
sample sizes. I show in the following text that Equation (3) is a reasonable definition for a number of
commonly used error models.

To compute BIC for a given model, first obtain the ML estimates of the linear parameters and unknown
covariance parameters simultaneously. Next, calculate the effective sample size, ne from Equation (3)
and BIC from

BIC D `C .lnne/ .number of estimated parameters/:

2.1. Compound symmetry

For compound symmetry (random intercept), the correlation matrix for subject i is ni by ni

Ci D

2
66666664

1 � � � � � �

� 1 � � � � �

� � 1 � � � �

:::
:::

:::

� � � � � � 1

3
77777775
; (4)

where 06 � < 1 is the intraclass correlation. The inverse of this matrix has

1

1� �

�
1C .ni � 2/�

1C .ni � 1/�

�
on the main diagonal and

�
1

1� �

�
�

1C .ni � 1/�

�
on the other elements of the matrix [14, p. 17]. The sum of the elements of this inverse matrix is ni times
the diagonal value plus ni .ni � 1/ times the off-diagonal value giving

ne D

mX
iD1

�
ni

1C .ni � 1/�

�
: (5)

In the balanced case, where every subject or cluster has the same number of observations, n,

ne D
mn

1C .n� 1/�
: (6)

If � D 0, there is no correlation between the observations on a subject or cluster. In this case, SAS

is correct and ne D nT is the total number of observations on all subjects. At the other extreme, if � is
close to 1, little additional information is gained by having repeated measures on subjects. In this case,
SAS is also correct that the ne in BIC is the number of subjects, m. Between these two extremes, the
effective sample size to be used for BIC is a function of �. In practice, these equations are based on the
ML estimate of � that is available from the computer output.
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2.2. First-order autoregression within subject errors

In longitudinal data analysis when subjects are followed over time, there is a natural ordering of the
data for each subject. In this situation, a first-order autoregression (AR(1)) is often used to model the
within-subject error structure. I will first consider the balanced case with equally spaced observations
with m subjects and n observations on each subject. All subjects are observed at the same n time points.
The error correlation matrix for each subject is n� n,

CD

2
666666664

1 � �2 �3 � � �

� 1 � �2

�2 � 1 �

�3 �2 � 1
: : :

:::
: : :

: : :

3
777777775
;

where � is the autoregression coefficient in the interval �1 < � < 1. Siddique [17] showed that C�1 is
tridiagonal,

C�1 D
1

1� �2

2
666666666664

1 �� 0 � � � 0 0

�� 1C �2 �� 0 0

0 �� 1C �2
: : : 0 0

:::
: : :

: : :
::: 0

0 0 0 1C �2 ��

0 0 0 � � � �� 1

3
777777777775
:

This inverse matrix has a unique lower triangular factorization [14, p. 110], such that

C�1 D L0L;

where

LD
1p
1� �2

2
66666666664

p
1� �2 0 0 � � � 0 0

�� 1 0 0 0

0 �� 1 0 0

:::
: : :

: : :
:::

0 0 0 1 0

0 0 0 � � � �� 1

3
77777777775
:

The effective sample size from m subjects is

ne Dm10C�11Dm10L0L1Dm.L1/0.L1/:

Calculating L1 and the sum of squares of the elements of the resulting vector gives the effective sample
size

ne Dm

�
1C .n� 1/

1� �

1C �

�
: (7)

If � D 0, ne D mn, the total number of observations. If � approaches 1, ne approaches m, the number
of subjects or clusters. In practice, the ML estimate of � from the computer output will be used in this
equation.
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2.3. Unequally spaced first-order autoregression error models

Unbalanced designs can be caused by missing observations or data that are collected unequally spaced.
For truly unequally spaced data, not equally spaced observations with missing values, a continuous time
AR(1) model must be used [14]). A continuous time AR(1) has a negative exponential correlation func-
tion that depends on the time between the observations. Suppose the observation j on subject i is taken
at time tij . Then, the correlation between �.tij / and �.tij 0/ is

�.jtij � tij 0 j/D expf�˛.jtij � tij 0 j/g;

where ˛ > 0 is the continuous time autoregression coefficient. Let the time interval between observations
for subject i be

ıij D tij � ti;j�1; for j D 2; 3 � � �ni ;

where ni is the number of observations on subject i . Now

�.ıij /D e
�˛ıij :

The factored form for the inverse of the correlation matrix for subject i is [14]

Li D

2
66666666666666664

1 0 0 � � � 0 0

��.ıi2/p
1��2.ıi2/

1p
1��2.ıi2/

0 0 0

0 ��.ıi3/p
1��2.ıi3/

1p
1��2.ıi3/

0 0

:::
: : :

: : :
:::

0 0 0 1p
1��2.ıi;n�1/

0

0 0 0 � � �
��.ıi;n/p
1��2.ıi;n/

1p
1��2.ıi;n/

3
77777777777777775

:

Calculating Li1 and the sum of squares of the elements of the resulting vector and summing over subjects
gives the effective sample size

ne D

mX
iD1

2
41C niX

jD2

1� �.ıij /

1C �.ıij /

3
5 : (8)

This can be calculated using the ML estimate of ˛. For balanced equally spaced data, this reduces to
Equation (7).

2.4. Including observational error

Random observational error adds a positive constant, the variance of the observational error, to the diag-
onal elements of the covariance matrices for AR(1) errors. In geophysics, this is often called the nugget
effect. With the addition of the observational error variance to the diagonal elements of the covariance
matrix, the inverse is no longer tridiagonal. The effective sample size can be calculated by the direct
evaluation of Equation (3). One way of doing this is to augment each Ci by a column of ones, 1, and do
a Cholesky factorization on the augmented matrix [18]. Let

Ci D T0iTi

be the factored correlation matrix for subject i . The augmented correlation matrix is�
Ci 1

�
:

After the in-place factorization, the matrix becomes�
Ti .T0i /

�11
�
:
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Now, ne for subject i is the sum of squares of the right most column of this matrix. If the data are
balanced, that is, every subject is observed at the same times, ne can be multiplied by the number of
subjects. If the data are unbalanced, ne needs to be calculated for each Ci and summed across subjects.
This is a general method for calculating the effective sample size from the correlation matrices of each
subject or cluster.

2.5. Random intercept and slope models

Let the Xi matrix for subject i be

Xi D

2
66664
1 xi1

1 xi2
:::

:::

1 xini

3
77775 ;

where the xij are values of a longitudinal variable such as age or time that are ordered from smallest to
largest. The form of the general linear mixed model (2) for this application is

yi D XiˇCXi� i C �i :

Here, the error vector, �i , is assumed to be independent across subjects with distribution �i �N.0; �2Ii /.
The covariance matrix of yi is

Vi D XiGX0i C �
2Ii

where G is a general 2� 2 covariance matrix.
Standard software can be used to obtain the ML estimates of �2 and the three distinct elements of G.

Vi can then be calculated and reduced to its correlation matrix, Ci , and the effective sample size, ne,
calculate using Equation (3).

3. Discussion

Bayesian information criterion has a very important role to play in model selection in data sets with
a large sample size. In conventional Neyman–Pearson statistics with very large sample sizes, small
changes that are too small to be of practical importance may be significant. BIC penalizes the value
of �2 log likelihood by the log of the sample size multiplied by the number of estimated parameters.
The number of estimated parameters includes both the fixed effect regression coefficients and the error
model parameters. The assumption is that the observations are independent.

In mixed models with subjects or clusters, the observations within subjects or clusters are usually
correlated. This paper develops an effective sample size, ne based on Fisher’s information correlation
matrix. For compound symmetry, the result is well known and unequal cluster sizes are easily handled
by calculating ne for each subject and summing over subjects. Formulas are derived for AR(1) errors, bal-
anced (every subject observed at the same times) or unbalanced designs including missing and unequally
spaced observation. For more complicated models, such as AR(1) with observational error and models
with a random intercept and slope, a general method is used based on the sum of the elements of the
inverse of each subject’s correlation matrix.
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