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ABSTRACT
LILY WANG. Some Statistical Aspects of the Analysis of Genomic Sequences
(Under the direction of Dr Pranab K Sen)

During the courses of evolution, biological sequences undergo continuous
changes through mutations such as substitutions, insertions, or deletions. Along the
lengthy stretches of the sequences, some regions that do not change as much as the rest
are called the "functional domains". Their resistance to change often suggests these
regions serve critical functions; therefore, similarities of the sequences often suggest
likeness in structure and function, in addition to relationships in phylogeny. In the first
part of the dissertation, we discuss the Headruns problem. The alignment score which
measures similarity between two sequences will depends on how the sequences were
aligned. Here we consider the case when we are given two sequences Aj, Ay, ..., and
B,, B,, ... with letters independent and identically distributed in a fixed alignment, that is,
the sequences has be aligned already and no more shifts is needed. The alignment of two
sequences can be done by moving one sequence on top of the other sequence until certain
number of letters, say 20, are found to be the same, then chopping off sections of the
sequences in which there is no corresponding letters from the other sequence. To remove
bias, the first 20, or the number that was used in the matching criteria of the aligned
segment is deleted. In this case, the local alignment score R, corresponds to the longest

run of heads when a coin is flipped repeatedly. We study the asymptotic behavior of the
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local alignment score by extending the Chen-Stein theorem to situations with very
general assumptions: (1) the matching probabilities are possibly different at each
position; (2) in addition to the first case, the underlying positions along the sequences are
assumed to have first order Markovian dependent structure.

In the second part of the dissertation, we study the profile scores. Profile analysis
uses multiple alignment profile of a family of related sequences to search a database for
more examples of the family. Given a multiple alignment, as we are searching along
another long sequence, we construct a distance measure between the profile and the
sequence called the profile score. The scores are a set of dependent stationary triangular
arrays. Unlike previous studies, to study the asymptotic behavior of the profile scores as
well as their maximum, we put the profile in a random context and accommodate the
possibility of gaps in the profile with small probability. First, we show that the tail
behavior of the profile scores can be well modeled using normal mixture distribution.
Next, we find the analytic formula for normalizing constants in extreme value theory for
normal mixture distribution. We then derive the distribution for the maximum of the
profile scores when means and variances of the scores are known by applying the Chen-
Stein theorem. When the profile is random, the means and variances are unknown, we
also derive distribution for the maximum of the profile scores in this case. Finally, we
apply these results to the Immunoglobulin profile Ig and demonstrate numerical

applications of the theories.
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CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

During the course of evolution, biological sequences undergo continuous changes through
mutations such as substitutions, insertions or deletions. Along the lengthy stretches of se-
quences, some regions that do not change as much as the rest are called the "functional
domains". Their resistance to change often suggests these regions serve critical functions;
therefore, the similarities of sequences often suggest likeness in structure and function, in
addition to relationships in phylogeny. In the post human genome era, as massive amount
of genetic data are being generated, one important task is to organize and analyze these data
to extract important information. One way to accomplish this is by using the methods of
sequence alignment. We review relevant statistical and biological background for sequence
analysis in this chapter.

In the first section, concepts in biology such as the structures of DNA, protein and
the Central Dogma of Molecular Biology, are reviewed. The next section accounts for the

history of the Human Genome Project and points out various ways sequence analysis may



help us to understand the genome. Next, in section three, recent works on the statistical
properties of alignment scores are reviewed. Relevant theories for the asymptotic growth
of alignment scores, the Chen-Stein theorem as well as its applications to pairwise and

profile analysis are discussed. Finally, we outline the research in the next few chapters.

1.2 Molecular Biology

In this section, we review some basic genetic concepts, such as the structures of DNA,
RNA, protein, and the central dogma of molecular biology. More detailed accounts can be

found in standard genetic texts such as Klug and Cummings (2000).

1.2.1 Structure of DNA and RNA

In all organisms except certain virus, DNA is the genetic material that is physically
transmitted from parent to offspring. In a DNA molecule, two long polynucleotide chains
are coiled around a central axis to form a double helix in an anti-parallel fashion, where the
C-5’-to-C-3’ orientations run in opposite directions. Within a single chain, each nucleotide
has three essential components: a nitrogenous base, a pentose sugar (5 carbon sugar), and
a phosphate group. The name of DNA derives from its sugar component, a deoxyribose
sugar, or a sugar molecule with H instead of OH at the 2’ position. In addition, a phos-
phate group is attached to the 5’ position and a base is attached to the 1” position of sugar
molecule. The bases adenine (A), guanine (G), cytosine (C), and thymine (T) are classified
into two types according to their chemical structures: A and G are purines, or nine-member
double-ring; C, T are pyrimidines, or six-member single-ring. These bases are flat struc-
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tures, lying perpendicular to the axis, and stacked on one another. Between the two chains,
the bases are paired with each other by hydrogen bonding, a weak electrostatic attraction
that usually forms between a hydrogen atom and a strongly electronegative atom such as
oxygen or nitrogen. In DNA, only A =T and G = C are allowed. In contrast, a RNA mole-
cule is a single stranded molecule, with bases A, G, C, and U (uracil). The base U appears

only in RNA and pairs with A from DNA during the process of transcription.

1.2.2 Structure of Protein

While the genetic information is stored in DNA, the ultimate cellular activities are in-
fluenced through DNA encoded proteins. A protein is one or a few polypeptide chains
made up of amino acids. Each amino acid has a carboxyl group, an amino group, and an R
(radical) group, all bound to a central carbon atom. The 20 amino acids can be classified
into four groups according to chemical structure of the R group: nonpolar, polar, nega-
tively charged, and positively charged. During dehydration reaction, the amino acids are
linked together by peptide bond, hence the name polypeptide chain. There are four levels
of protein structures: primary, secondary, tertiary and quaternary. The primary structure is
specified through the sequence of amino acids; the secondary structure refers to the local
conformations, two most common configurations are « helix and B-pleated sheet; in con-
trast, tertiary structure describes the three dimensional conformation of the entire chain in
space; and finally, quaternary structure defines the conformation of the various chains in
relation to one another for proteins composed of more than one polypeptide chains, many
of the enzymes, including DNA and RNA polymerases, show quaternary structure.
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1.2.3 Central Dogma of Molecular Biology

The process that describes the information flow involving DNA, RNA and proteins
within cells (except in certain retrovirus) is the central dogma of molecular genetics: DNA
makes RNA, which in turn makes proteins. It can be shown more clearly in the following

diagram:

—_ —— —_— = —> —_——— :
DNA replication DNA transcription RNA translation Protein

First, the process of replication is initiated by unwinding of DNA helix, helped by pro-
teins DnaA, DnaB and DnaC. Then a short segment of RNA, complementary to DnaA,
is first synthesized to initiate DNA synthesis. Under the semi-conservative model, as the
strands start to unwind, each of the two original DNA strand serves as a template for DNA
synthesis. As DNA polymerase adds each nucleotide, it also proofreads and excises any
mismatched nucleotide to increase the fidelity of the process. At this stage, genetic ex-
change between any two double stranded DNA molecules from homologous chromosomes

often occurs, resulting in genetic recombination.

Next, transcription is initiated at upstream DNA region called the promoter, which
contains specific DNA sequences such as TATA box. Similar to DNA replication, here,
an RNA polymerase binds the promoter region and directs synthesis of a strand of RNA
complementary to the DNA template; with the exception that A is paired with U instead of
T. In eukaryotic cells such as animal cells, some internal DNA sequences called the introns
or as they are often called ” the junk DNA” are removed in the process of splicing. The
remaining DNA, the exons (“ex” for expressed) proceed to be translated into proteins.
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In the last step, translation occurs where each group of three ribonucleotides, called
the codons, specifies one amino acids. These codons has the properties of unambiguous,
degenerate, and non-overlapping: each triplet specifies only a single amino acid; but a given
amino acid can be specified by more than one triplet; and once translation begins, any single
ribonucleotide at a specific location is part of only one triplet. Initiation of translation
involves assemble of large, small units of ribosome, which serve as workbench for the
translation process for a few enzymes, the mRNA transcript and a tRNA molecule. The
process then proceeds as tRNA attaches amino acids one at a time to the mRNA template,
after which an enzyme called peptidyl transferase catalyzes the formation of peptide bonds
and links each amino acids to the proceeding one. Termination of the process occurs when
the stop codons (UAG, UAA or UGA) are reached, after which tRNA and polypeptide
chain are released. The polypeptide then folds, assumes a three dimensional conformation

and becomes a functional protein.

1.3 The Human Genome Project

Although controversial from the beginning, the completion of a high-quality compre-
hensive sequence of human genome was considered one of the greatest achievement in
the history of biology. The journey for completing this herculean task and the many de-
bates along the way were described in the February issue of Nature magazine in 2001.
(Robert, Service, Enserink, Vogel, Marx, Helmuth, Marshall, 2001) The goals of the Hu-
man Genome Project were to determine sequences of the 3 billion base pairs that make
up human DNA; to identify all 30,000 genes in human DNA; to store this information in
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databases; to improve tools for data analysis; and to address the ethical, legal and social
issues. This landmark event has lead us into the new genomic era and will significantly
advance our understandings of the complex human biological systems as well as roles of

genetic factors in human diseases.

The Human Genome Project was almost completed by two teams of researchers under
one of the most hotly contested races in recent scientific history. The public project by the
International Human Genome Mapping Consortium was an international thirteen-year ef-
fort that officially started in 1990. Funded mainly by the US department of Energy and the
National Institute of Health in collaboration of Britain’s Wellcome Trust, the entire project
costed more than 3 billion US dollars. Collaborators from all over the world, including
Japan, France, Germany and China also made important contributions. The private project
was funded by the company Celera Genomics, which was formed in 1998. The first work-
ing draft of the entire human genome was completed in 2000 and in February issues of
Nature and Science magazines, the public and private teams presented descriptions of their
strategies used to obtain sequencing information of the DNA molecules that constitute the
genome as well as the initial analysis of the human genome. (International Human Genome

Sequencing Consortium, 2001a,b and The Celera Genomics Sequencing Team, 2001)

The private team used the whole genome shotgun sequencing method. First, the en-
tire 3-billion-base genome was shredded into zillions of fragments. Then, these fragments
were cloned into plasmids and sequenced on both strands. Once the sequences were ob-
tained, they were aligned so that identical sequences were overlapping. The contiguous
pieces were then assembled into finished sequence using one of the world’s fastest super-
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computer. In contrast, the public team used the hierarchical shotgun sequencing method.
First, genomic DNA was fragmented and a library was constructed by inserting the pieces
into BAC cloning vectors. The genomic DNA fragments in the library were then organized
into a physical map and individual BAC clones were selected and sequenced by the random
shotgun strategy. Finally, the clone sequences were assembled to reconstruct the sequence
of the genome. Because human genome consisted large amount of repeated sequences
(>50%), the hierarchical method where only local sequencing is used, was considered
more accurate since long-range misassembly was eliminated and the risk of short-range
misassembly was reduced, although at a higher cost, since a map of clone was needed
initially. Birney et al. (2001) detailed a comparison of the quality of the two sequences.
Bentley et al. (2001), Tilfore et al. (2001), Montgomery et al. (2001), Bruls et al. (2001)
and Riethman et al. (2001) give detailed account of techniques used for sequencing as well

as descriptions of contents of the individual chromosomes.

The initial analysis of the genome sequences provided some panoramic views of the hu-
man genetic landscape: as the first vertebrate genome to be sequenced, the human genome
is about 3.2 gigabases (Gb), of that 2.95 Gb is euchromatic or gene rich; it is 30 times
larger than worm and fly genomes, and 250 times larger than yeast genome. To give an
idea about the size of human genome, if we were to compile it in books, we would need
200 volumes the size of Manhattan telephone book (at 1000 pages each) to hold it all; if we
were to read it out loud, it would take 9.5 years on a reading rate of 600 bases/minute. (US
Department of Energy Genome Program) The estimated number of human genes is 25,000-
35,000 (Ewing, 2000 and Roest, 2000). The protein coding regions of the genes, called the
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exons, are separated in the genome by the non-coding regions called the introns. In human
genome, the exons only account for about 3% of the entire sequence, repeat sequence of
various types form over half of the DNA. (Bimey, 2001 and Baltimore, 2001).

To take advantage of this book of life, the important goals in the post-genome era will
be to map positions of genes and coding sequence variations, and to annotate this map by
understanding the functions of genes and their interplay with proteins and the environment
to create complex and dynamic biological systems. This in turn will advance our under-
standing of the role of genetic factors in human health and disease by helping us identify
genes responsible for human Mendelian diseases as well as good health. In addition, this
insight will help us develop genome based diagnostic methods for the prediction of sus-
ceptibility to disease, the prediction of drug response, the early detection of illness and the
accurate molecular classification of disease as well as serve as an engine for pharmaceutical
discovery.

In achieving our goals, sequence similarity comparisons will serve as an important
tool. Already, biologists have been trying to discover new genes in their favorite systems
by carrying out some data mining exercises. The February issue of Nature magazine in
2001 contains these initial findings from the broad topics such as cancer, addiction, gene
expression, immunology, evolutionary genomic, to the more specific topics, such as mem-
brane trafficking, cytoskeleton, cell cycle, and circadian clock. (Futreal, Nestler, Tupler,
Fahrer, Li, Bock, Pollard, Murray, Clayton, 2001)

There are a number of ways we can use sequence alignments to help us understand
the genome. First, we can determine positions of genes by aligning mRNAs with ge-
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nomic sequences. For example, Sagane (1998) aligned mRNA of the membrane-bound
metalloprotease-disintegrin ADAM23 to the draft genome to find that the gene consists of
at least 23 exons. When mRNA species align differently to a genomic sequence, this sug-
gests an alternative splicing has taken place. The International Human Genome Sequencing
Consortium (2001) has shown 60% of human genes have multiple splicing variants. This

is an important feature of the human genome.

Second, we can also search for proteins belonging to a particular family to discover new
genes. Wolfsberg (2001) searched for proteins from human gene ADAM23 which maps to
2q33 (Poindexter 1999), against proteins from draft human sequence, and found that aside
from matching itself, the best matching region was to a peptide from chromosome 20. No
ADAM family has previously been mapped to this chromosome. Further analysis showed
that this protein consists of structures characteristic of the ADAM family and confirmed it
is a functional gene rather than a pseudogene. As another example, Nestler (2001) searched

for G-protein receptor kinases in the human genome for their research.

Third, comparing homologous regions of genome sequences from different species
will also help us identify genomic elements. It has been estimated that over 40% of the
predicted human proteins share similarity with fruitfully or worm proteins. Clayton (2001)
compared Drosophila’s period clock protein with human genome and found three known
relatives and a possible fourth on Chromosome 7. Also, Wolfsberg (2001) compared mouse
Lmx1b gene with human genome and found the human LMX1B gene which maps to 9q34.
Further analysis confirmed the homology: the inactivation of Lmx1b gene in mouse lead to
a phenotype that is very similar to human nail patella syndrome (NPS), an autosomal reces-
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sive disorder characterized by limb and kidney defects which has been linked to LMX1B
gene. In addition, the International Human Genome Sequencing Consortium (2001), the
Mouse Genome Sequencing Consortium (2002) and Aparicio (2002) have also discovered
many protein-coding sequences by comparing available vertebrate genome sequences. This
is very important in that mutants of homologous genes from other species such as mouse
will facilitate the characterization of functions and mutational processes in human genes.
Moreover, determining the sequence difference between species will provide us with in-
sight into the distinct anatomical, physiological and developmental features of different

organisms and help define the genetic basis for speciation. (Sidow, 2002).

Finally, sequence alignment methods will also help us study the sequence variations
within species. Individual humans differ from each other by about one base per thousand,
and the most common class of variation is the SNP markers. Studies on “single nucleotide
polymorphisms” (SNP) will help us uncover the genetic basis of many diseases. The total
number of SNPs in the public database (dbSNP) (Smigielski, 2000) now exceeds 2.5 mil-
lion, representing 1.5 million unique loci. The databases include information on flanking
regions around the SNPs, so by sequence similarity comparison, we can localize variations
within the human genome. This information will provide information about our personal
responses to medicines and help pharmaceutical companies to develop drugs targeted to
specific sites in the body and to specific populations. These drugs are promised to be more
powerful and have fewer side effects. In the future, drugs might one day be tailor-made
for individuals and adapted to each person’s own genetic make up. Instead of the standard
trial-and-error method of matching patients with the right drugs, doctors will be able to
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analyze a patient’s genetic profile and prescribe the best available drug therapy from the
beginning with the appropriate drug dosage.

In summary, the Human Genome project has provided us with unprecedent wealth of
biological data. There are many undiscovered treasure in the current data set. Sequence
comparison methods will be an important tool to help us translate genomic information

into comprehensive understanding of biological systems and therapeutic advances.

1.4 Similarity Scores from Sequence Comparisons

1.4.1 Pairwise Sequence Alignment

There are many different ways to align two random sequences. The followings are a
few overlapping categories as discussed in Ewens and Grant (2001): for global alignment,
the entire length of the sequences are aligned; in comparison, for local alignment, only
some parts of the entire sequences are aligned. In addition, there is fixed (known) align-
ment, where the alignment of two sequences with the same length is fixed in advance and
alignment (unknown) with shift, where gaps are added and shifts are allowed to produce
the alignment with highest score. Finally, for exact matching, we require all letters from
both sequences to match exactly. In comparison, for approximate matching, a fraction of

mismatches is allowed for alignment.

The score functions can be defined mathematically for each type of alignment. Let
Ay, Ay, ..., A, and By, Ba, ..., B, be two sequences, the score function S, for global fixed
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alignment is defined by
n
Sn =D _s(Ai, B)
i=1
where s(a, b) is a non-negative finite-valued function on pairs of letters. In the simplest
case, s(a, b) can be indicator function for matching. If shifts are allowed such that
A1, Az, ..., Ap = AL, AL, A7 and By, By, ..., By — B, Bj, ..., B; are two sequences

with gaps added, then
L
S = max lZs (A}, B): all alignments]
i=1

Although the early studies focused on global alignment (Needleman and Wunsch, 1970;
Sellers, 1974; Sankoff and Kruskal, 1983), it has been recognized that as biological se-
quences undergo evolution, only isolated regions of the sequences will remain similar.
Therefore, local alignment which locates the best matching segments of two given se-
quences has been the focus of research in recent years. Waterman (1995) gives compre-
hensive review of various local alignment score statistics. For fixed local alignment where

exact matching is required, a simple score function is
R, =max{m : Aj;x = Bijxfork=1tom, 0 <i <n—m}
If shifts are allowed, the score function then becomes
H, =max{m : Ajyx = Biyx fork=1tom,0<1i, j <n—m}

In addition, if we also allow for removal of [ single letters, the score function for approxi-

mate matching is

Hy () = max {m : Aj4x = Biyx for k = 1to m, except for at most / letters}
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On the other hand, if we allow for a fraction a of mismatches, the score function is

R = max {t rat < Zl<k<t Civk,0<i<n-— t}
where C; =1 (X; = Y)).

One limitation of these scores is their inability to allow for mismatches that vary in
degree. A more general scoring scheme assigns score s(A, B) to matching between letters
A and B according to some substitution matrix and only requires that E {s(A, B)} < 0,
and s* = maxs(a,b) > 0. The first condition ensures that the expected score for the
segment has negative score, while the second condition guarantees some positive scores
are possible. These conditions are necessary: if the expected score were positive, then
the local alignment score could always be increased by increasing the matching segment
length and this violates the idea of seeking local alignments; if all the scores were negative,
then the maximum score would always be a single pair of residues, but that is not what we

are interested in.

Karlin & Altschul (1990) and Altschul (1991) discuss an important result that describes
the composition of the high-scoring segments in ungapped alignments. This theorem gives
us a rational way to assign scores which are "optimal” for distinguishing biologically rele-
vant patterns. The theorem says that when gaps are not allowed, for sequences generated
from the i.i.d. models, pair of letters (i,j) in the best matching interval tends to occur with

"target frequency”

Ausij

gij = pipj€
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where p; is the "background” frequency for residue i, s;; is score for matching residues
i and j, and A, (u denotes ungapped) is the parameter to be calculated. Writing s;; =
log(gij/pipj)/Au, We can see that scores can be chosen, with arbitrary scale, for any de-
sired set of g;, and any substitution matrix is implicitly a "log-odds" matrix with a specific
target distribution for aligned pairs of residues. Dayhoff et al. (1978) and Henikoff et
al. (1992) constructed the popular PAM and BLOSUM matrices by estimating the target
frequencies for amino acids from properly aligned, but not strongly related, proteins, and
assigned the scores with the explicit use of this logodds formula. Also, since Zi’ j4qij =1,
Ay is calculated to be the unique positive solution to this equation. Notice that multiplying
all scores in the substitution matrix by a constant ¢ will not affect the relative scores of the
local alignments, but will have the effect of dividing 4 by c¢. Therefore, A can be viewed as
a natural scale for the scoring matrix. Waterman (1995) contains a heuristics for the proof
and Arratia et al. (1988) gives the complete proof for this theorem. Altschul et al. (1997)
conjectured corresponding result would hold for gapped alignment scoring system as well,

if the gap costs used are sufficiently large.

1.4.2 Profile Scores

Another type of scoring matrix that compares a set of sequences already in a multiple
alignment and a simple sequence is called the position-specific matrix, the profile, or the
motif. Database searches using profiles are increasingly being popular since they are often
more sensitive at detecting weak relationships than searches that use a simple sequence as
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query. As discussed in Altschul et al. (1997), one reason for this is that each column of

the profile gives a more accurate estimation of the probability which amino acids occur.

Tatusov et al. (1994) describes various ways of constructing the position-specific
weight matrix. The most intuitive way is the average method proposed by Gribskov et
al. (1987). Here, the score for amino acid j in column k is Wj; = Z?gl ciksij/N where
cik is the number of times residue i occurs within column &, and s;; is the score for aligning
residue { and j from a substitution matrix. Several other methods were also discussed in
Tatusov et al. (1997): the Bayesian prediction method, the data-dependent pseudocount
method, and the Dirichlet mixture method. In addition, the authors compared relative
discriminating power of the weight matrices among themselves and with simple sequence
as query in database searches. To evaluate the performances of different scoring schemes,
five protein superfamilies that have been studied in detail where a canonical list of true fam-
ily members could be produced was used. The measure of power for a given matrix was
taken to be the cutoff at which the number of false positive, E, equals the number of false
negative, F. Clearly, the matrix with greater discriminating power would have lower value
of E, with E ideally being zero. The results show that position-specific weight matrices,
especially the Dirichlet mixture method, significantly outperform using simple sequence as

query in database searches.

15



1.4.3 Phase Transition and Asymptotic Growth of Scores

A critical phenomena for pairwise local alignment scores is that as n — oo, there is a
phase transition between their linear growth in n, when the penalty parameters are small,
and their logarithmic growth in n, when the penalties are large. This phenomena was first
studied by Arratia and Waterman (1985), Arratia et al. (1987), and Arratia et al. (1988).

The more recent results are given by Arratia and Waterman (1994) and Dembo et al. (1994),

where phase transition was shown for i.i.d. or Markov sequences. For simplicity, for simple

alignment scoring functions, where aligned letters x and y score

1 ifx=y
s(x,y) =

—u ifx#y
and deleted letters score —J per letter. Let S, be the global alignment score over all possible
"alignments" between two sequences, and let the limiting score per letter be a(u,d) =
lim,,, 0 %S—'L Kingman’s theorem (Durrett, 1991) for subadditivity implies this limit exists
almost surely. When ¢ = oo and 6 = 0, a is the Chvatal-Sankoff constant. (Chvatal and
Sankoff,1975). However, in all other cases, much unknown still remains, only the bound
0.7615 < a < 0.8575is known. Arratia and Waterman showed that the set of values (u, J)
for which a = 0 forms a line in the parameter space separating the negative region for a
from the positive, and this line is the location of the phase transition between logarithmic
and linear growth for local alignment score.

To prove the phase transition phenomena, Arratia and Waterman (1994) first showed
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that the large deviations for S, have probability which is exponentially small ast — oo, i.e.

&2k

Pr(Sy > ESy +¢€k) < e 22

where ¢ = min(2 + 44, 2 + 2u). This proof is based on the Azuma-Hoeffding inequality
(Williams,1991) for martingales with bounded increments. Then, it was shown that the
phase transition result follows rigorously from the large deviation result. Finally, Arratia
and Waterman was able to extend this result to local alignment scores with general scor-
ing scheme with symmetric scoring where s(x, y) = s(y, x) and subadditive gap weights

w(k) < wk) + wd).

For asymptotic growth of local alignment scores, Erdos and Renyi (1970) first pre-

sented the result for i.i.d. sequences with restricted scoring p € (0, 1) :

R
Pr{ lim ——=1)=1
n—oo logl/p n

where Ry is defined as before. Waterman(1995) gives an easy heuristic: in the case of

fixed alignment, the longest matching segment between two sequences corresponds to the
longest headrun. Now, a headrun of length m has probability p™, there are about n possible
headruns so

E (# of headruns with length m) ~ np™

If the largest run is unique, its length R, should satisfy 1 = np®, which has solution
Rp, = log;,,n. In addition, Waterman (1995) pointed out that in the case of alignment
with shifts, allowing shifts gives approximately n? choices for (i, j), the starting position
of a match run. This suggests that H, grows like log; /p n?. These heuristics turn out to
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be correct, Karlin et al.(1983) and Arratia and Waterman(1985) independently proved for

i.i.d. sequences

H,
Pr{ lim T =2])=1
n—)oologl/pn

In a series of papers, Arratia and Waterman (1985,1989) showed the log n? asymptotic
growth for H,, also holds for Markovian sequences and two sequences with different under-
lying distributions. More specifically, if A1, Az, ..., B1, Ba,... are two independent Markov
chains on a finite alphabet A. Assume the chains are irreducible, aperiodic, and have tran-
sition probabilities (p;j), i, j € A. Let 4 € (0, 1) be the largest eigenvalue of the substo-

chastic matrix { (pi2j)}, i, j € A, then

H,
Pr{ lim T =2]=1
n—)oo]og]/ln

Also, if Aj, Az, ...,is distributed as ¢ and By, B;,...,is distributed as v with all letters inde-
pendent and p = Pr(A; = Bj) € (0, 1). Then, there is a constant C(£, v) € [1, 2] such

that

Pr{ lim il =C¢,v) )=1
n—)oologl/pn

Finally, Arratia et al. (1988) opened up the important topic of matching with scores.
They proved the log n? asymptotic growth for H, for general scores which only required
E{s(A, B)} <0, and s* = maxs(a, b) > 0.
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1.4.4 Distribution for the Maximum

1.44.1 The Chen-Stein Theorem and Poisson Approximation

In the studies of sequence alignment, one of the basic assumptions is that truly ho-
mologous biological sequences contain segments with close matches. Often the interest
is focused on evaluating statistical significance of segments with exact or close matches
between two sequences by computing tail probabilities. Before the 1990s, the standard
way was using the Bonferroni inequalities introduced by Watson (1954) to approximate
distribution of counts of weakly dependent rare events. See Karlin and Ost (1987), Karlin
et al. (1983) for examples. However, the Bonferroni inequality method often involves
tedious and technically demanding computation of moments of large order. In 1990, Ar-
ratia et al. pioneered the use of methods developed by Chen(1975) and Stein (1986) to
establish a Poisson approximation for dependent events in the context of sequence match-
ing scores. Another good reference that is accessible to the general audiences on the Chen-
Stein method of Poisson approximation is Arratia et al. (1989). We next state this important

theorem.

Theorem 1.1 (Chen-Stein) Let I be an index set, and for each i € I, and let X; be an
indicator random variable. The total number of occurrence of events is
W=> X
iel
For eachi € I, let J; be the set of dependence of i, and assume that
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X is independent of {X;}, j & Ji.

Let Z be a Poisson random variable with E(Z) = E(W) = A. Then,

1 —e*
W —Z|| <201 + b)) —— < 2(b1 + b2)
where
bi=> D EX)EX;)
iel jel;
and
by=Y > E(XiXj)
iel i#jel;
in particular,

1—e*

A

[Pr(W = 0) — e™*| < (b1 + b)

1.4.4.2 Ungapped Pairwise Alignment

(1.1)

We next apply the Chen-Stein method of Poisson approximation to compute the prob-

ability of occurrences for long runs of heads or matches in the case of restricted scoring.

As pointed out by Arratia et al. (1990), there are two distinct issues: the expected number

of events (1) must be approximated, and the dependence among the events being counted

must be controlled.

In the analysis of headruns, that is, exact matching segments for two given sequences,
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A1, A, and By By, welet

D; = I(Ai =B)
t
x; = [[bi
i=1
-1
Xi = (1-Diy) H Diyj, i>2
LS

Here, the X;’s are a set of dependent Bernoulli variables, each of which models the event
that a “clump” or headrun of length 7 begins at position i. The index set for the X;’s is
I ={1,2,..,n —t + 1} and we assume each X; is independent of {X ;}where j ¢ J;.
Let R, be the longest headruns and let W = > X;, which is the total number of headruns

iel

longer than length ¢. Arratia (1990) has shown that for # = log;, p[n(l -p)l+ec,

IPI'{W = 0} - e—'ll = |Pr{Rn < t} —_ e—ll <0 (logn(n))

where
A=p'+@-11-p)p

In addition, Arratia et al. (1990) derived distribution for the length of longest consecutive
run, contained within the first n tosses, in which the fraction of heads > a, and the distri-
bution for the length of the longest "quality a" matching consecutive segment common to

the two sequences Aj...A,, and Bj...B,,.

For the general scoring scheme where only E {s(A, B)} < 0, and s* = maxs(a, b) >
0 are required, Dembo et al. (1994) studied the distribution for the Maximal Segment Pair
(MSP), as defined in Altschul (1991). This is the pair of equal length segments that, when
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aligned, have the greatest aggregate score. Given two independent random sequences with

letter probabilities p = {p1, ..., pr} of length m and n, let 1 be the unique positive solution

to D, jpip je“‘lf = 1. Applying the Chen-Stein theorem, the number of distinct local
Ax

alignments with score at least x is approximately Poisson distributed with mean Kmne™"",

so for large x, the MSP score M has distribution
PriM>x}~1-— e~ Kmne™ ~ Kmne™

or

log(nm)

Pr[M > +x] < Ke ™™ (1.2)

where K is an explicit calculable parameter depending on s;; and p (Karlin et al., 1990).
Therefore, an alignment of segments from the two sequences would have an MSP score
statistically significant at the a level, if M exceeds (log nm)/A* + x, where x¢ is deter-
mined so that K*e~#"% = . For database searches using a simple sequence, the number
of distinct "locally optimal" MSPs with score at least S is expected to occur by chance ap-
proximately K Ne~*S times where N is the product of query length and the database length

in residues.

1.4.4.3 Gapped Pairwise Alignment

Although computational experiments strongly suggest equation (1.2) remain valid for
the gapped case (Waterman and Vingron, 1994ab, Mott, 1992), the proof for the theorem
became much less tractable mathematically. Neuhauser (1994) obtained an approximation
for restricted scoring, in the case that a fixed number of gaps is allowed but aligned letters
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are required to match. The form of the approximation under general scoring was worked
out only recently by Siegmund and Yakir (2000).

In their notation, given two finite sequences x = {x1x2...xXp} and y = {y1y2...y»} with
xi,yj € A. Assume that x and y are independently distributed with P,(x; = a) = u, for
all i, and Po(y; = B) = vg for all j. Assume E,K(x,y) < 0 and P, {K(x,y)>0}>0
for general scoring. A candidate alignment is defined as z = {(i;, j; : 1 <t < k} for some
l1<ij<ip<..<ig<mand1l < j; < j» < .. < ji < nsuch that x; and yjare
aligned for all t = 1, ..., k. Now, we associate a score S; = S;(x, y) with each candidate
alignment z . To calculate P,(max; S, > b) where b is the observed value of the score for
the best alignment and P,is the null probability for large values of b, m and n, Siegmund

and Yakir (2000) rewrote this probability as a penalized log-likelihood ratio

P, [mzalx{lz -g@@)] = a]

where [, = 0* 3°¥_| K(x;,, ;) and §*is the solution to y (8) = log Eoe?X*»Y) = 0. They

then approximated the probability under two scenarios:

1. assume that all unaligned letters lie in at most a fixed number j of gaps.

2. the maximum number of gaps is not fixed, but each gap is assessed a cost A, "gap

open" cost in addition to the cost é "gap extension" cost.

In the first case, g(z) = 0*dl and in the second case g(z) = 0*(0l + Aj) where [
is the total number of unaligned letters. In the second case, the approximation obtained
can be turned into a Poisson approximation, therefore showing that the conjectured form
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of approximation, the same as in the ungapped case, is correct, at least when the technical
hypothesis concerning A is satisfied. Therefore, the theorem from Siegmund and Yakir
(2000) can be viewed as a theoretical justification for the practice of applying extreme
value theorem from ungapped alignment to gapped case. Siegmund and Yakir (2000)
pointed out that the condition for A serves the purpose of keeping the problem well within
the so-called "logarithmic domain". In the linear region, however, the theorem may not be
true, since if the cost A of initiating a new gap is fixed while m and n become large, there
may be cases when the score under the null hypothesis can be improved asymptotically by

candidate alignment with a very large number of gaps.

Unlike in the ungapped case, the statistical parameters A and K in the gapped case
however, are no longer supplied by theory. They must be estimated using comparisons of
either simulated or real but unrelated sequences. Letting 4 = log %, x = ¢, Waterman et

al. (1994) rewrote equation (1.2) as
Pr {M <t =log,(nm) + c} il

The goal then is to estimate parameters y and p. The most intuitive to do this is by direct
estimation. First, for a given #, calculate the empirical distribution function of optimal
local alignment scores for many pairs of statistically independent sequences by computing
the fraction of alignments with scores less than 7. Taking a log(-log(data)) transformation

and plotting against ¢ gives a straight line, and estimating the intercept and slope would

give estimates for y and p.
The direct estimation method however, usually requires large number of sequence
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alignments, say more than 1000, to derive the parameters. The more powerful method
introduced by Waterman and Vingron (1994) is the declumping estimation method. First,
from a few sequence comparisons, calculate H(i), Hw), ..., Hny. In the example of this
paper, only about 10 sequence comparisons where approximately 300 suboptimal solutions
for each pair was collected, was suffice to produce accurate estimation. The idea is that the

mean 1, (t) = E[W(1)] = y mnp’ where

W (¢) = number of alignment clumps of score greater than or equal to ¢

can be estimated as the average number of Hy;) exceeding a threshold ¢. Proper transforma-

tion and plotting this average against ¢ would then again give accurate estimates for y and
p-

Another approach is the maximum likelihood estimation method. First, with given
distribution function and therefore density function for M, the likelihood can be written
and solved for y and p. Mott (1992) fitted an extreme value distribution by MLE to the
scores from a database search using a Smith-Waterman algorithm. Other early attempt of
approximating statistical parameters using scores from database searches includes Smith
et al. (1985), Coulson et al. (1987) and Collins et al. (1990). All of the methods noted

above provides virtually identical results, while the declumping methods is notably faster

to implement.
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1.4.4.4 Profile Analysis

Goldstein and Waterman (1994) studied the statistical distribution for the comparison
of an ungapped multiple alignment profile with a simple sequence. In their notation, sup-

pose we have aligned sequences

I = hiln.lm

l, = bilxn..lm

Ivt = Iviln2.Inm

and we wish to compare it to a sequence L1, L2, ..., Ln+m—1 With letters identically distrib-
uted over an alphabet A with size d. We summarize the statistics of the letters at position

i,1 < i < m, in order to form a *weighted average sequence’: we form the quantity

.....

k=1
ample, for DNA sequences, f; = (fia, fic, fic, fir). Next, the profile table is formed by

P = {Pi}i:1<i<m), Where the weighted averages P; 0= %s(l , k) fi. This is essentially
the average method first proposed by Gribskov et al. (1987). Here, each P; measures the
similarity between the letter I and the profile statistics at position i and s(l, k) is score for
aligning I, k from substitution matrix. Then the scores constructed for aligning a profile P

with a sequence 1 = l1l2...]j4m—1 18

m
Xj=2 Pillixj-) j=12,.,n
i=1
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To determine where in a sequence the entire profile best fits, we are interested in the maxi-

mum standardized profile score over all sets of m consecutive letters:

M, = max Y;
I<j<n

where
X;—EX;
,/Vaer

Note that if all L;’s are i.i.d., then the X;’s are identically distributed. Goldstein and Water-

Yj=

man (1994) applied the Central Limit and large deviations theorem to show that the s can
be approximated by a set of m-dependent normals as the size of the profile m — oo. They
then showed that under appropriate conditions, the Chen-Stain theorem can be applied to
approximate the maximum by the extreme value distribution and provide an error bounds

that assess the quality of the approximation. We next state this important theorem:

Theorem 1.2 Let L be a sequence, L1, L2, ..., Ly 4m—1composed of independent and iden-
tically distributed letters over an alphabet A. Suppose that the profile tables P satisfy the

following conditions:

sup [|Pi|l =k < o0 (1.3)
n,1<i<m
and there exist C > 0 such that
Var P; > C forallnand1 <i <m (1.4)

and the maximum column correlation is bounded strictly by 1:

p= sup {lpsl: 1 <n<oocandl <d<m} <1 (1.5)

1<i<oo
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Let M,, be the maximum profile score,

M, = max Y;
1<j<n

and for given x, let

X
Ap =nPr(Yy > up) withup, = — +¢p

an

where

1
J P 5 (log4m + loglogn
a, = +/2logn and ¢, = 210gn[1_2( g g10g )]

2logn

With 0 < p < 1,suppose that m < n* where k € (0, i—_l__%), then

1—
|Pr{an(My — ca) < x} —e ™| =o(n") forevery y € (0, 1 +2 —k)

To prove this theorem, the authors constructed dependent binomial variables B; =
I(Y; > up) for j € I = {1,2,...,n} and their sum W, = > Bj. Then, they showed
iel

A, = e~* since each Y; behaves like a normal random variable in the tail, and that b; and

b, converges to 0 at o(n~") rate.

Until now, when gaps are allowed, there is no corresponding analytic theory to esti-
mate statistical significance of a profile compared with a simple sequence, under the gen-
eral scoring scheme. The most widely used BLAST estimates A ,, (4 for gapped profile)
by first constructing amino acid scores within each column of a profile to the same "scale”
(i.e. with the same ungapped lamda 4,) as those for a standard amino acid substitution
matrix. More specifically, for ungapped alignments, any substitution matrix takes the form
sij = log % /. For a profile, each column has its own unique set of amino acid target
frequencies g;, a scores for this column then may be constructed to the same "scale" by
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using the formula s; = (log %f) /A,. BLAST then uses the same position-independent gap
costs, and applies the same 1, corresponding to the standard substitution matrix. Altschul
et al. (1997) provides simulation experiments to show this practice provides accurate ap-

proximation for 4 p,.

1.5 Synopsis of Research

The Human Genome project has provided us with unprecedent wealth of biological
data. Sequence comparison methods will be an important tool to help us translate genomic
information into comprehensive understanding of biological systems. Assessing statistical
significance and determining how high a score may be expected to occur by chance have
always been a central question. Most recent works on sequence analysis as reviewed in
this chapter have focused on i.i.d. sequences. However, biological sequences rarely satisfy
the i.i.d. assumption. Therefore, in this research, we extend the current theories to account
for the non-homogeneities, dependencies and the gapping that are inherent in biological
sequences.

In chapter two, we study the headruns problem, or approximation for statistical distri-
bution of fixed exact local alignment scores, under a general setup where non-homogenous
matching probability and Markov dependency among the positions on the sequences are
allowed. More specifically, we apply the Chen-Stein method of Poisson approximation
to study alignment scores under these general assumptions: (1) the matching probabilities
along the sequences are possibly different at each position, (2) in addition to the first case,
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the underlying positions along the sequences are assumed to have first order Markovian
dependent structure. In each of these situations, we will find an approximation formula for
the expected number of events A,, calculate by, by indicating the dependency among the
events being counted, and show that the error bounds converge to zero asymptotically.

In chapter three, we study scores derived from comparing multiple alignment profiles
with sequences in protein databases. We derive asymptotic distribution for the maximum
of profile scores for the cases (1) when means and variances of the scores are known (2)
when mean and variance of the scores are unknown. Unlike previous studies (Goldstein et
al., 1994), we put the profile in a random context with distributional properties. We study
profile scores while assuming sequences in the profiles are random and they are compared
to a simple i.i.d. sequence.

First, without any gaps in the profile, the tails of the profile scores can be approximated
by standard normal distributions. The proof for this approximation is an application of
the Central Limit and Large Deviation theorems to triangular arrays of variables. Next,
accommodating the possibility of a few gaps in the profiles, we model the profile scores
in the tails with normal mixture distribution rather than the standard normal distribution.
This allows more flexibility and better approximation in that parameters from the mixture
distribution can then be estimated to provide a better fit to data.

Next, to show the maximum of profiles scores can be approximated by a modified
extreme value distribution of the third type, we will need to know the normalizing constants
corresponding to extreme value theory for normal mixture distribution. Both analytical
formula and numerical approximations are discussed in section 3.3. The accuracy of the
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analytic formula is evaluated in table 3.1 and 3.2. Letting B; = I(Y; > u,) and W, =

7=1 Bj, where u, = % + ¢n, an, ¢y are normalizing constants, we next apply the Chen-
Stein theorem and calculate b1 and b;. In the case when the means and variances of the
profile scores are not known, the proof is more complicated in that asymptotic orders of 5;1
and X, — u./m needs to be estimated. Note that when the means and variances for the
profile scores are known, the set of X;s is a set of m-dependent random variables. When
means and variances of the profile scores are not known, however, the set of X,;s are more

dependent than m-dependent, since the same profile is involved with all the X,;s. These

dependencies need to be taken correctly to calculate the orders for %ﬂ and X, — u/m. It
is then shown that 22 ~ O, (‘/%) and X, — u/m ~ O, (\/%) where m is number of
column for the profile and n is the number of residues for the simple sequence. Finally,
we show that the maximum of normalized profile scores converges to a modified extreme

value distribution:

2_
1—8(«/47[ logne)c ! _y(cz_l)])
e

ce ne

Pr{a,(M, — c,) < y} - exp (—e“y {1 +

Xn;—X, —
= Y. = Anj”An 2 _ 1 n - 2
where M, lénjagnY], Y; S ands; = TTTE=Da > i1 (Xnj — Xn)

Next in chapter four, we demonstrate the utility of our theory by applying it to a real
data set. The Ig profile for Immunoglobulin domain (accession number PF00047) and the
UniProt protein database in FASTA format are first downloaded from Washington Univer-
sity at St. Louis and European Bioinformatics Institute websites. To estimate parameters
¢ and ¢ on the right side of above equation, we applied the Maximum Likelihood method

31



introduced by Mott (1992). Initially, without knowing ¢ and &, we only know U, =

an—X—n
Vo X=X/
mize the log-likelihood with respect to the parameters to get the maximum likelihood esti-

, SO0 we re-write the distribution function above in terms of U, and maxi-

mates ¢ and €. Then, we calculate M, based oncand . According to the theorem, the jth
largest normalized maximum score should be approximately equal to the j /(N +1)th quan-
tile from the extreme value distribution G(y) = exp (—-e"y [1 + (3%)02_1 % ])
Since the sequences in the database have different lengths, we compared to the quantiles
from e~¢" instead. The normalized maximum scores were ordered and plotted against the
quantiles from the extreme value distribution. The Q-Q plot in Figure 4.4 shows very good
fit for our approximation.

Finally, in chapter five, we summarize this research and point to directions for future
research. In both pairwise alignment and profile analysis, studies that model the het-
erogeneities and dependencies inherent in biological sequences are needed. We discuss

possible extensions in detail and outline some numerical methods that can be applied to

assess the quality of approximations in these cases.
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CHAPTER 2

PAIRWISE ALIGNMENT — ANALYSIS OF HEADRUNS

2.1 Introduction

The alignment score which measures the similarity between two sequences will de-
pends on how the sequences were aligned. Here we consider the case when we are
given two sequences Aj, Az, ..., An, Bi, Bz, ..., B, in a fixed alignment, that is, the se-
quences have been aligned already and no more shifts are needed. The alignment of
two sequences can be done by moving one sequence on top of the other sequence un-
til certain number of letters, say 20, are found to be the same, then chopping off sec-
tions of the sequences in which there is no corresponding letters from the other sequence.
To remove bias, the first 20, or whatever number that was used in the matching crite-
ria of the aligned segment is also often deleted. We consider the local alignment score
H(A,B) = max{S(I,J): I C A, J C B} which is the score for the best matching re-
gion along the two sequences. For exact matching with no insertions or deletions allowed,
H(A, B) becomes R, = max{m : Aj+, = Bjy, forr =1tom, 0 <i < n —m}, which

is the longest perfect matching subsequence between A and B. R, behaves like longest



run of heads when flipping a coin n times with probability p = Pr(A; = B;) for heads
each time. We are interested in approximating the probability Pr(R, < t) and find the

associated error bounds of the approximation.

The previous works discussed in literature review have shown that the growth of R, is
proportional to log(n) so that lim R,/ log(n) — 1 with probability 1. Also, as described
before, Poisson approximation via Chen-Stein Theorem provides a way to approximate

Pr(R, < t) with explicit error bounds: for ¢ = log, ,,[n(1 — p)] + ¢,

I
|PH{W =0} —e~*| = |Pr{R, <1} —e~*| < O ( Orgl")

where
A=p' +(m—-01-p)p’, p=Pr(A; =B))

In the previous analysis of headruns, the matching probability p = Pr(D; = 1) =
Pr(A; = B;) was assumed to be independent of position i, and the positions along the
sequences were assumed to be independent. Our objective is to extend Chen-Stein Theo-
rem to situations with more general assumptions, more specifically, we study the headruns

problem under the scenarios of:

(1) the matching probabilities are different at each position, that is we assume p; =

Pr(4; = B)).

(2) In addition to the first case, the underlying positions along the sequences are assumed
to have Markov dependent structure. That is, our parameter set also includes a; =

Pr(Ai+1 = Biy1 | Ai = By).
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2.2 Nonhomogeneous Matching Probabilities, Independent Positions

First, we review the Chen-Stein Theorem:

Theorem 2.1 (Chen-Stein) Let I be an index set, and for each i € I, and let X; be an

indicator random variable. The total number of occurrence of events is

W=ZX,—

iel

Foreachi € I, let J; be the set of dependence of i, and assume that

X; is independent of {X;}, j & Ji.

Let Z be a Poisson random variable with E(Z) = E(W) = A. Then,

1—e*
W = Z|| <2(b1 + b2) ] < 2(b1 + by)
where
bi=> D E(X)E(X))
iel jel;
and
b, EZ Z E(X:X})
iel i#jel;
in particular,
1—e*

[Pt(W = 0) — e™*| < (b1 + b2)

> 2.1)

We next state the theorem for homogenous matching probabilities. We show the fol-
lowing proof from Waterman (1995) for completeness.

35



Theorem 2.2 Let Ay, Az, ... and By, Ba, ... be two identically distributed sequences with

fixed local alignment score
R, =max{m : Aj4r = Bi4, forr =1tom, 0<i <n—mj}

and Pr(A; = B;) = p for all i, then applying the Chen-Stein Theorem, we get for t =

log;,, [n(l - p)] +c,

1
[Pr(Ry > 1) = (1—eH)] = 0 ( °g")
n
where A = p' + (n — t)(1 — p)p’
Proof. Let D; = I(A; = B;) or Pr(D; = 1) = 1 — Pr(D; = 0) = p. Define X; to be

the event that a headrun of length ¢ begins at position . Then

t—1
X; = (1-—D,'_1)HD,'+J', i>2
=0

Theindex setis I = {1,2,...,n —t + 1} and the dependence setis J; = {j € I : |i — j| < t}.

This gives

b= B =E (3T x) =300 )

pP+@m—-0n1-p)p

Due to the factor of (1 — D;) for declumping, X; and X can not be 1 for i # j where

i, j € J;. Therefore

by= D EXiX;)=0

iel i#jeJ;
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It remains to calculate b1 where

by = » D> EX)EX))

iel jeJ
n—t+1
= P EX)+ D> (U=-p)p D EX))
jeh =2 Jjedi
< P -ppt+p ]+ e-@+ D[ -ppT
) ool 1 2t +1—1 ]
= @+1)(1A-p)p [" t+ 1-prQ+1 + (1-p)@r+1)
_ PRV ! ! ! ]
= (2t+ 10 p)Pt{" ’+(1—p)2(2t+1)+1—p+(1—p)(2t+1)
N 2,2 _ 1- (1 _ p) ]
= (2t+1D)A-p)p [n ’+1_p+(1_p)2(2t+1)
= t+ 1)1 - p)? 2’[n—t-l- ! + P ]
= p)’p 1—-p (A-p*2a+1)

Applying the Chen-Stein Theorem,
[Pr(W = 0) — e™*| < bymin{l1,1/4}
Now W = 0 iff there are no headruns R,, >t or
{(W=0}={Rn <t}

and

|Pr(R, <) —e™*| < bymin{l,1/1}
This equation can be restated as
[Pr(R, 2 1) — (1 —e™)| < bymin {1, 1/4}

For interesting probabilities, we want A = A(t) to be bounded away from 0 and oc. The
term of the mean A to worry about is np’, so having t —log;/, n bounded is required. For
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t =logy,p [n(l - p)] + ¢, we obtain

A = p+m-01-pp

C

p t Cc C
[ S 1__ ~
n(l—p)+( )P~ p
and
|Pr (Rx < logy/, [n(1— p)|+c) - e
u+1 5 [ ¢ 1 p ]
1 ——
R ”[ 2 Ta=p) n-pP@+ 1)
(logn)
= 0
n
m

However, biological sequences rarely follow i.i.d. distributions. We relax the assump-
tions on the underlying distributions of the sequences next. Before we state the theorem
where non-homogeneity for the matching probabilities is allowed, we calculate expecta-

tions/moment generating functions for some familiar distributions in the following lemma.

Lemma 2.1

(1) Let X ~ Beta(a, B), suchthat f(x|a, B) = B—(;—ﬂ)x“—l(l—x)ﬂ"l, then E(X) = Egr_ﬁ

2152
lex/26

(2) Let X ~ Normal (0, 0%), where —o00 < X < u, and f(x|o) = 0

u 1 _x2/202 b
f—oo me dx

0'252
then E(e**) = ng}%%ﬂe—r where F, is the d.f. for standard normal distribution.

Proof.
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(1) The proof can be found in any standard statistics text such as Casella and Berger (1990).

(2) We start with

1 e—x2/202
2 2no
Fle®) = =2
-0 2ro
let w = x/o, then
/u ! e_xz/zazdx
—0 V2o

uj/o 1
/—oo V2

e—wz/zdw

= F()

Now,

i

LN
-0

; e—x2/2azesxdx
To

E(esx)

f” .
-0 J2ro
u
-0 Pro

J

e=**/20%dx

1 e—xz/Zazesxdx

let y = x — u, then
U SX 0
RGEE) = [
o —00
0
L.
0
L.
letz = -‘H‘%azs, then

Fo(g-)E(e”)

Fo(2)

1
Nery

2o
1

V2ro
1

To

w2
e—s%}+s(y+u)dy

. 1 {(y+u)2_20'2s(y+u)}dy

20

a4s2

1 (y+u—0'25)2dy x em

e 22

V2n

173
=—0
o0 o252

! P24z x 1

V2n

—00

o252 u
e Fo(; —05)
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therefore,
F,(u/oc —os) 0_2{_2_

EE™) =5 o)

In the next theorem, we apply the Chen-Stein Theorem to approximate P values for

fixed alignment scores R, when some variation of the matching probabilities is allowed.

Theorem 2.3 Let Aj, Az, ... and By, By, ... be two sequences with fixed local alignment
score

R, =max{m: Ajy; = Biy, forr=1tom,0<i <n—mj

and Pr(Ay = By) = p such that py ~ F(-) with E(px) = p for all k. Assume p =

(P15 -..» Pn) s a vector of i.i.d. matching probabilities, then for t =logy,, [n(l - p)] +c,

Pr(R, > 1) — (1—e7H)| = 0 (log")

n

where A = p' + (n — t)(1 — p)p*. For example,

Q1) if px ~i.i.d.Beta (a, ), B = O(a), then p = E(pr) = #

Q) if px = pe%, where 8 ~ i.i.d.truncated Normal (0,0%), —0o < & < u, then
g2
p=E(pr) = y%e’f where F, is the d.f. for standard normal distribution.
Proof. Let
Dy = 1(Ag = By) with Pr(Dy = 1) = pr and p = (p1, p2, -5 Pn)
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t
X1 = H Dy,
k=1
i+1—1
Xi = (1=Di) [] Dx, i =2
k=i

then the index setis / = {1,2,...,n +¢ — 1}, and the dependent setis J; = {j € I : |i — j| < 1}.

n—t+1
Now,let W = > X;, then
i=1

t
EXip) = []re
k=1

i+t—1
EXilp) = A—pi-)) [[ P i22
k=i
n—t+1
EWIp) = D EXlp)
i=1
t+1 142 n

= [Im+0=-p[[p+0-m][]pe+ .- +U=-ps) [] p
k=1 k=2 k=3

k=n—t+1

Assume p = (pi, ..., pp) is a vector of i.i.d. matching probabilities, then as before,

EX); = E[EX1p)l=7p'

EX; = E[EX;|p)]=(1-p)p' i>2
and

A = E[EW|p)]
= p'+(m—-01-p)p

b = > D E(X)E(X))

iel jel;

1
< (2t+1)[(1—P)Pt]2[”_’+1_p+(1—p)5(2t+1)]
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and

by=> D EXX;)=0

iel i#jel;

Therefore, again,
|Pr(W = 0) —e™*|
= |Pr(Ra < logy, [n(1 = p)] +¢) — ™|

241 ,. [ ¢ 1 p
= T F [1 Rt aa—p Tra-pr@ )
_ 0(logn)
n

For the examples, (1) follows directly. For (2), let px = ,ue‘sk where 0; ~ i.i.d.Normal

(0, 0%),since 0 < pi < 1, we have

—00 < logpr <0
—00 < logp+dr <0
—00 < O <-—logp=u

So J; follow the truncated normal distribution, that is, ; ~ N (0, 02) and —o00 < O < u,

a2
therefore, by the lemma above, p = E(pr) = uFO—Ig‘%ZeT where F, is the d.f. for

standard normal distribution. m

2.3 Nonhomogeneous Matching Probabilities, Markovian Dependent Po-

sitions
We now investigate the case when in addition to non-homogeneous matching probabil-

ities, the positions along the sequences also exhibit Markovian dependency. We show that
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the Chen-Stein Theorem can still be applied to approximate the tail probabilities for R,.

Theorem 2.4 Let A1, Ay, ... and Bi, By, ... be two sequences with the score function for

fixed alignment
R, =max{m : Aj4x = Bijx fork=1tom,0<i <n—m}

Let Dy = 1(Ax = By) be Markov dependent with Pr(Dy = 1) = pg, Pr (Dyy1 = 1|Dy =
1) = ag, so that & = (ay,..,a,) and p = (pi1, ..., pn) are transition and matching
probabilities respectively. Now, suppose o = (ai, .., @) is a vector of i.i.d. probabilities
with common c.d.f. F(.) and common mean o, suppose p = (p1, ..., Pn) is a vector of

probabilities with common mean p, such that %2 < 1, thenfort =log; ;, np(1—a)+c,

Pr(R, <1)—e*| =0 (log")
n

where A = pa' 1 {1 + (n —1)(1 — @)}

Proof. let Dy = I (A = By) with py = Pr (Dy = 1), ax = Pr (Dg41 = 1|Dg = 1),

Bi = Pr(Dr41 = 1|Dy = 0), then

arpr + Pr(1 = pr) = pr41

Pk+1 — Ok Pk
Br=—T"
1 — pi
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t i+t—1
Let X; = [[ D, Xi = (1 = Di=1) [I Dx, then
k=1 k=i

t—1
EX|@) = pi][o
k=1
i+1-2
EXilg) = (—pi—D) Bz []

k=i
i+1—-2

ai—1Pi-1
= (1-pi- 1)——'—1)’ i H ak
— Pi-1 k=i

i+1—2 i+1—2

= Pznak—PxIHak

k=i—1

E(Xn—t+l|a’i5) = DPn—i1+1 H Ok — DPn-— tHak

n—t+1

Since @ = (a1, .., an) is a vector of i.i.d. transition probabilities, assuming p; is indepen-

dent of {ay : k > i}, and E(ax) = a, E(px) = p for all k, then

E(X1) = E[E (X11&@, p)] = pa'™"

E(X;) = E{EXi|a,p)}=pa~!=pa =pa~'(l1-a)

Now,

n—t+1
L= EW)= ) EX;
i=l1
= pa' 1+ @m—t)pa'"'(1—0a)

pa' {14+ (-0 —a)}
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To bound A(z) away from O and oo, the term to worry is na'~1p(1 — a), so take t =

log; /o np(1 — @) + ¢, then

c

-1 _ a
* T wpl=a)
_ _ap (] —
L= e =i - )
. 1 t
- <l o)

aC

%

To calculate by, note that in the expression for X;, because of the factor (1 — D;_;) for
declumping, that is, by requiring mismatch at i — 1¢h position, we count only the longest
headrun among the group of headruns that occur next to each other, therefore, X; and X ;

cannot be 1 fori # j where i, j € J;. This implies that

by=>Y > EXiX;)=0

iel i#jel;
We now calculate b;
by = D D E(X)EX))
iel jeJ;
n—t+1
= pa ' D EXH+ D pa'TA—a) D E(X))
Jjeh i=2 jeldi
2
= pa'~! {21‘(1 —a)pa'~! + pa’_l} +(n—-0Q2t+1) {(l - a)pa'_l}

= (2t+1)(1_a)2p2a2t—2[(,,_,)+ 1 2 +1-1 ]

Z+Dd-a2 T G+ D0 -a)
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— N
= (2t+ 1)1 - a)2p2a2"2 (n—1)+ (1-a)2(2t+1)

1 1
+i — TEDa=o
= @t + (1 - a)’p*a?2 [(n -1+ t ,_1=0-a ]

l—a 2+ 1)1 —a)?

(n—t)+ll a ]

_ _ 2.2 2t-2
= @+ 1)1 -a)pa e T @A Doy

Therefore, for ¢ = log, ,, np(1 — a) +c,

|Pr(W = 0) — e™*|

= [Pr(Ry <logunp(1 —a) +c) —e™|

< Q@+ -a) 2—"‘26—[(;1—t)+ ! + - ]

= P2~y l—a " @+ 1)1 =a)
a’¢ t 1 a

= (2’“)7I(I_Z)“Ln(l—a)+n(2t+1)(1—a)2}

— 0 (logn)
n
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CHAPTER 3

MULTIPLE ALIGNMENT - PROFILE ANALYSIS

3.1 Introduction

We discuss the profile model here in more detail. Given a set of multiple alignment

profile 1

h = hih...lim

L = bilxn..bn
Ini = Iviln2.dNm
Figure 3.1

and a long sequence Ly, L3, ..., Ly4m—1, the objective of profile analysis is to find the
region along L where the profile I fits best and assign it a score according to certain scheme.
Let A be the set of alphabet, in the simple case of DNA sequences, A = { A,C,G, T }. In
the case of protein sequences, A consists of twenty amino acids. We assume for the long

sequence L,

(1) the letters L1, Lo, ..., Lyym—1 arei.i.d.



(2) (na, nc, ng, nt) ~ multinomial(n +m — 1,w) where # = (w4, nc, ®G, *T)
and the profile I is random:

(3) forcolumni, i = 1,...,m, n; = (nja, nic, niG, vir) ~ multinomial(N, ;) where
2

m ; . —_—
7 = (Tia, Tic, WiG, wir) and &= — 7 with rate Y7L w/m — 7| =

0 (ﬁ).
(4) the sequences in the profiles are mutually independent, and each is independent of L.

The statistical question is to assess whether the alignment score from the best matching
region is significant enough to indicate association between the given sequence and the
multiple alignment, that is, whether the sequence L belongs to the protein family 1.

In the process of moving the profile along sequence L, for each match we assign a

profile score

1 m
Xpj=—= D> PiLitj-1) j=1,2..,n @3.1)
vm i3
Here,
1
P(L) = > s(L, a)niq (3.2)

a

is a weighted average that measures the similarity between the letter L and the profile

statistics at position i, s(L, a) is score for aligning L and a from substitution matrix, and

N
nia = 2. I{lxi = a} is the number of a’s in column i. In the simplest case, for DNA
k=1
1 ifL=a
sequences for example, we use score s(L,a) = I(L = a) = . Then the
0 if L#a
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column score becomes

Pi(Lj) = By

Their means and variances can be worked out easily: since for each column i, n; =
(nia, nic, nig, nir) ~ multinomial(N, n;) where w; = (7ia, Tic, ™G, WiT), We

have

E(niq) = Nmiq
Var(nig) = Nzig (1 —7iq)
E(l) = N?ml,+Nrmig(l—7iq)
Coo (n,-a,niﬂ) = —Nnrmiamip

E(nianiﬂ) = —Nﬂ'ian';ﬁ+N27r,~a7r,~ﬂ

So for the column score

E(Pj) = —ZE[I (Lj = @) nial



Moreover,

1
EP} = ~ [Z I(Lj=a)nig » I(Lj= a)n,-a]
aeA aeA
1
= 2 [Z IL=a)n},+ > IL=a)(L= ﬂ)nianiﬂ}
aeA a,feA
2
= ¥ [ZPr(Lj = a) E (nia)]
aeA
1
= m[z a[Nzn + Nmig (1 — ”ia)]]
aeA
= Z”aﬂ',a‘l' Zﬂ'za(l Mia) Tq
aeA aeA
2
(EPj)” = (Znania) Zn‘an',a+ Z Tl BT igTip
aeA aeA a,feA

So for each column

VarPj = EP%—(EP,;)’

= Zna (l_na)”iza_ Z Ta B iaTip + = Z”za (I=7mig)mq
aeA a,feA aeA

= o <o

and for the profile, let y = L > | y;, and o2 = 1 37 52,

Z (Lz+] 1)
i=1

EX .=Li#.=ﬁmzﬁ#
nj ﬁi:] i m
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1 m

Vaanj = ‘r; Var (P,'j)
i=1
l 2 ZaeAna (l_na)”,za _Za,ﬂnaﬂﬂﬂia”iﬂ
m <
=l +% Zae/\ Tia (1 = Tig) Ty
1 m
= - ZO’IZ = O'2 < 0
mi3

So we have a set of profile scores X, = ﬁ{l’n +Pu+...4+ Pum), X2 = ﬁ{P12+

P33+ ...+ Py m+1}), ..., Xnn. To determine the significance of the best alignment score, we

are interested in the distribution of maximum standardized profile score:

M? = max Y?°
" 1<j<n M
where
Yo _ an - Ean
nj —

VVar Xyj

When the profile is random, x4 and ¢ are unknown, so we are more interested in

M, = max Y,;
1<j<n

where

an - Xn

Yoj =
nj Sn

Here, X, and s, are estimators for the corresponding population parameter.

(3.3)

As was discussed in literature review, assuming the profile 1 is given fixed, Goldstein

(1994) et. al. have approximated the Y,;s as a set of standard normal variables in the tail,

used corresponding extreme value theory for normal random variables to approximate the
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distribution for M2, as well as employed Chen-Stein Theorem to work out the error bounds
for the approximation.

In contrast, we assume the underlying profile is random with distributional properties
discussed above and accommodate the possibilities of a few gaps (insertions and deletions).
We derive the corresponding theory for the maximum M,. Some modifications to the
Goldstein paper are involved: (1) in section 3.2, we first show that in this case the tails
of the profile scores can still be approximated by normal distribution using large deviation
theorem for triangular arrays, (2) next, in section 3.3.1, to accommodate insertions and
deletions in the multiple alignment profile, we show that the tail behavior of Yyjs can be
well modeled using two component normal mixture model. (3) we then find the analytic
formula for normalizing constants and work out the corresponding extreme value theory
for normal mixture distribution. (4)Finally, in section 3.5.2, when the profile I is random,
the means and variances of the X, ;s are unknown, the distribution of the maximum M, in

this case is then derived.

3.2 Central Limit and Large Deviation Theorems for Triangular Arrays

In this section, we study central limit and large deviation theorems for triangular arrays
of random variables. Crammer first developed the theory for ordinary arrays of random
variables, and S.A. Book (1970) later modified the theorem to accommodate doubly in-
dexed variables. We will show how these theories can be applied to profile analysis. In
the profile model, because the scores for each profile column depends on N, which may be
large, so to account for this dependency, we approximate the profile scores Yy; in the tails

52



using large deviation theorem for triangular arrays.

3.2.1 Cramer’s Theorem

Theorem 3.1 (Cramer;, S.A.Book) If {Zn; : 1 <i <n,1 <n< oo} is a triangular array

of random variables such that

(1) Zin, ..., Znn are independent for each n;,

2) E(Z,)) =O0foralli andn,

@) X E(Z2) =1foralln;

@) E(Z,;]|%) = ﬁqom- < 00 for all i and n, for some qo > 3;

(5) each Zn; has d.f Fpi(z) = ani F1i(2) + (1 = @ni) Fi (2), where 0 < an; < 1, F1i(2)

is absolutely continuous, and Fzp;(z) has no absolutely continuous component;
(6) each density f1,i(2) = F{m. () has finite total variation v1,; on (—00, 00); and

D ifQn=1{i:1<i<n, o < (v/3/8)Tyn}then every sequence {n, : 1 < r < oo}

of positive integers contains a subsequence {n, : 1 < p < oo} such that either (A)

2 2
qunp Zieﬂﬁp a"pl/vlnpi _
lognp -

2icQnp Pnpi .

limp— 00 g, =

Then, if F,(z) = Pr(S, < z) is the distribution function of Sy = 2_i_ Zni,

q0—3
Fa@) = ©R)+ D n"9?Ppa(—®) + Rypn(2) (3.4)
g=1
q0—3 )
= 0@+ Y 17 pi_1@R)e™ 2 + Rygn(2) (3.5)
g=1
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where |Rgn(2)| < Q/ Tcﬂﬁ,_z for Q dependent on qq but independent of n and z.

Some notations worth mentioning: here, 8,,,; is the gth absolute moment of the random
variable Z,;, Bgn = n-1 ZLI ﬁqm- is the average of the gth absolute moment for the
entire row indexed by n; pg, = ni/ 2Bqn and Ty, = \/5/4,0%". The quantity Py, (—®)
denotes a certain linear combination of the first 3¢ derivatives of the normal probability

df ®(z) = \/% [ e=*/2dt; the quantity pag—1.,(z) = €%/2 Pyn(—®) is 2 polynomial

of degree 3g — 1 in z.

3.2.2 Application to Profile Analysis

To use Theorem 3.2.1 for profile models, let n be the length of the query sequence L,
we assume the number of columns in a profile m = m(n), and the number of rows in the
multiple alignment N = N (n), both depend on n. As was discussed earlier, we have the

column scores

1
Pi(Lj) =Py =5 2 1(Lj>a) nia (3.6)
aeA

and as we move the profile 1 along the single sequence L, for each match, we have the

profile scores

1 m
Xpj = ﬁ;ﬂ(uﬂ_l) (3.7)

m
EX,y = JmZ=lhi o fmy
m
1 m
VarX,; = —Z 2 =62 <o

i
m i=l1

and the standardized profile score

54



yo = XniZEXe (3.8)

" JVarX,j

:/l_— m+j I“TZ, 1 K

e
5 (P

J
mi

[\]

™M= i Ms

..
I
—

where Z; . ] ﬂ’—‘i%‘— We then have a set of doubly indexed arrays of random variables:
{Z,{li c1<i<m,1<m < o0}.We would like to approximate the sum Yy in the tails by
standard normal random variable. Assuming Z,J;”.s are independent, then conditions (1) -

(3) are satisfied:
EZ!. = 0
m . m .
Z EZL}) = D Varz), =Var (Z Z,’,,i) =VarY,; =1

condition (4) is also true since Z; . < co.

We now state two definitions that are useful in verifying conditions (5) — (7).

Definition 3.1 A distribution function F is said to be absolutely continuous if there exist a

non-negative function f(x) such that

F(x)=/_x f (u)du

Definition 3.2 Let F be a function over (a,b),let A :a =ap <a; < .. <ay=bbea

partition of an interval (a, b). Define

I Flla=Y" | Fa)~ Flai-)|
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F is said to be of bounded variation over (a, b) if sup || F ||a < 00.
A
For (5), assume Z,,;s have continuous and differentiable distribution function Fy,; and
take fmi(z) = %Fmi(z). Z,],.u-s are then absolutely continuous and a,,; = 1; (6) is satisfied

since all absolutely continuous distributions are of bounded variation; finally, (7) is true for

continuous distribution by taking the subsequence as the sequence itself.

Now, let F,{ (y) = Pr(¥,; < y) be the distribution function for ¥,; = > Z,’;li. Take

go = 4, by Theorem 3.2.1, we then have

mzs m 4
Pam = m4/ZB4m=m4/2E(_Zl_:1—m — Z( isi+j—1— ) < o0
m P

T4m = \/;4 0(\/_)

Pam

0 1
|Ram| < —2"‘“0(—)

T, m

where Q is dependent on g,, but independent of m and y. Also, for go = 4

q0—3 2,=-y°/
2., )€
Z m=92pag_1(y)e ™"/ 7
We have therefore showed under conditions (1)—(7),
. 2 —y22
Fi(y) = Pr(¥n <) =00 +0C=) + 0( )
T
. 2 -y /2
1-F/() = Pr(Yyj > y)=1-0()+ O(T)+ 0( )

and since 1 — ®(y) = %22(1 + 0(1/y?),

2,-y2/2

. O(L/)+O,—}; 3 3
Pr(Y,,,>y)=1+ 255 ()=1+0(_y_)+0(l)—_—1+0(—2——)
1—d(y) %{1+0(ﬁ)} "

We summarize the results in the following Lemma:
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Lemma 3.1 For the profile model, let m be the number of columns in the profile, let Yy be

defined as in ( 3.8), then for any y,

yze_yz/2 1
Pr(Y,j > y) — {1 —@(y)} = 0(7) + 0(;;1_) - 0asn—> ©

and

Pr(Y,; > y) .
- ®0) =1+0(J)

3.3 Extreme Value Theory for Normal Mixture Distribution

In this section, we will first justify using normal mixture distribution to approximate
profile scores, then we will develop extreme value theorem specific for the two component
normal mixture distribution. More specifically, we will show that the normal mixture
distribution in the tails is of exponential type and therefore the maximum random variable,
properly normalized, follows the extreme value distribution of the third type exp(—e™).
Next, we will find analytic formula for the normalizing constants for the cases where (1)
c is large (2) c is small (local contamination). Here, both constants are functions of the
largest characteristic observations from the normal mixture model. Both analytical and

numerical ways for approximating the largest observation are developed.

3.3.1 Motivation

The two component normal mixture distribution has the form

Fo(y) = (1 — ) Fo(y) +3F0(%), O<e<l,c>1

57



2
Here, F,(y) = f _yoo £ \/%zdt is c.d.f. of standard normal distribution, 0 < ¢ < 1 indicates

the amount of contamination, and ¢? > 1 scales the variance. We now justify using the

normal mixture model for profile analysis.

Lemma 3.2 Let | be a multiple alignment profile such that conditions (1)-(4) in section 3.1
are satisfied, let P;(L), Xpj and Y,‘l’jbe as defined in (3.6), (3.7), and (3.8), if the profile has

no gaps with probability 1 — &, and has large amount of gaps with probability ¢, then

(2)2e= ()2

Pr (Y,fj > y) = 1-R0)+0C=—=—)+06)
- 1-F,(y)asn—> o0
where F, (y) = (1 — ) F,(y) + € Fp(2) and
Pr (75> ) _1+0(y_3)
1—-F.(y) &/ﬁ
Moreover, under the normal mixture model, let p = # S Ui, and 0? = % "L o2

then

E(an) = ﬁﬂ

Var(Xpj) = o[l +(c* = 1)e]

Proof. If the profile does not have gaps and looks like Figure 3.1 (case I), as discussed

in introduction, we then have the column scores
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P(L) = iZI(L,a)n,-a
E(Pj) = Zﬂaﬂia=ﬂi

1
VarPij = 2 ma( =7l = D watpriatip +— > wia (1= 7ia) 74
aeA a,BeA aeA

and the profile score

1 m
X"j = ZPI Liyi_
/m = ( +J 1)
EXyj = /mu

_ 2
Vaanj = 0

Now let Y:j = &'1:0@, it was shown in Lemma 3.1 that Pr(Ynoj >y)=1=F,(y) +
2
0(%) + 0(%). Suppose with small probability ¢, the profile has lots of gaps and

looks like (case II)

- h2 hs hsy - -

Io1 Iy bz by bs Iy

- B By By — I
— lp s lu - I
Isi Isz Is3 Isg — se

le1 lea lez lea les les
Figure 3.2
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then

Vaanj
= }—i Zn (1 —mg)m? —Zn’ TR T +iZn- 1—-mig)m
_..m_ a a) Tig aﬂaﬂtatﬂ Nia ia ia) ta
2

= > g2 where N < N

2
Now let C = Z, C > 1, then under case I, Pr(—”fﬂ >y) =1-F,(y)+ 0(%3)"'
O(3), so
X s —
Pr(Yn”j > y |case II) = Pr[m > y | case II]
_ p| X —mp -,
c'/c

X
RPN RGN
g C

= 1-£ (%) +0f2

1
T) + 0(;)

the mixture model can then be justified:

Pr (Y,fj > y)

= Pr(Y,fj > y|case I) Pr (case I) + Pr (Y,f] > y|case II) Pr (case IT)

= Pr(Y,fj > ylcase ) (1 —¢) +Pr (Y,fj > y|case II) €

= 1-o[1-FO)]+s1-F(2)

(22 @1r2
(T) + 0(;)
= 1-FO)+ 0(_(%)26"(%)2/ ’
= e Y Jm
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Since Y,fj = &‘i:;‘/—';—”, The mean and variance of X,; can then be worked out under normal

mixture model:

E(Xp) = /mu
Var(Xy) = E (Xnj—mu)’
= o’VarYy,
= ¢? [/_oo y2d{(1 — &) F,(y) +3Fo(%)}]

[o.9)

= 02{(1 —g)/_oo yzdFo(y)+8/_oo yzdFo(%)]

= o?[(1 —¢&) + ec?]

= o?[1+ (¢* = 1e]

3.3.2 the Normal Mixture Model is of Exponential type in the Tails

The exponential type distribution is defined as follows:

Definition 3.3 Let X be a random variable with distribution function F with an infinite
upper end point and such that FU)(x), J =1,2,..., exists. We say that F is of the Expo-

nential Type if for large x

B F(l)(x) N F(2)(x) - F(3)(x) N
1-F(kx)  FO) FOx) ™™

3.9
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In the process of verifying normal mixture distribution is of exponential type, we use
the Hermite polynomials: the Hermite polynomial of degree m is defined by

[m/2] (- l)k xm—2k

H, =m!
O = 2 B G — 201 2

where [m /2] is the integral part of m /2.

The Hermite polynomials has the property that for standard normal distribution fp(x) =

=¥ 122z,

dd_”:n'fo(x) = (=1)" Hn(x) fo(x)
X

The first five Hermite polynomials are:

Ho(x) = 1; Hi(x) =x; Hy(x) =x* = I;

Hi(x) = x°—3x; Hy(x) =x*—6x2+3; Hs(x) = x> — 10x3 + 15x
Lemma 3.3 The normal mixture distribution is of exponential type in the tails.

Proof. We would like to show the normal mixture distribution of the form
F.(0)=(1—e)F,() +eF(Y), 0<e<1,c>1
C

satisfies equation (3.9). That is, we’d like to show

K@ FPw  FPw
1-F@)  FOw%)  FP@

First, since

dm

X m X x 1
dx—mfo(;) =(-1) Hm(;)ﬁ’(;)c—m
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[m/2]

-1 k m—2k
where Hp, (%) = m! ; (T%E%)%ZT’ we have
(1 =& f"(x)
&£ (x/c)

c(l - £) Hyp (x) fo(x)

€ Hyu(x/)fo(x/c) g
c(l—¢) e™x/2 om

& e—x2/2c2
Al - E)e—x2(1/2—1/2c2)

&

since ¢ and ¢ are constants and if x ~ c4/2logn as will be needed in later theorems,we

then have

ne-1

e—%(l—fz) ~0 (e—%(l—zli)czmogn) _ 0( 1 )

Therefore,

(m)
lim L= &) _ g (3.10)
X—00 %fo(m)(x/c)

(™) (x) is negligible compared to £™ (x/c) as x — 00. Now, let‘—i::;,fo,x-l = f™(x), by

equation (3.10),
FOW = £:() = 1 =)o) + = £ ~ 2 £62)
Similarly,

FPr) = O =01-8f00+203) ~ 03
C C Cc Cc

FOO(y = () = (1= &) £ (x) + S £m ) m £ pom (X
Cc c c c

Therefore,as x — o0,
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E"V0)  fM0/0) _ —Ha/gm  —x" —x
FP@) " D) Huo(t/o)ge  xm7l2 2

Also, since for large x, F,(x) &~ 1, we have
Fe(x) = (1 = &)Fp(x) + eFy(x/c) ~ 1 — e[l — Fy(x/c)]

in addition, by Mill’s ratio, as x — oo, 1 — F,(x) = ‘%(xz{l + O(x72)},50

1= Fx) ~ el - Fy(x/o)] ~ 212079
x/c
I C T 6
M FRe | bl - 2

x/c
Therefore, we have showed that for large x,

) FPw  FPw
1-Fx) " FOW) ~ FP®)

3.3.3 The Normalizing Constants from Normal Mixture Distribution F, (x)

A classic theorem (Theorem 4.4.5, p181, Sen, 1993) says that the maximum from Ex-
ponential type distribution, properly normalized by the largest characteristic and a function

of it, has the extreme value distribution of the third type.

Theorem 3.2 Let {X,} be a random sample corresponding to random variable with dis-
tribution function F of the Exponential type. Let 7, denote the largest characteristic
observation of F. Let M,, = max{Xy, ..., X,}. Then there exist sequences of constants

{an} and {b,} such that

Pr{a, (M, — b,) < x} =Pr{M, < u,} - exp(—e™)
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where

u, = x/a, + by,

Here, ay, and b, may be taken as

an = nf(n,); bp=n,

for standard normal distribution,

1
s[log4r + loglo
an ~ /2logn; bnN\/Zlogn[l—-z[ il g g(n)]]

2log(n)

The largest characteristic observation is defined as follows:

Definition 3.4 For a give random variable X with distribution function F. The largest
characteristic observation for a given distribution is defined as the solution n, to F(7,) =

1-1/n.

Our objective in this section is to investigate on finding largest characteristic observa-
tion from the normal mixture distribution, more specifically, we’d like to find solution 7,
such that

Fo(m) = (1= &)Fy(n,) + eFo(1%y = 1 — &
4 n

3.3.3.1 Properties of the solution 7,

For normal mixture distribution, if we let

1

h(x) = Fo(x) = 14 1/n = (1 — &) Fy(x) + eFo(g) —1+-
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we then seek #,, such that h(#,) = 0. The largest characteristic observation has some nice
properties:

(1) existence: 7, existsand 0 < 7, < ¢ 1;,

let #; be the largest characteristic observation from the standard normal distribution,

thatis, F,(n;) =1 —1/n. Since

h©0) = (1—6)054+¢05—1+1/n=-05+1/n <0forn > 2
h(cmy) = (1—e)Fo(eny) +eFo(n,) — 1+ 1/n
= (1—&)F(cn’)+e(1 —1/n) —1+1/n
= (1 —¢)Fy(cn,) — (1 —€)(1 —1/n)
= (1=e&){Folcny) — (1 —1/n)}

= d > Osince Fy(cyy,) > (1 —1/n) forc > 1.
Therefore, by Intermediate Value Theorem, 7, exists between 0 and c7;,.

(2) Uniqueness: 7,, is unique.

Since

Ed_h(x) = (1 - S)fo(X) + Efo('{)
X C C

1 - 8e_x2/2 + & —x2/2c2

e
V2T c/ 2w

>0,forallx,0 <e <1l,¢c>1.

h(x) is monotone increasing.
Also, h(x) is bounded between h(0) = —1/2 + 1/n and some positive constant
h(cn}) = d, so there is unique solution.
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(3) Exact solution: can always be found using numerical methods such as Newton’s

method.

Provided an initial value sufficiently close to the true value is chosen, the solution to

h(xn—1

h(x) = 0 can be found iteratively by x,, = x,_; — . .
dx (xn-1)

(4) n,, is an increasing function of ¢ and ¢.
Since %h(x) > 0, h(x) is monotone increasing Vx,Vn,c > 1,0 < ¢ < 1,

also, since

d d 1—¢ _» € 29,2
—hx) = — e X /2 — /2c
dx? *x) dx{«/2n /2w }

1'—8 _x2/2 &

e
2T 32

e—x2/2c2} <0

—x{

$0, h(x)is also a concave function for Vx > 0, Vn, ¢ > 1,0 <& < 1. Now, to solve

hx) = (1= )Fo(x) + 2 Fp(5) = 1+ % =0

as c increases, F,(x/c) decreases, and h(x) decreases Vx. So the solution 7, increases.
Similarly, as ¢ increases, since h(x) = F,(x) — e{F,(x) — F,(x/c)}, h(x) decreases, so

again, 7, increases. This relationship can be seen more easily in Fig 3.3 in appendix.

We next discuss the approximation for #, when c is large and when ¢ ~ 1.

3.3.3.2 Casel: when c is large (c > 1)

First we find analytic formula for #,, when c is large. Table 1 and 2 in appendix show
that the formula gives pretty accurate approximations when n = 200, n =400 and ¢ > 2.
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Lemma 3.4 For normal mixture distribution

Fy)=0—-9e)F,(y)+ aFo(X), where) <e <1,c>1
c

the normalizing constants in Theorem 3.2 are

2logne
C

an = nfe(n,) ~

1
5[log4r + loglog(ne) ]
by = 7, ~cy/21 1- 2
" Tn ™€ ogne{ 2log(ne)

where f;(x) = (1—¢) fo(x)+£ fo(%) and n,, is the largest characteristic observation from

fes thatis Fe(n,) =1—1/n.
Proof. First, we find b,. Since 7, increases as c increase, for large ¢, F,(7, ) ~ 1, so

h(ny) = (1—&)Fy(n,) +eFp(12) -1+ 1

c n
~ n 1
~ (I—g)+eF()—14+==0
c n
This implies that
e—1/n 1
Fo(2) ~ m_y_ L
c £ ne
1
since Fo—l(l _ ,l,) ~ m [1 _ 2[log427:1:gl(()f)10g(n)]] , SO

! 1llog4 log1
by =Ny~ cF, ' (1— —) ~c/2logne { 1 — zllog4r + loglog(ne) ]
e 2log(ne)

Next, we find a,. As was shown in the proof of 3.3, as n — oo, for fixed ¢, and ¢,

L) = (=o)fub)+ 5550
c C

e b
~ _fo(l)
c c

b2

_ ¢l -5
c\/2r
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2 — 2lognel— log4n + loglog(ne) log4z + loglog(ne) )2
2log(ne) 4log(ne)

~ 2logne —log4n — loglog(ne)
e_ilzcgf ~n g~ logne e%log47r e%loglog(ne)
1
= —+/4n/log(ne)
ne
f Lk «/— Vlog(ne)
- ¢ Ay ne)
c2x c2r &
_ ,/Zlog(ns)
B cn
therefore

an = nfy(by) ~

V2log(ne)
c

An Improved Solution

We next try to improve the approximation for b, by finding an expression for the

residue term which is of the order o( m). The idea is to first set #,, = c\/2logne{l —

ﬂg 47r+% loglog ne
2logne

} + h,, where h,, ~ o( m), and then solve for an expression for ,,.

For ¢ > 1 large,

Fo(x) = (1—e)F,(x)+ aFo(f)

0l = F(x) = (1—e){l—F,)}+e{l — Fo(f)}

Also,
1
1—F,(y) = ;fo(y){l — =+ 0(y™) for large y
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Then

1-F.(x) =

1
ONMl—5+006™) +
y

2
—fo( ){1— s+ 0™}

l—e 1
= e—iy{l——--i-o _4}
V21 y? o™
=L IS oG
yv2r y
2
ce 1.2 C
= e X {l1- S+ 0>
y«/271: y?
1t fe-ng _ . 2+ 007

ce

define 7, such that 1 — F,(y,) = %, then

1 1
5 logdr + 5 loglogne 1
N, = c/2logne{l — 2 £ 2 0808 + o( )}

2logne logne

2 logl
T (? = 1) = llogne)(c? — 1){1 — 0 (B8,
2c2 logne

Substitute equation (3.12) and (3.13) into (3.11), we get

1 ce 2_15,7,21{1 c? <+ o« 1 )

-— e e c —_—

n ’7n“/27r n? (log ne)?

(ne) D1 - 0(——))
logna

or

(3.11)

(3.12)

(3.13)

0 = log == — 1o ”2+1o - 62+ e L L om Mk 0
= _ n s
or

ne 2 C2

lo = lo + —log{l — —+0

CVor g(ln ) gl " (—= (1ogna)2)}

ne 2 c? 1

lo = lo + S+ = + o(————
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Set v, = 7, /c, then solve for

log 215 = %2 4 1o +1+( ) (3.14)
0 == v —_— .
S 2m 2 T o8 (log ne)?
Take trial solution as
1 1
5 log4n + 5 loglogne
= /2logne — 2 2 h
on ogne Jlogne
log \/4r 1
= +/2logne{l — eV T og(ne
2logne
where h, NO(JTcEIgW)' Now,
log /47 Togne]?
v,% = 2logns+[0g 21(7>tg ogne] +h,2,—2log\/47r log(ne)
ne
log /47 log(ne)
2hp/21 - 2h,
+ ogne /2logne
log «/4m 1 1
logv, = log{y2logne[l — —2Y "7 087 | _ ) (3.15)
2logne logne
log /4r 1 1
= log+/2logne + log[1 — Rl ogna+ o )]
2logne logne
log \/4x log ne 1
= log+/21
°8 ogne = 2logne to (logna)
also,
Lo ! (3.16)
55 - log 4 /4x log(ne) '
n 2Zlognell — =y — + ol )P
1
- log «/4n log(ne) log /4= log(ne)
2log ne{ [1——%]2+o(5;m)2+2(1 Yorim o5k )

1

log /47 1
2logne[l — £ 2102(,,?)("8)]2 + O(IOgl,,g) + o(1)
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For large n, since h2 ~ o(=1-) is small, so log £

1
log ne 2

becomes

1 / 2
0 = logng+[og 4r logne] —log /4x logne +

4logne

P {\/T log \/47 log(ne) |+ o 1 )
0
" gne = 2logne log ne
log /4% Togne 1
+log y/2logne — —2YT OBNE L 1,

0
210gns logne
+ 1 47 log(ne
0 T
2logne[l — —A:g VP + o(h)? + 0(1)
ne 1
—1lo +0(——
g o ((log ne)z)

After some algebra, the expression for #,, is

1
h, =
/2logne — %
! 1 log+/4x logne[log \/4x logne — 2]
JT 4logne
1 1
" [V2Togne — log Vaz Togne )+ Giogney )
Discussion

= %”- + IOgUn + + 0(—fogn£) )

(3.17)

We thus have introduced various ways of appoximating the largest characteristic ob-

servation for the normal mixture distribution when c is large. The formula

1
c/2logne { 1- L[log? l;l-gl?f;;) g("e)]} in Theorem 3.4 shows the asymptotic behavior

of the estimate and relationships of the estimate with parameters ¢ and €. We can im-

prove this estimate by working out the expression for the remainder term #,,. Note that in

72



equation (3.15) and (3.16), we have reduced the formula for logv and 1/ v2, a more accu-
rate formula for &, can be found by using equation (3.14) directly, without the subsequent

reductions. Also, in equation (3.17), we have ignored the term h,zl which is of the order

o(j Oglng), a more accurate estimate can be found using the quadratic approximation instead
of linear approximation. On the other hand, methods such as Newton’s method gives exact
results with any desired error bounded, although numerical approximation often does not
allow one to study the asymptotic behavior of the estimate. If the inverse of normal c.d.f
function can be evaluated with satisfactory accuracy using built in function in software (e.g.

PROBNORM in SAS), the formula #,, & cF, ~l(1- n—lg) also gives good approximation with

errors less than 0.005 for & > 0.1 and 200 < » < 600.

3.3.3.3 Case II: when ¢ &~ 1 (local contamination)

Analytic Formula

In this section, we consider the case of local contamination (c &~ 1). First, we define

n,, and 7, such that

Fo(np) =1=1/n = Fy(n,)

so that 77, and 7, are the largest characteristic observation from F, and F; respectively.
Whenc~ 1,7, =7 +r, ~ f1n> Where r,, is small. The idea is to solve for an expression
for r,, since 7}, is known, we then have an expression for 7,,.

Since Fy(n,) = (1 —&)F,(n,) + sFo(ﬂcl), using Taylor expansion evaluated at 1, We
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get

Fol) = Eoai) + o) = n) + 2208, oy

+0('7n - '7;)2

1 * o *
= (=) + Lol = B LD,2 1 g2

* * * * /(ﬂ *
and () = F,(M8) 4 f,(layTn _ May y a SoCE) M _
c c c’ ¢ c c 2 c c

+o(lz _ Iny
C C

Mn MaTn My . M. 5 2
= FO(?n)'i-fO ?n)_c'l_z—cfng(?n)rn-i_O(rn)

So,
0 = (=)= 1)+ flrpyra — L2 2 4 )
relFoy 4 () T p a2y o2 L
c c’ ¢ 2 c
Or
L2y TS, em fo(h)
0 = ri(l = o)y _ Halord),
M
Hral(1 =) fo() + L)
+1—e)(1 -1y 4 b,y 141
n C n

Now, let u = (1 — €) fo(m}) + ffo(%:), when ¢3 & 1 (e.g. ¢ —1 < 0.01), then

—n*u * 1
r2( ’; )+rnu+a[Fo(%)—1+;1 = 0 (3.18)
2 2[Fy(B)—1+41
orr,%—rn(—*)— °l O(C,)* * =0
M npu
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So we get

12 4  4x2[F,(By—141
o _{_*i\/ xR -1 )
2 m /M7
1 2nte[F,(y — 1+ 1
= —{li\/l+ 1ol (E) )
* U
n

On the other hand, if ¢3 % 1, then replace equation (3.18) by

Lk l;i *
2 = LD Ly b etm Ty 14 Y 2o
2 c c c n

since

efom)y 1

o * * 17,2
(1 _ 8){ nnfo(”n) _ 6\’7n\f0( c ) (1 _ ;)}

2 2¢3

=y
b= > lu -

the solution is then

7 .
u+ \/u2 + 2l — L2 (1 Lyje[F, (%) — 14 1)

rn—

1
”;[u _ Efog c )(1 _ 212_)]
Finally, if r, is very small (e.g. r,% < 1073), a linear approximation with

_elFp(t) — 141
—U

n

may suffice.

A Numerical Recipe: Linear Interpolation and Iteration Method

Alternatively, one can also employ a linear interpolation and iteration method to ap-
proximate 7,, :

(1) for local contamination, we get Mn =My + 1 = h(c, 7).

(2) Expand h(c, 7}}) around ¢ = 1 to get

~ . W oy €D o,
Nn N h(1, 1) + (c = DAV, 57 + 7 h“ (1, n,)
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(3) Since Qcﬂ < 1, < 7,, use linear interpolation to get

Tey (nn - ”;z)f(ﬂn/c) + (’7; — ']n/c)f(”n)
f(’]n) -
fn = /€

Repeat steps 2 and 3 until convergence.

This algorithm assumes that forc ~ 1, f, (nn/¢)s fo(n}), and f,(n,) lie on a line when
Nn/C, My, and 7, are close and in the neighborhood of ¢ ~ 1. The algorithm provides a

good approximation for 7,,.

3.4 Order of X, — u/mand % — |

In this section, we calculate the order of X,, — t+/m and ‘—iﬂ — 1, which will be needed
in the later proof where we derive the asymptotic distribution of the normalized maximum
score when means and variances of the scores are unknown. Note that when the means and
variances for the profile scores are known, the set of X nj$ 18 a set of m-dependent random
variables. When means and variances of the profile scores are not known, however, the set
of X,;s are more dependent than m-dependent, since the same profile is involved with all

the X,,;s. These dependencies need to be taken correctly to calculate the orders for 2 and

X:n - ,u\/%-

3.4.1 Orderof X, — u/m

First we calculate the order of Cov (Xnj, X, j+6), Where J is a positive integer, and
find Var(X,), then we use Chebychev Inequality to find order for X,, — u/m.
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Lemma 3.5 Let X,1, ..., Xun be defined as in (3.1), let m and N be number of columns

and rows of the profile | respectively. Let 6 € N. Then

o) ifé<m
COD(an,Xn’j+5) ~

o) ifs=m

Proof.

Cov(Xyj, Xn,j+6) foro >m

= Cov(Xy1, Xn,l+6)

1 m 1 m
= Cov [ i Zi:l Fii, Jm Zi:l Pi,”"]
1 1
= Z:.":l Coo{Pii, Pyivs} + — Zi# Cov{Fii, Pj,j16}

1
= — > " Cov(Py, Pits)
m 1=

The second term is O since all the columns in | are independent, and all the letters in L are

independent. As discussed before, let nq be the number of letter a in the ith column, then

P(L) = %Zl(L=a)n,-a
1 i N
= N;uha)k;l(lk,:a)

N
= %ZZI(L:@I(I,(,-:(;).
a k=1

Cov(P;;, Piiys)
= E(Py, Piiys) — E(Pi)E(P;ite)
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M=

1
E(P”) = E[ﬁz

) N
= 5 Z Z E[I(L; =a)]E[I(t; = a)]

a k=1

I(Li =) (l; = a)]

k

I

N
= T2 wam

a k=l
= D Tallig = pt; <0
a

Similarly, since Lis are i.i.d., E(Pijys) = 3 naqftiq = y;
a

Pii X P its

1 N N
= (N ;; I(Lz = a)l(lki = a)) X (% Z Z I(L,'+5 = a)l(lti = a))

a =1

N
2 (kZI I(Li =a)l(y = a)) (% I(Liys=a)I(l; = a))
& k= =1

N N
R (El i =)l = a>) (Z I(Liss = AT = ﬁ))

a#f
1 N
= F ZI(L =a)l(Lizs = a)*(y; = a))
k=1
1
+ 32 Z(Z I(Li =a)I(Livs = )] (li; = a)I(I;; = a))
@ \ ke
1 N
t52 ( I(Li = a)I(Livs = P (ki = a) (lp; = ﬁ))
a,f \k=1

Q

#B

-
M &

R
=

( I(Li=a)I(Liys =PI =a)I(l;; = ﬁ))
k1

5}

=

#
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Since Li, Liys, ki, lyi are independent,
E(Pi; x P;iy5)
1 N ,
- N2 Z Z E[I(L; = ))]E[I(Lizs = a)]E[I*(lt; = a)]

Z D EU(Li = a)IEU (Liys = a)IEU (ki = a)JE[I (s = )]

a k;ét

Z Z EU(Li = )IEU (Lits = HIEU (i = a)l (s = B)]

a,f k=
a#p
1
+ 57 2 2 EU(Li = @EU (Liys = AHIEU (ki = 0)IE[ (i = B)]
a,fp k#t
a#p
1 N
= mZZn’aﬁan’,a Zzzﬂana”m”la
a k— a  k#t
ZZnanﬁ xO+ ZZnan’ﬂn,an’,ﬂ
a,f k= a,p k#t
a#p aF#p
1 N(N NN -1) N(N -1
= ]—V- T[iﬂ,a Z T, ,a ‘—‘Zna”ﬂ”za”tﬂ
a :ﬂ

= Z”a ,a+zn’a7[ﬂ”ta7[ug+ Z” mig(l — Tiq) — Z”u”ﬂ”iaﬂiﬂ
a,ﬂ

E(P;i)E(P;iyts)

_ (Zm,-a)(znm)

= Z”a za+zn ”ﬂ”za”zﬂ

Cov (P, Pijys)

= E(Pi, Piiy5) — E(Pi)E(P;i45)

1
= N(Z womia(l = Tig) — Zﬂaﬂﬂﬂmﬂiﬂ)
a a,fp

1
~ O(N)
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1 1
CovWXnj> Xnj4s) = 2 > CovlPi, Priss) ~ O()

Cov(Xnj, Xn,j+6) ford < m
Cov(Xn1, Xn,145)

Cov[fz le ] zz+§]

- Zi:l Cov{Pi, Piits} + - Zi=_1 Cov{Piys,its, Piito)
+% Zi# Cov{ Py, Pj jts}

1 1 -
O() + — Z:.n:l Coo{Piys,i1s, Piivs} +0

For the second term,

Cov(Piysivs, Piits)

= E(Piysits, Piivs) — E(Piys,i+s)E(Piits)

Piysive X Piys

N N
(% DD ILivs = o)k ips = a)) X (_IIV > Z (Livs =a)I(ly; = a))
a k=1 =1

a

N N
> (Z I(Livs = a)l(gits = a)) ; I(Liys =a)I(; = a))
(

N2 S
+ Zﬂ Z I(Ll+(5 = a)I(lk i+6 = Q) ; Livs =p)I(; = B)

aF#p
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1 N
= N2 Z Z I(Livs = @)l (Livs = a)I (k,ivs = )] (i = @)
a k=1

1
Y ; ; I(Livs = a)l(Lits = a)I (,i+s = @) (I;; = a)
t

1 N
T2 Zﬂ kz; I(Livs = o)l (Lits = P Uk,ivs = a) [ (Lx; = B)
a, =
ath

1
75 2 2 A Livs = D (Liss = HI Ueivs = )1y = f)

a,fp k#t
astf

Since Li 4, lki, Ik i+s, l1i are independent,
E(Piysi+o X Piiys)

1 N
= D D EU(Liys = )IEU (k46 = )IE[ (ki = )]
a k=1

1
N2 > > EU(Liys = )IE (k45 = D)EU (i = a)]
a  k#t

1 N
+m Z Z E[I(Li+6 = a)I(L,-+§ = B)]E[l(lk,i+5 — a)]E[I(Lk’,' — ;B)]

a,p k=1
ath
1
+N§ Z E[I(Li+§ = a)I(LH-é = ﬂ)]E[l(lk,i+§ = a)]E[I(l” — ﬁ)]
a,f k#t
ath
1 N 1
= m Zzﬂaﬂ'i+§,aﬂia + 'm Zzna”i+5,ania +0
. a  k#t
1 NN - 1)]
= N7 Talits,a%ia
5+ 5T

= 2 :”a”i+5,a7ria
a

E(Pits,i+0) E(P;i+5)

_ (;nama,a)(za;nm)

— 2
- zna”ia”z’+6,a+Z7ta7rﬁ7r,-a77:i+5’ﬂ
a a,ﬂ
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Cov(Piys,i+8, Piits)
= E(Pits,i+6s Pii+s) — E(Piys,i+0)E(Pii1s)
= Z Tallitd,alia — Z ”5”ia”i+(5,a - Z ot BT i i+4,8
a a asﬂ
= Z ma(l — ”a)n'i+§,a7ria - Z Tal AT iaT 44,8
a a’ﬂ

< o0

Cov(Xyj, Xn,j+5) so for 6 < m
_ 1 . P P 1 m_ac Piisiis P
= ;;Zz=1 OD{ Il l’l+5}+zzl=1 OU{ l+5,l+59 l,l+§}
1
o Z,-# Coo{ Py, Pj j1s)
1
~ O(— 0O(1 0
() +0) +

= 0(1)

We are now ready to find order of X, — u/m using Chebychev Inequality.

Lemma 3.6 (Chebychev Inequality) Let U be a non-negative r.v. with a finite mean u =
EU. Then for everyt > 0,

1
PT{U>U‘}S;

Definition 3.5 If for a sequence {X,} of random variables and another sequence {b,}, for

every ¢ > 0, there exists K, and a positive integer n. such that

|

Xn

by

>Kg]<8, Vn > n,

then we say X, = Op(by).
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Lemma 3.7 Let Xy; be defined as in (3.1), let X, = ZI=2% [t N ~ O(2), then

Xn — pa/m ~ O, (\/g)

Proof. Let U, = (X, — uy/m)?, let 62 = E(X, — u/m)* = Var X,, then by

Chebychev Inequality,
Pr{(X, — ps/m)? > K%02) < 1
r11(Xpn — uv/m)* > K0t < X2
X, — 1

Pr (n—'u\/;l) > K < —
On K2

£ . 1 1

or a given ¢, choose 27 < e or K > \/; , we then have
(X — py/m)

1
>K]§E2—<e

y

30 Xy, — pa/m ~ 0,(y/ VarX,).

On

To find the order of VarX,, note that as was shown in Lemma 3.2, VarX,j < oo and

by Lemma 3.5,

o(1) ifd<m
Cov(Xpj, Xn,j1+8) =
O(x) ifo>m

Now,
-1
Var {Z’f_ X,,j} = D VarXe + >0 (1~ 8)Cov(Xaj, Xn, 4610 < m)
+n(n—m)Cov(Xy,j, Xy j+510 > m)

= OM)+0{n—-1D+@n—-2)+..+(n—m+ D} + O(nZ%)

m(m — 1)

= 0O(m)+ O{(m —1)n — >

+ 062
= O(mn)+0(n2%)
_ m 1
VarX, = 0(;)+0(ﬁ)
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if N ~ O(;.), then

X, — u/m~ 0,(y/VarX,) = 0, (\/g)

3.4.2 order of faﬂ -1

First, we calculate Covo{(Xn1 — p/m)?, (Xn146 — u/m)?}

Lemma 3.8 Let X,; be defined as in (3.1), let X,, = Z;;l Xnj/n,let m and N be number

of columns and rows of the profile | respectively. Let 5 € N, then for 6 > m,
1
Covl{(Xnt = ua/m)?, (Xnis = ua/my’} = 0 (=)

Proof. Note that as before,

E(P;) = u
E(Xn) = E(Xu)=E [71_,; > Pii] - = ,-: R
Cov{(Xn1 — uv/m)?, (Xn1+52— pa/m)?) s zm
= Cov l(ﬁ g(l’i,i - ,ui)) , (71—7;1- g(Pi,Hé - /li)) l
L (S (Pt = ) + 2 50 3 (P — )Py = )

(Z:'n=1(Pi,i+(5 — )+ 230 3 (Privs — ) (P s — ,uj))
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1 z L
= —H?Cov (Z;(Pi,i — 1), Z;‘(Pi,ﬁé - #i)z)
1= 1=
2 ’” %
+-n?C01) (Z;(Pi,i D ZZ(PLHJ — u))(Pj jts— ,Uj))
i=

i=1 jAi
2 m m
+—Cov (Z(Pi,i+6 — )% DD (P = 1) (Pjj — #j))
i=1 =1 A
4 m m
+—5Cov (Zl ;(Pii — ui)(Pjj — ), Zl ;(Pi,iw — ui)(Pjjs — /lj))
i=1 j#i i=1 j#i

for the first term, Cov (372, (Pii — )%, 21 (Pyis — p;)?) for each i and d,(the de-

tailed calculations are shown in the next Lemma)

order number of terms

(1) Coo {(Pii — ) (Piivs — )’} O(F) 1
Cov {(Pii — u)% (P jys — uj)} = m—1
Cov {(P4s,i+6 — )% (Piivs — 1i)?} not possible for § > m
total for each i 0(%) m

For the second term, Cov (Z?:l(Pi,i - ,u,-)z, Z;’;l Zhéi(Pi,H.(s o ,u,-)(Pj,j+(5 - ,uj)) ,fOI‘

each i and J, we have three cases:

order number of terms

2) Cov {(Pii — )%, (Privs — i) (Pj,jrs — ) =0 2m-—-1)
Cov {(Pii — 1Y% (Pjjys — 1)) (Pegrs — )} =0 (m—1)(m—2)
Cov {(Pits,i+s — 1)% (Piits — ) (Pj j1s — 1)} not possible for § > m
total for each i 0 mm-1)
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For the third term, Cov (z;":,(P,-M — A T S (P = ) (P — j)) foreach

i and J,

order number of terms
() Cov {(Piits — 1)* (P — u)(Pjj — 1)} =0 2(m-1)
Cov {(Piivs = 1)% (P j4s— 1) (Pegss — fx)} =0  (m—1)(m —2)
Cov {(Pyits — 1) (Prits — 1) (Pj j+s — ,uj)} not possible for § > m

total for each i 0 mm-—1)

for the fourth term, for each i and J,

Cov (Z D (P = u)(Pij = 1), DD (Piivs — i) (P js — 1 ,-))

i=1 j#i i=1 j#i

there are five cases:

@) A Cov{(Pyi— pu)(Pjj = ), (Prigs — 1) (Pjjys — 1)}

B Cov {(Pitsirs — ) (Pjxs jus — 1), (Piis — ;) (Pj jrs — 1)}
() C Coo{(Pi = u)(Pjj — 1), (Piirs — 1) (Prkts — 1)}

D Cov {(Piys,i+s — 1:)(Pjj = 1) (Piizs — 1) (Pejss — i)}

E Cov{(Pii — u)(Pjj = 1) (Peiss — 1) (Pgqgts — ig))

total for each i
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order number of terms

A O(s) 2(m—1)

B not possible for 6 > m
C =0 4(m — 1)(m — 2)

D not possible for 6 > m
E =0 (m —1)(m — 2)(m — 3)

total foreachi  O(&;) m(m — 1)

therefore,

Cov{(Xn1 — u/m)?, (Xn14s — u/m)?) s>m

= —-—-COD (Z(P, i /l,) Z(Pl i+0 — :uz)z)
2
+-=Cov ( (Pii — u,-)z,ZZ(Pi,iH = 1) (P js = ﬂj))

Ms

i=1 i=1 j#i
2 m m
+—Cov (Z‘,( bivo = 1% D D (Pt = u)(Pyj — u j))
i=l1 i=1 j#i
4 m m
+-5Co0 (Z ;(Pii — 1) (Pjj — uj), Zl ;(H’,Hd = ui)(Pj j+s — ﬂj))
=1 j#i =1 j#

1 m 1 m?
= O(WNHO“”O(WWHO

1 1
= 0(—=)=0()

Lemma 3.9 Let P;j be defined as in (3.2), let u; = E(P;j), then for 6 > m

3

Cov {( — u)* (Prigs — /‘i)z}:O(%)
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Proof.

Cov {(Pi,i — i), (Piis — /"i)Z]
= Cov {(PE+ud —2P), (P + i} = 2Pii45)

= Cov(P? P121+(5) — 2Cov(P? s Piivs) —2Cov(Py;, P ,+5) +4Cov(P;i, P i+s)

1124

(1.1) Cov(P}, P, 5) = E(P}P}, ) — E(PHE(PE ).

i’

P2Pl 1S ford > m
1 2 1 2

= [‘I'V-;I(Li = a)nia} [ﬁ;I(LiM =a)nia}
= % [;I(Li = a)nia] [ZI(Li = a)nia]

X [Z I(Liys = a)nial [ZI(Li+6 = a)nia]
= % [Z IP(Li = a)nf, + Zﬂ ILi =a)I(L; = /f)n,-ani,e]

X [Z IP(Liys = a)n?, + Z I (Lita, o) I(Liys = ﬂ)nianiﬂ]
= [212 (L; = a)n?, +0] 1212(L,-+5 = a)n?, +0]

|| 2P =P Ligs = oy + Z I*(Li = a)I*(Li1s = f)njyny
TN
+13(Lits = 0)I*(L;i = )n},ny

2 2
E(P XP1+6)
1
= FZ”2N4”4 +—Z7r 7[,9N47r1a7r,ﬂ+0( -)
= Zna ,a+2Z7ta7rﬂ7rmn,ﬂ+0( )
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1
EPi?i+5 = Epi%=mE[ZI(Li=a)niaZI(Li=a)nia]
a a
1
= mE[Zl<Lz-=a>2nfa+Zl<Lf=a>1<Lz~=ﬂ>nwnw]
a a’ﬂ
1
= — Pr(L; = a) E (n?
| Zrw-os()]
1
- m[Zna[Nzn,-za+N7t,-a(l—7r,-a)]]
a

1
= > mami, + v D mia (1= 7ig) w4
a a

Cov(P};, Pliys) = E(PYPlys) — E(PR)E(PY,s)

i,i

1
= Znﬁfc?a + ZZﬂanﬂn%anizﬂ + 0(-1—V—)
a a,ﬂ

2
_(;nan?‘a + 0(%))

1
= O0O(—
)
(1.2) Cov(P,%, Piiys)

2
PiPits

2
1
= [N;I(Li=a)nia] [%;I(Li.,_a:a)nia]
1
= [ZI(Li =a)nia] {ZI(L,- =a)n,~a] [ZI(Li+5 =a)nm}
= % [Z IZ(Li = a)n,-za + ZI(L,’ =a)l(L; =ﬁ)n,~aniﬂ] [Z I(Liys = a)nia]
a a.f o
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= % [le(la =a)nzza +O] [z I(Li+5 =a)nia|

Y I (Li = a)l (Ligs = a)n],
a

1
= -ﬁ )
+ Z I“(Li = a)I(Liys = ﬂ)n,antﬂ +I(Liys = (1)1 (Li = ﬂ)nzanlﬁ
a,p
E(P} x P25
Zna ia +Z7ca”ﬂ”za” ip +75a717/3751a71' i B + 0( )
1
E(Pl%) = Z:n'a”iza + N Za:na”ia(l - nia)

E(P;ivs) = Z%aﬂia

a
COD( i,i’ l,l+5) = E( l+§) E( I)E(Pl l+§)

= Zna la+Z7l'an'ﬂ7tm7t,/3+7ta7tﬂ7t,a7t,ﬂ+0( )
a.p

— (; Tam?, + 0(%{—)); TaTiq

1
= O(N)
(1.3) COU(Psz+5)

2
P sPii

, 2
1 1
= [ﬁ ;I(LHJ = a)nia] [FV_ ;1(14 = (Z)nia]
1
= ¥ [ZI(LHé = a)nia] [z I(Lizs = a)nia] [Z I(L; = a)nia]
= N3 [Z IZ(L"*"; = a)nza + Z I(Livs =a)l(Liys = ﬁ)nzantﬂ}

a.p
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X {ZI(L,‘ =a)nia]
= % [;IZ(LH,; = a)n?, +O] [;I(Li = a)nia]

1 42_: I?(Liys = a)I(L; = a)n},

=
+ Z}? P(Liys = a)I(Li = P)ni,nig + I(Li = 0)I*(Liys = Pnianiy
a,

E(P; x P},

1
= ann?a + Znanﬂnfaniﬂ + nanﬂn,-an,?‘ﬂ + O(N)
a a,p

E(Flyp) = Domenh+ O(3)
:
E(Pi) = ) TaTia
z
Coo(P,;, Pl ) = E(PiPh,;)— E(P)E(PY,y)
= S a2, +Zﬁ;nanﬂn§aw Frampmianly + 0(3)
2 1
_(; Taliy + O(W));nan;a
1
= 0(‘1\7)
(1.4) Cov(Py;, Piiys)
PiixPiiys

1 1
= [N;I(L, =a)n,-a] []—V-;I(LH-& =a)nia]

1

N2

2 I(Li =a)(Liys = o)n,
a

+ Z/;g I(Li =a)I(Liys = B)nianig + 1 (Liys = a)I(L; = f)niqnip
a,
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E(Pi; x P;its)

1
= Znanfa + Zzﬂa”ﬂ”iaﬂ:iﬁ + O(N)
a a’ﬂ

E(Pi) = E(Pits) =D Talia ) TaTia
a a

Cov(P;i, Piiys) = E(P;iPiiys) — E(Pi)E(P;ivs)
2
1
= Z”a”iza + Zzﬂaﬂ'ﬂﬂiaﬂiﬂ + 0(']'\,—) — (Z ﬂa”ia)
a a,B a

= 0O(—
)
Therefore,

Cov {(Pi,i — 1% (Piiys — /h')z}
= Cov [(P,% + u? = 2Py), (PR + 1t - 2P,-,,-+a)}
= Cov(P}, P4,s) — 2Cou(P}, P, its) — 2Cov(Pii, Piys) +4Cov(Pi, Pijits)

1
= 0(']\—,)

Lemma 3.10 Let P;j be defined as in 3.2, let u; = E(P;j), thenford > m, j #1,

() Cov {(Pi — u)* (Pivo— 1) (Pjjrs— p)} =0
(3) Cov {(Piivs — )% (Pii — ) (Pjj — )} =0

(5) Cov((Pyi — p;)(Pjj — 1), (Piive — 1) (Prkts — )} =0
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Proof.

@

()

Cov {(Pi,i - ,Ui)z, (Pyivo — 1) (Pjj+s — ﬂj)}
E{(Pii — u)*(Pyivs — w)(Pj j4s — 1))
—E(P;; — t)*E(Piivs — 1)) E(Pj j4s— 1))
E{(Pii — pi)*(Privs — wi)} E(Pjjus — 1))
—E(P;; — ;) E(Piivs — ) E(Pj j1s — ;)
E(Pjj+s— pj) { EI(Pyi — )" (Pits — p1)]
—E(Pii — w)*E(Piivo — 1) }

0 x Coo{(P,i — 1), (Piivs — ) }

0

Cov [(Pi,i+6 — )%, (Pi — pi)(Pjj — ﬂj)}
E {(Pi,i+5 — u) (P — 1) (Pjj — ﬂj)}
—E(Piiso — 1) EL(Pii — p)(Pjj — )]
E((Pi+s — 1) *(Pii — )} E(Pjj — 1)
—E(Piits — ;) E(Pi — p;) E(Pjj — )
E(Pjj — uj) { EL(Piivs — u)*(Pi — )]
—E(Pi+s — i) E(Pi — 1))

0 x Cov {(Pi,i+(5 — u;)?, (P — ﬂ,-)}

0
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(5) Coo{(Pii — p)(Pjj — 1), (Piive — 1) (Prkss — i)} d>m
= EN(Pi — p)(Pjj — 1) (Piivs — ;) (P s — 114)]
—E[(Pii = ui)(Pjj — p )] EL(Pyivs — 1) (Prkts — tx)]
= E[(Pi = p)(Piivs — #)1 EWPjj — 1) (Pigrs — i)
—E(Pii — p;) E(Pjj — i) E(Pijivs — 1) E(Prgrs — Hy)
= E[(Pi— 1) (Piits — 1)) E(Pjj — ;) E(Prk+s — i)
—E(Pii — p;) E(Pjj — 1) E(Piiys — ;) E(Pegts — piy)
= E(Pjj = #))E(Pepro — i) { EL(Pii — ) (Piiys — w;)]
—E(Pii — ;) E(Pyivs — 1))
= 0x Cov(Py, Piits)

= 0

Lemma 3.11 Let P;j be defined as in (3.2), let u; = E(P;j), then for 6 > m,

1
@) Cov {(Pii = u)(Pjj — 1), (Privs — 1) (Pj j1s — 1} = 0(‘1@)

Proof.
Cov {(Pii — pi)(Pjj — 1), (Piis — 1i)(Pjj4s— 1))} o2m
= E{(Pii — u)(Pjj = ) (Piivs — u:)(Pjjvo — 1)}

—E{(P;; - 1) (Pjj = u)DYE{(Piizs — pi)(Pj jvs — /lj)}
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E[(Pii — 1) (Piivo — u)1 EW(Pjj — pj)(Pjj4s — )]
—E(Pii — u))E(Piivs — p)E(Pjj — uj)E(Pj jyo — 1)
E[(Pii — i) (Piivo — 1)) EL(Pjj — pj)(Pjj+s — #j)]
—E(Pii — p)E(Pyivo — )E(Pjj — pu)E(Pj jys — 1)
Cov (Pii — iy Piivs — ti) Cov (Pjj = pj, Pjjes = i)

Cov(P;, P;i4+5)Cov(Pjj, Pj j+5)

(%) (%)

We next show that Var{(X,; — u\/m)?} < oo. The following theorem is from Bengt

von Bahr (1964).

Lemma 3.12 Let X1, X2, ..., X, be a sequence of independent r.v’s with zero mean and

finite variance a;?', and let

Die1 Xi

/~on 2
i=10;

Y, =

IfB, = EIXi|" <00, 1 <i<n,r>2 Bpy = %Z?:lﬂki’,okn = (Tf'f)[lm We have for

every positive v <r

oo 1 2 1x]PdPyj o (—@
EIY,|" - / P () — 371 S PP () )
. =

j=1 < CR(v,r)
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where

w+1)/(r-2)

r p%n Lrn n o 3 Bri 1/r=2) .
o2 + ST eXp c/nl (sn) (p—rff,—;') if2<r<3

1/r 3(v+1)/r

Rw,r) =1 p .

©:r) =1 B+t if3<r <4
3+1/r 3(+1)/r 3(v+r)/r

Lr L ;
i '%“rn o + S+ Leen ifr>4

and C and c are finite constants only depending on r.
We apply this theorem to the profile scores.

Lemma 3.13 Let X,; be defined as in (3.1),let u = EXyi/m, let Var(P;) = 01.2, and

m 52
———‘-Z’fnla = 02, then

Var{(Xn; — pv/m)* < oo

Proof. fori = 1,...,m, E(Py;) = p;, and Var(P;) = o?. assuming E|P;|* < oo.

let Zhiof _ 0?25 o /m= S o2
m - - i=1Y

D (P — uy)

no 2
i=19;

by Lemma 3.12, letv = 4, r = 4,then

X — ﬁ,u
o

E Ix|*d® (x) —

—00

4 00 00 4 -
-/ S22, Il dz;z,n( 0| _ pa
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since

P _ B4m
am =
" (BZm)2
4
By = Z?:l Bai _ an:l E|P;| < 00
m m

By < oo similarly.

34+1/4 3x5/4 3x2
_ Pam Pim Pa 1
R@4,4) = =0— + = + —5 ~ 0(—)

Now, for standard normal distribution, [*_ |x[°d®(x) = %4 so [°0 |x|*d®(x) < oo,

moreover,
J25 il P A ®)0) (1
m o m
therefore,
4
X, —
E nl ﬁ:u < 00
o
So

Var{(Xnj — p/m)’} = E(Xnj — un/m)* = {E(Xnj — u/m)*? < o0

. 2 Z'; Xn'
Lemma 3.14 Let X, be defined asin(3.1), let X, = S5, 57 = —omdyrs S0 (Xnj—

X,)%.Then



7:1 (an - Xn)z

1
n{l+(c2 - 1)e}

n{l+(2-1e}

[ n (Xnj — u/m)* = n(X, —wr?)z] —q?
j=1

Z?:](an - ﬂﬁ)z

n{l+ (2 — 1)e}

Now,

E(X, — pu/m)?

(X, — #\/’7)2

{1+ (c? - e}

Also, from Lemma 3.2,

E(Xpnj — ,uﬂ)2
E [ Z?:l(an - #«/E)Z]

n{l+ (c? — e}
by Chebychev’s inequality,

Z?:l(an - ﬂﬁ)z _
n{l+(c? - e}

Var [Zn:(xn,- - uﬂ)zl
j=l1

0.2

—g2_ (Xn - ﬂﬁ)z
{1 + (c?2 — l)e}

Var(X,) = 0(>)

- o (3)

Var(X,j) = o?[1 + ((:2 — el

0_2

Z?:l(an — pa/m)?
n{l+(c?— e}

ZCOU {(Xni - /‘\/’;1-)2, (an - /‘\/”_1)2]

i<j

2 Var(Xnj — u/my* +2
j=1
nVar (Xn = u/m)’ + 307 (1= ) Cov { (Xt = ps/m)2, Kt s = u/my?]
— 1)2
@ = Do [ (a1 = /), (X = u/m) £ =1 2 m]

O(n) + O(nm) + nzO(%) = O(nm)

+n(n —m) +
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Z'}=1(an—ﬂ«/’—”—)2 _ i
Var( n(l+@@-De] ) 3 0(nm)
= 0()
n

Therefore

s,%—az=o,,( %)+0P(%)=0,,(%)

By definition, given ¢ > 0, 3K, such that

|

2_ 2 m
S, — 0O ‘>Kg;}<s

Now, given ¢ > 0,

Therefore,

3.5 Distribution for the Maximum of Profile Scores

In this section, we derive the distribution for M2 and M, for the cases (1) when x and
o are known (2) when u and ¢ are unknown. We start with the Lemma which gives bound
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for the joint probability of Y,fj and Y, and enable us to calculate bound b, in Chen Stein
Theorem. Next, we apply Chen Stein Theorem to the profile scores to show the maximum
of Y,fj = M—’i converges to a modified extreme value distribution of the third type.
When the profile is random, we don’t actually know u, and o, so instead we use the scores
Yyj = 5—"1;—)?’1, where X, and s,% are the estimators for x4 and o2. We then show that the
maximum of profile scores Y,; also converges to a modified extreme value distribution of

the third type.

The next Lemma is a modification of Lemma 2 in Goldstein (1994).

Lemma 3.15 Let Y7, Y?,, ..., Y2, be defined as in (3.8). Let

nl> “n2»

ps=Corr(Y,,,Y3) for§ = |k — j|

p = sup {|p§"):1§n§ooand1§5<m}

1<n<oo
Assume that 0 < p < 1. Then there exists a constant C such that if v,, = o(m'/ 6), then for

all <|j—kl<m,1<j,k<n,

2 =
Pik =PI > o, Y, > o) < C (1 = Fy(on) ™7 01

where
Fy () = (1= ) Fo(x) + e Fy(5)

is d.f. for two component normal mixture distribution, and F, is d.f. for standard normal

distribution.
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Proof. Note that
Pr(Ynoj > O, Vi > 0) < Pr(Y° + Y., > 20,)
withd = |k — j|, since |ps] < p < 1,

Pr(Y,; + Yy > 20m)

= Pr Y:j Yok > 20m
V2 +ps)  V2(1+ py)
YO + Y,fk 2
<
- \/2(1 T VA+p)"

Assuming j < k, and assume without loss of generality, P; has mean zero, let

.

Pi(Litj-1) forl<i<é

(ny _ .
R = Pi(Litj-1) + Pi(Lij-1) ford+1<i<m

P(,'_(s)(L,'+j_1) form+1<i<m+4d

3
then Y+, = S74° R By Lemma 3.1, Pr(¥+¥g, > ) = (1-F,0)} {1+ 0 (%)}

So

P Y"+Y,fk 2
,/2(1+p5 +p)"
2 Ok
= {I_F"( (1+p)“m)][1+0('ﬁ)]

Now, if there is a few gaps and the profile looks like fig 2, then by Lemma 3.2,

(s Vs
= )][HO(J—%)I
_ constant[(l—e)[l (\/——) )} [ F(\/gl)?m)“




since 1 — F,(y) = M(l + 0(1/y?),

()

(\/—(l_'ﬂ’— ) [fo(vm)] 1+"

<
m
%
< G3[1 - Fo(vm)] Um
2 op
1—-F —_
"(V (1+p) c )
fo (Vi) B
< C 0( (I+p) ¢ SCz[fO(vm/C)] *P
Om Um
1__2
< Coll = Fo(om/ ™ o

SO
Yo + Y,;’k 2
V2(1 + pg) 1+ p
< ﬁ% [ (1 =&)[1 = F,(vm)] ™ + e[l — F,(vm/c)] *”]
1p =
< Com” {(1 = &)1l = Fo(om)] + €[1 = Fy(om/0)]}
2 1l
= C{l—=F;(op)T Dnlz+p
]

The next Lemma is useful for estimating the rate of convergence for the maximum of

a set of normal mixture random variables.

Lemma 3.16 For the normal mixture distribution F,,let

tn =n[1 = Fo(un)] = n(1 — &)[1 — F,(un)] + ne[l — Fo(”T")]
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where

Up = l + bn
an
+/2logne
a ~ —
" c
1
5[log4n + loglog(ne) ]
by ~ cy/21 1-2
" cveosne [ 2log(ne)

then forc > land0 < ¢ < 1,

4 = e [1 + («/47: logna)cz—1 1-—8] [1 +o0 (loglogn)]
n =

neey ce logn

and for large n,

neey ce

2
4~ e [1 + («/47r logna)C ! 1—3]
n ~

Proof. Since 1 — Fy(u,) = £82) [1+ 0(1/u2)] +e‘”r2v/2{l + 0(1/u2)}, for

= un2m
1
Un = 'a% + b, where a, = @, b, = c/2logne [1 - ﬂlog“;:;ilogne)] , we have
u_% (:,% +bn)2 _ __)i n {)ﬁ yby,
2 2 2¢2 2 a,
y_2 _ y? _ y2c?
2a2 p2logns — 4logne
C
2
éﬁ _ 2 logne |1 — log4r + loglog(ne)
2 4log(ne)
1 logl 2 log4 1
= logne |1+ (log4z +loglogne)®  log4x + loglogne
16(log ne)? 2logne

- ——\ , ¢*(log4n +logl 2
= cz{logne-—log 47[—10g ]0gng}+c(og 7 + log Ogng)

16logne
ybn  yc/2logne q %(log47r + loglogne)
a, ~ o2logne 2logne
[
= oy — yc?logdn + yc? loglog ne
=) 4logne
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Therefore,

e—u,2,/2

2.2
= exp [ y < ] X exp {—c2 log na} exp [c2 log «/47:} exp {02 log +/log ne]

—410g ne

?(log4m + logl 2
xexp[—c (log4z + loglog ne)

yclogdz + yc?loglogne
16logne

)
]XCXP[ e+ 4logne

1
= (V4r/log ne)cze'}":2

(ne)e?

,—4y? + 4ylogdr + 4yloglogne — (log4x + loglog na)2]

X exp [C 16logne

1
 E B— log 4n +loglog ne
So’foru" = an +b" Wherea” =3Eg@’ b" =c 210gn8[1_ﬁ g2”logng8 - )],

n(1 — &) {1 = Fy(up)}

= n(l—¢)

1
e/ 21 + 0(1/ud))
2r
1

! (log 4 +log
{ﬁ*‘cm[l—1(°gz’flogc:iogns)”\/2—7[

1
X (V4r/logne e g=ye?

(ne)e

Up

= n(l—¢)

2 —4y2 +4ylog4n +4yloglogne — (log4r + loglog n8)2]

* P [c 16logne

1
=)
ogne

n(l—¢) (v/47 /Togne)””
" ez o [y 1 - et enn |

x{1 + O(

2logne 2logne

oY 1+0 loglogne
logne

2_
= (L) ll—exe—w[wo(wﬂ)]

n ce log ne

2_
(./47: logna)c 1 =7 ll 40 (loglogns)]

ne ce logne
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Now, since 1 — FO(ECIL) = %&{1 + 0(c2/u2) e~un/2 {1+ 0(c2/u2)}, and

«/2_7:

u_%zi l+b 2= y2 +b_’2'.+ybn
2c2 22 \q, " 2¢2az  2c2  Cla,

and
A S
2c%a? 2c22—li$ 4logne
2
1 1 logl
—Zﬁ = logne — 510g47t — zloglogna +0 ( Olgogoign)

the last term

_ [Iog 4r +loglog(ne) ]
Vb, ~ yca/2 log ne [ 1 2log(ne) ] _ ) %[ log 47 + log log(ns) ] ]

c2ay c2y/Zlogne 2log(ne)

[

SO

ne[l — Fo(%)l

c

- me—uﬁ/2cz {1+ 0@1/u?))
n

= né¢
c

1 log 4w +1og1
m[—y—m m +cm[l - 20 z”log‘ii””””

2

-y logl
X exp [4log — logne +log v4x + log/logne — ( 08 ogn) - y]

logn
[ 5[log4x + loglog(ne) ]]
X exXp

= née

2log(ne)
— o ne
A—— (log 47 +loglog ne)
210gne 2z [ZIOgne +1- 2 2logne ]

X exp {— logne + log v47 + log \/logna}
X exp 0 loglogn

logn
e (e
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Therefore,

e = n(l—a)[l—Fo(un)Hns[l—Fo(ﬁc’f)l

2_
_ («/47r logne)c o g [1 ‘o (loglogne)}

ne ce logne

logl
+e—y[1+o(°g g)]
logn

-1
_ [1 4 Y1) («/471’ logne) 1 - s] [1 +0 (loglogn)]

ne ce logn
2-1
_ JVArTlogne\ ' 1—¢ loglogn
= Y11 1+ 0
¢ { + ( neey ce + logn

3.5.1 When y and o are known

We next state the Chen Stein Theorem again and apply it to the profile scores Yn”j =

—L”';ﬁ” to derive the asymptotic distribution of maximum M.

Lemma 3.17 (Chen, Stein) Let I = {1, 2, ..., n} and for each J € 1, let Bj be a Bernoulli
random variable with p; = Pr(Bj = 1) = 1 — Pr(B; = 0) € (0, 1). Let
Wa=D Bj, andin=EW,=> p;
jel jel
For each j € I, suppose there is a set of dependence for B js Nj C I, with j € Nj, such

that

Bj is independent of {By : k ¢ N}
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Define

b] = Z z PjPk and

jel keN;

Z Z Pjk, Where pj; = E(BjBy)
Jjel j#keN,

ca
(8]
Il

Then

| Pr(W, = 0) —e™*| < by +by

Theorem 3.3 Let L = (L, Ly, ..., Lyym—1} be a sequence of i.i.d. letters. Let the stan-

dardized profile scores be

an — \/;n’:u

YO =
nj o

where Xyj, 1, o are defined as in section 3.1. Let M? be the maximum profile score,

M? = max Y9
n 1<j<n ™

Suppose that the maximum correlation of the profile scores is bounded strictly by 1:
ps = Corr(Y);,Yy) foré = |k — j|

p = sup {lpsl: 1<n<oocandl <d<m}<1
1<n<oo

and for given y, let u, = -aln + by, where

/2logne

n

C
1
log4r + logl
by ~ cy2logne |1 2110847 +loglog(ne)]
2log(ne)

for0 <e <1,andc > 1, F, is the d.f. for standard normal distribution, let
An = nPr(Y] > up)

tn = n{l = Fy(un)} =n(l — &)1 — Fy(un)] + ne[l — Fo(“c_”)]
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Suppose that m ~ O (n*) where k € (0, }—;%), then

1 —
|Pr{an(M° = cn) < y} — ™| =o(n™7) forevery y € (0, FE —k)

Nz logne)cz_1 1—c¢ })

neeY ce

Pr{a,(M; —cp) <y} > exp(—e‘y [1 + (

Proof. For j € {1,2,...,n}, let

n

Bj = I(Y?; > uy) and W, = ijl Bj,

then

An =EW, =nPr(Y], > u,)

3
and since by Lemma 3.2, %‘r"- =1+ 0(%), and by Lemma 3.16, £& = 14 0 (—u—lololgonn) ,

12
bi = DD pipk=I|INj| p < 2mn[Pr (Ypy > up)® = 2m=2
jel keN; n
_ 2mig
Conople™
m (logn)/? loglogn
=-2hto ———) 140
n Jm logn
. 2
n

2 L=
by Lemma 3.15, pjx = Pr(Ynoj > Up, Y > up) < C{l — F(u,)™ uﬁ, also, since

/z,,=e"y{1+0(]—°1g0—1g9§—")} < 00

2 L=
S bk < AN {1 = Foom) ™

b2 =
jel j#keN,
2. lp
=
< Bnm (H—") M4 uy
n
e 2 1
= Bn Sou, pu,  ~ 0
1I-p_,
n]'ho

108



now,

Pr(Wy = 0} = Pr{M{ < y} = Pr{a,(MZ — b,)}

SO

1 1 1
Pr{a,(M° — b,)} — e~ 50(———)+O — =0 —
| n( n ) | nl—k n1+pg_k nhpg_k
6

Now, let x4, = n[l — F.(u,)], since, 7’}‘1 =140 (n%) , and by Lemma 3.16, £& =

1+ 0 (loglogn) . 50

logn
n _ A
-1 B c2—1
e (R ] e [ (T ]
1 logl
= 1-|- Ol — 1 + 18] oglogn
nk logn
_ [1 40 (loglogn)]
logn
and
JAr 1 -1y _
Pr{a,(M; — b,) < y} — exp(—e“y [1 n ( T Ogne) g])’
nee’ ce
< [Prian(M; by < y) — e
2
VA1 -1y _
+ |e*n —exp(_e—)’ {1 + ( T Ogna‘) 8])’
neeY ce
1 logl
= O\ —Q@=x)*° ( o8 Og”)
nies & logn
- 0 loglogn
B logn
[ ]

Here, as we can see from the proof above, the slow rate of convergence have mainly
resulted from the l—olgolf? order for convergence of maximum of normal mixture random
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variables to extreme value distribution. For random profiles, since u, and ¢ are unknown,

Xpi—X, = .
naturally we would use scores Y,; = —"%, where X, and s,% are the estimators of x4 and
n

o2

3.5.2 When y and o are unknown

The next theorem shows that the maximum of scores Y,;s also converge to a modified

extreme value distribution too.

Theorem 3.4 Let L = {L1, Ly, ..., Lyym—1} be a sequence of i.i.d. letters. Let Y,‘,’j =

X,,.—Uﬁﬂ where Xy, u, o are defined as in 3.1 and let MY = 1 Ln,a)én Y;;. When the profile

is random , . and o are unknown. Let the profile scores and their maximum be

Xni— X
Ynj — nj n
Sn
Mn = max Ynj
1<j<n
73 2i1Xn 2 1 2 .
where X, = =I=—2 | 52 = ST @D Z;f___l(X,,j — X,)%. Suppose that the maximum

correlation of the profile scores is bounded strictly by 1:

ps = Corr(Y;, Y}) ford = |k — ||

p = sup {lpsl: 1<n<ooandl <d<m} <1
1<n<oo

and for given y, let u,, = % + b,,, where

gy ~ Y2logne
" c
1
5[ log4 logl
by ~ cyZlogne |1 — 2110847 +loglog(ne) ]
2log(ne)
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for0 <e <1,andc > 1, F, is the d.f. for standard normal distribution, let

An = nPr(Y] > up)

py = n{l = Fy(up)} =n(l = &)[l — Fo(un)] + nell - F,,(i‘c.'z)]

Suppose that m ~ O (n*) where k € (0, Eﬁ), then

1—¢ («/47: logne)cz_1 _y(cz_l)])l
e

Pr{a,(M, —c,) < y} — exp(—e‘y [1 +
ce ne

_ o0 (log logn)
logn

Proof. Let
nj o
M? = max Y?°
1<i<n
then
X —X
Ynj — 1 n
Sn
_ o X—pudm  Xy—uym
Sn o Sn
— ZYO Xn - /’lﬁ
sp ™ Sn
and
X: — X, —
M, = max Y,; = max "=UM,‘,’ Xn = py/m
1<i<n 1<i<n  §p Sn Sn



So,

Pr{a,(M, — b,) < y}

X, — p/m
Sn

- Pr{a,,(siM,‘; - — by) <y}
n

= Pr{ang'M,? —anby <y tay
n Sn
o Sn s
= Pr{anMn - anbn(;) < ;y + an
s s X, — um
= Pr{anMg - anbn(l) — apby + apb, < _ny + an_l“#_f}
g () o
Xn - ﬂ\/’?}
o
Xp — um
o

S S,
= Pr{an(M:: —by) < y(f -D+y '+'anbn(';_’l -1 +a, ‘

s S
= Pr{a,(M;] —b,) < yf— —y+y—a,b,(1— ;n) + a,
}

= Pr{a,(M}] — by) <y + yo + apbpv + ayw}

where

v = S_n -1
o
(2
By Theorem 3.3, for u, = 1Ololgon -,

2

1 - C —1

Pr{a,(M°—b,) < y} = (1 +u,)exp (—e‘y [ 1y 1=¢ (V“” ‘°g"8) e—y<c2—1>])
[or ne

ne

-1
let B= B(n,c,¢) = 17—82 (@) , then

Pr{a,(M? —b,) < y}=(+uy,) exp (—e"y {l + Be_)’(cz_l)})
= (14 u,)exp (—e—y - Be_yc2)

112



now, let h = h,(y,0,w) =y + yo + a,b,v + a,w,

Pr{a,(M, — bn) <y}
= Pr{a,(M;] —by) <y + yv + anbpv + a,w)
= exp (—e_h - Be‘hcz) (1 + up)

= Gn(y,v, w)(1 + up)

First, we derive the expression for G,(y, v, w).

Let G = G,(y, v, w) =exp (—e“h - Be“hcz) , then

oh _ oh . oh _

oy = L1tv v = ¥ T anbn ow — 9n
oh  __ dh_ __ oh  __
dyov — 6yaw_0 avaw_o

h(y,0,0) =y G(y,0,0) = exp(—e™ — Be™%)

oG 0 2\ oh
— = 6= (- -h _ B ~hc*) Y%
ER oh ( ¢ ¢ ) o0

= G(e—h + Bc2e—hcz)(y + anbn)

oG 2 2
i — _—y_B~yC) ~Y 4 Ble)C b
S o0 = OP(-¢7 =B + BN + anbn)
similarly,
oG 0 2\ Oh
— = G= (_ -h _ B —hc ) htdd
ow oh ¢ ¢ ow
= Gl "+ Bcze_hcz)an
oG 2 2
il — —e~Y _ Bp—YC -y 2,—yc
0 .00 [exp ( e Be )](e + Bc‘e )a,
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Furthermore, since-Z (e~ + Bc?e~he"y = (—e~h — Bcte ") (y + ayby)

802G
ovov

—G [(e™" + Bc*e ™) (y + anbn)1(y + anby)

=[G (¢™" + BPe™)(y + anbn)l(e™" + Bc2e ™) (y + anbn)

= G (™" 4+ BAe ™" Y2(y + ayby)? — G(y + anby)*(e™" + Bcte™ )

= GO+ anbn)z[(e_h + BC26'_hCZ)2 — (e_h + Bc4e-—hc2)]

%G
0v0v (y,0,0)

= [exp(—e™ — Be7¥)](y + anbn)*[(e™ + Bce ™) — (¢ + Bcte™)]

. 2 2
Since 2 (e7" 4 Bc2e™he") = (e~ — Bcteh)a,,

6(356610 = [G( "+ Bcze_hcz)an](e_h + Bcze_hcz)a,,
-G e+ Bc4e"hcz)an]an
= G+ Bcze_hc?')za,,2 — Gay2(e™" + Bc4e_hcz)
— Ganz[(e_h + Bc2e—hc2)2 _ (e—h + Bc4e—hc2)]
ai)zaGw oo = P = BN + BeV ) — (7 4+ Bete )]
%G —h 2 —he? —h 2 —he?
2win = [G (e7" + Bc™e™" )anl(e™ + Bc®e ™" )(y + anbn)
—Gl(e™ + Bc*e™)a,] (y + anbn)
= G (™" + BAe™ay(y + anbn) — Gan(y + anba) (e ™ + Bete ™)
= Gan(y +anba)[(e™" + Bc?e ™) — (¢7h 4 Bcte )]
aa;an .00 = [exp(—e™” — Be‘ycz)]an(y + anbp)[(e™” + Bcze'ycz)2

—(e™ + Bc4e_ycz)]

114



0G/0y

Gn(y,v,w) = Gn(y,0,0)+[o ) w] G /v

0G /ow
. 46,00

o —t e — p— —

0 2G/oy*  9*G/ayov 6*°G/oydw | | O

nall °G/ovdy 8*G/ov?  9*G/ovow | | v

w *G/owdy 0°G/owdv  9*G/ow? | | w .00
L -4 L d(y,0

+0(1)2, wz, bw)

oG oG
= exp(—e ™ — Be_ycz) +0o— w—
ov (5,00) 0w (y,0,0)

- b B2 il

» 0*G/dvdy + w 892G /owdy 0

+| 0 82G/00v% + w 8*G/owdv v
v 82G/dvdw + w 8*G /ow? w
L 4 L 1,00
+0(02, wz, vw)
2 oG oG
= exp(—e Y — Be ) +v— w—
p( ) 0v (y,0,0) + ow (y,0,0)
L 8?G 0w 0°G
002 (y,0,0) Ovow (y,0,0)
G ,0%G 2 9
+(w w'—= +o(v°, w*,vw
( dvoWw (y,0,0) ow? (y,0,0)) ( )
Gn(y9 v, ll))

= exp(—e ™ — Be—ycz) {1 + (7 + Bcze“ycz)[v(y + a,b,) + wan]}

+exp(—e™ — Be ) [(e™ + Bc?e ™) — (e77 + Bcte™)]
exp(—e ~ — Be

x[vz()’ + anbn)z + wza;% + 2vwan (y + anbp)]

+o(v?, u)2, vw)
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Letc > 0,d > 0 be two constants, we next find upper and lower bound for the expression

of G, (y, v, w), and show their difference goes to 0 asymptotically. From Lemma 3.14 and

3.7, it was shown that

v = sl—lNOP(ﬁ)zop(#)
R 0y = 0 o ()

g
I

SO

Pr{an(M;l) —by) <y(1+ ) + apbyv + ayw)}

= Pr{an(M;; —bn) < y(1 +0) + apbpv + a,w;

ol €~ 0] € ——
e S

+ Pr{an(Mg —bp) < y(1 +0) + apbpv + apw

d
s |wl > —=37—1}

C
< —_—
v = T N
+ Pr{a,(M; — b,) < y(1 +0) + apbyv + ayw

lo] >

c d
- < -
e 0 S )
+ Pr{an(M,‘,) —by) <y(1+ ) + apbyv + ayw;

o] >

c d
W > )

The and the upper bound is

Pr{a,(M; — b,) < y(1 + v) + a,b,v + a,w) (3.19)

< Pr{a,,(M,‘l’ —by) <y(1+ 0) + apbyv + ayw;

ol € ——S o] < —2
(Jm)iF7 () F=7
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+Pr{|w] > } 4+ 2Pr{ o] >

d c

— exp(—e ™ — Be_ycz)
( A
1+ (™ + Bcze_ycz)[(\/#(y + anby) + (ﬁﬂfﬁan]

+[(e™ + Bc2e_yc2)2 — (e + Bc4e—y02)]

2 2
X5 (0 + anbn)® + %02 + 2850, (y + anby)]

+o(-=r=)
x(1+ un)

+ Pr{ |w| > }+2Pr{ |v| > }

__°
Vol
}+2Pr{ |v| >

d

= Hu(y,c,d)+Pr{|w| >

d c
(Vr)I=k=r WO

Similarly, the lower bound can be obtained by

Pr{a,(M; — b,) < y(1 + 0) + axb,v + a,w)

= Pr{a,(M;] — b,) < y(1+0) + apbpo + apw ;

I —<
(ﬁ)l_k_p
= Pr{a,(M;] — b,) < y[1 —

> |w

}

ol < “—c_—_
(vV/n)l=k=p

c c
W T
d c d
~ e M= e S )

Let A = the event that a,(M? — b,) < y(1 + v) + a,b,v + a,w, B = the event o] <
(_«/ﬁ)cl‘__k—;’ and C = the event |w| < W)‘f—m’
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Pr(A) = Pr(ABC) + Pr{A(BC)]
= Pr(ABC) + Pr[A(B° U C°)]
= Pr(ABC) + Pr{AB® U AC‘]
Pr(ABC) = Pr(A)— Pr{AB° U AC‘]

= Pr(A) — Pr(AB®) — Pr(AC) + Pr(AB° N AC®)

v

Pr(A) — Pr(AB°) — Pr(ACF)

v

Pr(A) — Pr(B€) — Pr(C°)

Pr{a,,(M,‘,’ —by) < y(1 +0) +apbyo + a,w}

2 Pr{a,(M; —by) < y[1 —

c b ¢ d
N W IE S WS ST

d
— Pr{lo| > (T/’—mfp}

— Pr{|lw| >

C
W

- exp(—e™ — Be'ycz)
_ )
1 —(e7 + Bce™>* N7 (0 + anbn) + w—n—)‘fﬂ_—pan]
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c d
= Hu2 (y,¢,d) — Pr(|o| > W:;)—Pr(lwl > Wl_k:p-)
But for v = x_"——ab@, Var(w) ~ O(%) = O(nl—l_k),
p d
B W IE
L, 2
X, — d? _
= Pr{ (M) > ———Var(X,)
o n P
(% uimY &
- (_M) L
o nt=k=p

1
— O(n~"
S S5=007)
andforo =3 — 1 Op(_l{ﬁll— ), Var(v) ~ O(%) = O(nll—F)’

c
P |11 > e |

2

Sn 2 C Sn
= Pr[(;—l) >mVar(-;)}

S 5, =00
Now since
c d
Hy (y, c,d) — Pr(fo| > W) — Pr(jw| > W)
< Gn(y,0,w)
d c
< Hi(y,c,d)+Pr(jw| > W) + 2Pr(jo| > (—W)

For a, ~ /2logn and b, ~ /2logn,The difference between upper and lower bound is
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right side - left side

= 3Pr(fo| > )+ 2Pr(|w| > )

c d
oS WO

2exp(—e ™ — Be‘ycz) x (e7) + Bc2e_y"2)
+

X[t O + anbn) + Tt an] + 0Gor5)
x (14 u,)

- 0

Therefore, the probability Pr{a,(M? — b,) < y(1 + v) + anbpv + a,w} converges to the

upper bound as n — oo, and

Pr{an(M: —by) < y(1 +0) + azbpo + ayw}

- e (logn)? loglogn 1
7 eweT o B ’l”o(w)] o () +o ()

logl
= exp(—e” — Be—ycz) [1 +0 ( o8 ogn)]
logn
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Table3.1 Comparison of Estimates and True x (from Neton's method) for n=200

c estimate true x error JF(x) h(x)
n=200 epsilon=0.05
2 2.5631 2.9518 0.13168 0.99842 -9.77E-06
3 3.8447 3.8627 0.00468 0.99994 -7.21E-05
5 6.4078 6.4075 0.00004 1 -8.05E-05
10 12.8155 12.8155 0 1 -1.32E-06
n=200 epsilon=0.1
2 3.2897 3.3598 0.020854 0.99961 -6.72E-06
3 4.9346 4.9346 0.000003 1 -6.24E-05
5 8.2243 8.2243 0 1 -3.3E-06
10 16.4485 16.4485  0.000001 1 -1.11E-05
n=200 epsilon=0.2
2 3.9199 3.9259 0.00151024 0.99996 -1.39E-05
3 5.8799 5.8799 0.000000044 1 -2.75E-06
5 9.7998 9.7998 0.000001905 1 -2.29E-05
10 19.5996 19.5994 0.000011608 1 -5.67E-05
n=200 epsilon=0.5
2 4.6527 4.6528 0.000026403 1 -9.14E-07
3 6.979 6.979  0.000010099 1 -6.03E-05
5 11.6317 11.6317 0.000000114 1 -6.38E-06
10 23.2635  23.2635 0.000001234 1 -2.1E-05
epsilon  estimate true x error F(x) h(x)
n=200 c=2
0.05 2.5631 2.95179 0.13168 0.99842 -9.77E-06
0.1 3.28971 3.35977 0.02085 0.99961 -6.72E-06
0.2 3.91993 3.92586 0.00151 0.99996 -1.39E-05
0.5 4.6527 4.65282 0.00003 1 -9.14E-07
n=200 c=3
0.05 3.84465  3.86274 0.004682749 0.99994 -7.21E-05
0.1 4.93456  4.93458 0.000003208 1 -6.24E-05
0.2 5.87989 5.87989 0.000000044 1 -2.75E-06
0.5 6.97904 6.97897 0.000010099 1 -6.03E-05
n=200 c=5
0.05 6.4078 6.4075 0.000041196 1 -8.05E-05
0.1 8.2243 8.2243  0.000000051 1 -3.3E-06
0.2 9.7998 9.7998 0.000001905 1 -2.29E-05
0.5 11.6317 11.6317 0.000000114 1 -6.38E-06
n=200 c=1
0.05 12.8155 12.8155 0.000000011 1 -1.32E-06
0.1 16.4485 16.4485 0.000000574 1 -1.11E-05
0.2 19.5996 19.5994 0.000011608 1 -5.67E-05
0.5 23.2635 23.2635 0.000001234 1 -2.1E-05

* error = |estimate - true x| / true x
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Table3.2 Comparison of Estimates and True x (from Neton's method) for n=400

c estimate true x error F(x) h(x)
n=400 epsilon=0.05
2 3.2897 3.4139 0.036369 0.99968 -1.94E-05
3 4.9346 4.9342 0.000067 1 -7.84E-05
5 8.2243 8.2243 0 1 -4.26E-06
10 16.4485 16.4485  0.000003 1 -1.31E-05
n=400 epsilon=0.1
2 3.9199 3.9329 0.003301484 0.99996 -1.83E-05
3 5.8799 5.8799  0.00000004 1 -2.88E-06
5 9.7998 9.7998 0.000005375 1 -1.93E-05
10 19.5996 19.5991 0.000029104 1 -4.51E-05
n=400 epsilon=0.2
2 4.4828 4.4836 0.000180685 1 -4.29E-05
3 6.7242 6.7242 0.000004184 1 -1.88E-05
5 11.207 11.2059 0.000097229 1 -9.23E-05
10 22.414 22414  0.00000031 1 -5.11E-06
n=400 epsilon=0.5
2 5.1517 5.1517 0.000002964 1 -7.25E-06
3 7.7275 7.7275  0.00000025 1 -5.12E-06
5 12.8791 12.8789 0.000019241 1 -4.54E-05
10 25.7583 25.7583 0.000000034 1 -1.89E-06
epsilon  estimate true x error F(x) h(x)
n=400 c=2
0.05 3.28971 3.41387  0.036369 0.99968 -1.94E-05
0.1 3.91993 3.93291 0.003301 0.99996 -1.83E-05
0.2 4.48281 448362  0.000181 1 -4.29E-05
0.5 5.15166 5.15167  0.000003 1 -7.25E-06
n=400 c=3
0.05 493456  4.93423 0.000067007 1 -7.84E-05
0.1 5.87989 5.87989 0.00000004 1 -2.88E-06
0.2 6.72421 6.72418 0.000004184 1 -1.88E-05
0.5 7.72749 7.72749 0.00000025 1 -5.12E-06
n=400 c=5
0.05 8.2243 8.2243  0.00000034 1 -4.26E-06
0.1 9.7998 9.7998 0.000005375 1 -1.93E-05
0.2 11.207 11.2059 0.000097229 1 -9.23E-05
0.5 12.8791 12.8789 0.000019241 1 -4.54E-05
n=400 c=10
0.05 16.4485 16.4485 0.000003183 1 -1.31E-05
0.1 19.5996 19.5991 0.000029104 1 -4.51E-05
0.2 22.414 22.414  0.00000031 1 -5.11E-06
0.5 25.7583  25.7583 0.000000034 1 -1.89E-06

* error = |estimate - true x| / true x
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Figure 3.3 Largest Characteristic Observation: h(x) vs. x
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CHAPTER 4

NUMERICAL EXAMPLE

4.1 Description of the Data

In this section, we demonstrate the utility of our theory by applying our main the-
orem to a real data set. We need two types of data: a protein profile and a protein
databank. The Ig profile for Immunoglobulin domain (accession number PF00047) con-
sisting 113 sequences was downloaded from pfam website at http://pfam.wustl.edu/cgi-
bin/getdesc?name=ig. Pfam is a database of high-quality, manually checked, well charac-
terized multiple alignments provided by Washington University at St. Louis and the Sanger
Centre in United Kingdom. A consecutive portion of 25 columns from the profile was se-
lected for this example (Figure 4.1). The immunoglobulin domain is found in many diverse
proteins. The primary functions of this domain include protein-protein and protein-ligand
interactions. We computed the column statistics from the profile, that is, the proportion of

each amino acid that appears in each column. This is shown in Figure 4.2.

Next, the UniProt protein database in FASTA format was downloaded from the Euro-

pean Bioinformatics Institute website at http://www.ebi.ac.uk/FTP/. This is a comprehen-



sive database consisting of fully classified, accurately annotated protein sequences provided
freely to the scientific community by the UniProt Consortium which consists the European
Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB), and the Pro-
tein Information Resource (PIR). Of all the protein sequences, 4654 sequences with length
more than 600 amino acids were selected. Figure 4.3 shows some examples of entries used
for computation. The first line contains protein ID, name and descriptions. The next lines

are the actual amino acids composition of the sequences.

4.2 Analysis Strategies

PERL program was used to compute the scores X,j. The Ig protein profile was
moved along each of the N = 4654 sequences, and each comparison yielded a score
Xnj. To standardize X,j, we need to compute X, s? where X, = ——;ili("—", and 52 =
n[1_+(01271E 2 i—1(Xnj — Xp)? so that YV, = -)-(—”%X—i This requires knowing parameters
¢ and ¢. We used the Maximum Likelihood method (ML) introduced by Mott (1992) to
estimate ¢, and €. This approach assesses the significance of each comparison using a
distribution fitted to the set of scores obtained from a data-bank search. As noted by the
author, this procedure is valid since the query will be unrelated to the vast majority of the
data-bank sequences, and consequently nearly all the scores obtained from a search may be
treated as a random sample. Mott (1992) has shown that for pairwise alignment with gaps,
the distribution of Smith-Waterman alignment scores estimated from ML is very similar to

those obtained by simulation. On the other hand, compared to the time-consuming sim-
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ulation of random sequences, the maximum likelihood method can be implemented more

rapidly and requires less computing resource.

We next illustrate the application of ML method to our setup: our main theorem says

under suitable conditions,

ce ne

-1
1—e¢ («/47[ logne)c e_y(cz_l)])

Pr{a,(M, —c,) < y} > exp (—e“y [1 +

X,i—X, = .
_ , . — Anj=4n 2____ 1 ~§mn . 2
where M,, = lrsnja)scn Yoj, Ynj = —" ands; = T =98] ZFI(X,,] X,)*. We write
X, — X,
Yoj = - e
Sn
an - .X_n

n[14+e(c2-1)]

an - Xn
\/Z?:] (an - Xn)z/n
= VIl +e&(? - DU,

= VIl +&(?-1)]

Without knowledge for ¢ and e, the statistics we get initially is U,. So,

Pr{a, (M, — cn) <y}

= Pr {an (\/[1 +8(02 - DU, - Cn) < }’}

= Pr[\/[l +e(c2 - DU, < al-+cn]_

n

y Cn
r[ a1+ e(2 = 1] VI +e(c? - 1)]]
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Letz = then y = g(z) = zan/[1 + e(c? — 1)] — ancy,s0

Y + n
ana/T1+e(c2=1)]  /T1+e(2-1)1

PI'{U,, < Z}
2-1
- expl—e2@!1+ JArn logne l—¢
nees(@ ce

ne ce

2_1
= e [_e—gm - s (L)L }

= F(z,n,c,¢)

Taking derivative with respect to z, we get

0F(z,n,c,e) 0F(z,n,c,e)0g(2)

Z,n,c, ¢ =
f ) 0z ogz) oz
21
= exp [—e‘g(z) — 8@ (_@)c l1—¢ ]
ne ce

2-1
e T

ne ce

] x apv/[1 + e(c2 = 1)]

Now taking log, we get

c2-1
log f(z,n;c,6) = [_e—g(z) — 8@ (@) 1— e]

ne ce
21
+log{e 8@ | 142 VArTogne\ " 1—¢
nee&@ ce

+log (an\/[l + e(c? — 1)])
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ne ce

-1
_ Lﬁﬂ@_eﬂ@a(zﬁEEE) L:z}_ﬂ@

nees@ ce

2_
H%P+&(ﬂm@ﬁy H—j

+log (a,,\/[l +e(c? — 1)])
_ {—e"g(z) I:l + («/47[ logng)c -1 1—8}] 20

nees?

+log{1 42 («/47r logne)"z"l 1- 8]

neeg®@ ce

+log (an\/[l + &(c? - 1)])

Maximizing L(c, ¢) = Z,N=1 log f(z, n; c, €) with respect to ¢ and ¢ then gives the maxi-

mum likelihood estimates ¢ and z.

We implemented the maximization step via Newton-Raphson Ridge Optimization in
PROC NLP (Nonlinear Programming Procedure) by SAS. This procedure computes ana-
lytic formula for gradient functions automatically and requires only the objective function
and the constraint for the parameters to be specified. Therefore, the results are more accu-
rate in that errors in typing and derivatives calculations are eliminated. For our problem, the
parameter constraints are: ¢ > 1, and 0 < ¢ < 1. We provided the initial estimate ¢y = 1.5,
g0 = 0.05, the program returned the final estimates ¢ = 2.233004 and € = 0.248135 with
gradient 0.001159 and -0.001621 respectively. We then normalized the scores X, by com-
puting ¥,; = ﬁg_x'_,, using these estimates. Finally, the significance of each score is tested
by computing its predicted p-value 1 — F(Y,j, n, ¢, ¢). Therefore, with this method, al-
though the parameters and distribution of the score Y,,; is estimated using information from
all the data, the significance of each comparison is tested against a different null hypothesis
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that allows for difference in length.
4.3 Results

We next assessed the goodness of fit for the approximation using Quantile-Quantile plot
(Figure 4.4). According to the theorem, the jth largest normalized maximum score should

be approximately equal to the j/(N + 1)th quantile from the extreme value distribution

G(y) = exp (—e‘y Il + (%)CL] 1—6_6—6]) Since the sequence in the database
have different length n, we compared to the quantiles from e ~ instead. The normalized
maximum scores were ordered and plotted against the quantiles from the extreme value
distribution. In Figure 4.4, the solid line at 45° represents perfect fit, although there is
some departure at the tail, our results show very good fit for scores less than 6. Examining
P values for the scores show the cut off point for & = 0.01 occurs at 4.58206, and the
cut off point for & = 0.05 occurs at 2.96917. Therefore, the theorem provides accurate
approximation in regions where estimates of critical values at 1% and 5% are identified.
Moreover, comparing our graph with that was shown in Goldstein and Waterman (1994),

where the scores were treated as fixed and modeled with normal distributions, our results

show much better approximation.

Table 4.1 shows detailed information for the top 20 sequences with smallest P values
that were found to be significantly associated with the Ig domain. Comparison of the 12th
sequence with the 15tk sequence shows that although AKH_BUCBP with 816 residues
has smaller raw score 4.064 compared to the raw score of 4.516 from CAML_FUGRU
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with 1277 residues, AKH_BUCBP was found to be more significantly related to Ig domain
with smaller P value. Therefore, our approximation provides a way to adjust for the fact
that a shorter sequence is less likely to match the profile well than a longer one by chance

alone.
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Figure 4.1 The Immunoglobin Profile
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Table 4.1 Profile Statistics for Ig Profile
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Figure 4.2 Protein Sequences in FASTA format

>104K_THEPA (P15711) 104 kDa microneme-rhoptry antigen
MKFLILLFNILCLFPVLAADNHGVGPQGASGVDPITFDINSNQTGPAFLTAVEMAGVKYL
QVQHGSNVNIHRLVEGNVVIWENASTPLYTGAIVTNNDGPYMAYVEVLGDPNLQFFIKSG
DAWVTLSEHEYLAKLQEIRQAVHIESVFSLNMAFQLENNKYEVETHAKNGANMVTFIPRN
GHICKMVYHKNVRIYKATGNDTVTSVVGFFRGLRLLLINVFSIDDNGMMSNRYFQHVDDK
YVPISQKNYETGIVKLKDYKHAYHPVDLDIKDIDYTMFHLADATYHEPCFKIIPNTGFCI
TKLFDGDQVLYESFNPLTIHCINEVHIYDRNNGSIICLHLNYSPPSYKAYLVLKDTGWEAT
THPLLEEKIEELQDQRACELDVNFISDKDLYVAALTNADLNYTMVTPRPHRDVIRVSDGS
EVLWYYEGLDNFLVCAWIYVSDGVASLVHLRIKDRIPANNDIYVLKGDLYWTRITKIQFT
QEIKRLVKKSKKKLAPITEEDSDKHDEPPEGPGASGLPPKAPGDKEGSEGHKGPSKGSDS
SKEGKKPGSGKKPGPAREHKPSKIPTLSKKPSGPKDPKHPRDPKEPRKSKSPRTASPTRR
PSPKLPQLSKLPKSTSPRSPPPPTRPSSPERPEGTKIIKTSKPPSPKPPFDPSFKEKFYD
DYSKAASRSKETKTTVVLDESFESILKETLPETPGTPFTTPRPVPPKRPRTPESPFEPPK
DPDSPSTSPSEFFTPPESKRTRFHETPADTPLPDVTAELFKEPDVTAETKSPDEAMKRPR
SPSEYEDTSPGDYPSLPMKRHRLERLRLTTTEMETDPGRMAKDASGKPVKLKRSKSFDDL
TTVELAPEPKASRIVVDDEGTEADDEETHPPEERQKTEVRRRRPPKKPSKSPRPSKPKKP
KKPDSAYIPSILAILVVSLIVGIL

>11S3_HELAN (P19084) 11S globulin seed storage protein G3
precursor (Helianthinin G3)
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEALEPIEVIQAEAGVTEIWDAYD
QQFQCAWSILFDTGFNLVAFSCLPTSTPLFWPSSREGVILPGCRRTYEYSQEQQFSGEGG
RRGGGEGTFRTVIRKLENLKEGDVVAIPTGTAHWLHNDGNTELVVVFLDTQNHENQLDEN
QRRFFLAGNPQAQAQSQQQQQRQPRQQSPQRQRQRQRQGQGQNAGNIFNGFTPELIAQSF
NVDQETAQKLQGQNDQRGHIVNVGQDLQIVRPPQDRRSPRQQQEQATSPRQQQEQQQGRR
GGWSNGVEETICSMKFKVNIDNPSQADFVNPQAGSIANLNSFKFPILEHLRLSVERGELR
PNAIQSPHWTINAHNLLYVTEGALRVQIVDNQGNSVFDNELREGQVVVIPQNFAVIKRAN
EQGSRWVSFKTNDNAMIANLAGRVSASAASPLTLWANRYQLSREEAQQLKFSQRETVLFA
PSFSRGQGIRASR

>120K_RICRI (P14914) 120 kDa surface-exposed protein

MVIQSANATGQVNFRHIVDVGADGTTAFKTAASKVTITQDSNFGNTDFGNLAAQIKVPNA
ITLTGNFTGDASNPGNTAGVITFDANGTLESASADANVAVTNNITAIEASGAGVVQLSGT
HAAELRLGNAGSIFKLADGTVINGKVNQTALVGGALAAGTITLDGSATITGDIGNAGGAA
ALQRITLANDAKKTLTLGGANIIGAGGGTIDLQANGGTIKLTSTQNNIVVDFDLAIATDQ
TGVVDASSLTNAQTLTINGKIGTIGANNKTLGQFNIGSSKTVLSNGNVAINELVIGNDGA
VQFAHDTYLITRTTNAAGQGKIIFNPVVNNGTTLAAGTNLGSATNPLAEINFGSKGVNVD
TVLNVGEGVNLYATNITTTDANVGSFVFNAGGTNIVSGTVGGQQGNKFNTVALENGTTVK
FLGNATFNGNTTIAANSTLQIGGNYTADCVASADGTGIVEFVNTGPITVTLNKQAAPVNA
LKQITVSGPGNVVINEIGNAGNHHGAVTDTIAFENSSLGAVVFLPRGIPFNDAGNTMPLT
IKSTVGNKTAKGFDVPSVVVLGVDSVIADGQVIGDQNNIVGLGLGSDNGIIVNATTLYAG
ISTLNNNQGTVTLSGGVPNTPGTVYGLGTGIGASKFKQVTFTTDYNNLGNIIATNATIND
GVTVTTGGIAGIGFDGKITLGSVNGNGNVRFADGILSNSTSMIGTTKANNGTVTYLGNAF
VGNIGDSDTPVASVRFTGSDSGAGLQGNIYSQVIDFGTYNLGIVNSNIILGGGTTAINGK
IDLVTNTLTFASGTSTWGNNTSIETTLTLANGNIGHIVILEGAQVNTTTTGTTTIKVQDN
ANANFSGTQTYTLIQGGARFNGTLGSPNFAVTGSNRFVNYSLIRAANQDYVITRTNNAEN
VVTNDIANSPFGGAPGVDQNVTTFVNATNTAAYNNLLLAKNSANSANFVGAIVTDTSAAI
TNVQLDLAKDIQAQLGNRLGALRYLGTPETAEMAGPEAGAISAAVAAGDEAIDNVAYGIW
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Table 4.2 Sequences found statistically most similar to Ig (Immunoglobin ) domain

name length raw_max mean var__std_max* an cn norm_max* pvalue
1 BIP2_MAIZE 663 4501 1.379 0.156 11.148 1.425 5.651 7.836 0.00040
2 BIP3_MAIZE 663 4501 1379 0.157 11.113 1.425 5.651 7.785 0.00042
3 BIP1_ARATH 669 4459 1380 0.155 11.030 1.427 5.658 7.664 0.00047
4 CADJ_HUMAN 772 4802 1427 0.191 10.892 1.447 5.772 7.410 0.00060
5 BIP2_ARATH 668 4413 1.384 0.155 10.851 1.427 5.657 7.409 0.00061
6 BIP_SPIOL 668 4406 1.388 0.156 10.777 1427 5.657 7.304 0.00067
7 BIP4_TOBAC 667 4377 1386 0.156 10.680 1.426 5.656 7.167 0.00077
8 BIP5_TOBAC 668 4288 1.384 0.153 10.471 1.427 5.657 6.867 0.00104
9 CAO2_CANTR 708 4358 1403 0.165 10.260 1.435 5.704 6.539 0.00145
10 BIP_LYCES 666 4307 1.386 0.163 10.204 1.426 5.655 6.488 0.00152
11 4CL_VANPL 553 4122 1383 0.159 9.688 1.399 5.503 5.853 0.00287
12 AKH_BUCBP 816 4064 1369 0.151 9781 1455 5816 5.772 0.00311
13 BTB9_MOUSE 612 4311 1391 0.184 9.601 1.414 5.586 5.676 0.00342
14 ALAB_ARATH 1203 4224 1384 0.165 9.861 1.509 6.111 5.658 0.00348
15 CAML_FUGRL 1277 4516 1429 0.194 9885 1517 6.156 5.658 0.00348
16 ACE1_TRIRE 733 4231 1387 0.173 9.644 1440 5.731 5.634 0.00357
17 A2M2_MOUSE 1451 4238 1413 0.162 9.899 1534 6.249 5.600 0.00369
18 ALA4_ARATH 1216 4189 1389 0.162 9.812 1511 6.119 5.577 0.00378
19 CHS5_SCHPO 620 3.890 1430 0.133 9514 1416 5.597 5.545 0.00390
20 ALAA_ARATH 1202 4224 1386 0169 9.737 1509 6.111 5.471 0.00420

*std_max = (raw_max - mean)/sqrt(var/(1+eps*(c*c-1)))
* norm_max = an*(std_max-bn)
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Figure 4.3 Quantile-Quantile Plot of Empirical Scores
vs. Theoretical Quantiles from Extreme Value Distribution
(from searching UniProt Database with Ig Profile)

nax

thearetical ouantiles
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CHAPTER 5

SUMMARY AND FUTURE WORK

Although almost all of current theories on similarity scores have focused on studying sta-
tistical distributions of i.i.d. sequences, biological sequences often exhibit heterogeneities
and dependencies. In Chapter two, we have studied the approximation of the statistical dis-
tribution for the fixed exact local alignment score R, in the Headruns problem. Our study
represents an important starting point for modeling the variations and dependencies inher-
ent in biological sequences. In the first scenario, we studied independent sequences and
modeled variations of the matching probabilities p = (py, ..., p,) by random variables with
a common expectation. In the second scenario, we studied Markov dependent sequences,
and in addition modeled the transition probabilities @ = (aj, .., &) by random variables
with the same expectation. To further relax the "identical” part of the assumption, this
problem can be further explored by modeling the different properties at separate regions
along the sequences with random variables of different expectations and possibly with dif-
ferent forms. One can also relax the "dependency" part of the assumption by modeling
the dependencies with higher orders of Markovian structure and evaluate numerically the

improvement on the approximation. We have imposed an independence condition for the



relation between the matching probabilities and the transition probabilities, an extension
would be to study the situation when the matching probabilities and transition probabilities
are more dependent.

Another important property of biological sequences is that during the course of evo-
lution, sequences often undergo changes through mutations such as substitutions, inser-
tions and deletions. This means that two related sequences may exhibit approximate rather
than exact matching patterns. For i.i.d. sequences, local alignment scores for approximate
matching, matching with gaps allowed, matching with shifts have been studied. See Arratia
et al. (1990), Dembo et al. (1994) and Siegmund et al. (2000). While allowing for hetero-
geneities and dependencies, further studies are need to study the corresponding properties

of local approximate alignment scores under these more general schemes.

In each of these setups, we conjecture the Chen-Stein method of Poisson approximation
will be a useful tool. For the i.i.d. case, as pointed out by Arratia et al. (1990), there are two
distinct issues: the expected number of events A must be approximated and the dependence
among the events being counted must be controlled via b; and b,. The second issue is
simple for fixed local alignment scores, but is very complicated for scores from alignments

with shifts. We anticipate a similar picture under the more general setups.

Accompanying the approximation theory is the question of how to estimate the para-
meters p and a. Because direct estimation via computing the empirical distribution func-
tion of alignment scores is time consuming and demands large computing resources, the
declumping method introduced by Waterman et al. (1994) and the Maximum Likelihood
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method pioneered by Mott (1992) have been the popular approaches. These methods are
general and can be easily adapted to estimate parameters under more general setups. Their

performance in these situations can then be evaluated numerically.

In Chapter three, we derived statistical distributions for the maximum of profile scores
obtained by comparing multiple alignment profiles with sequences in databanks. We have
assumed the profile is random with independent sequences and accommodated the possi-
bilities for gaps in the profile. The simple sequence was assumed to be an i.i.d. sequence
with the residues following i.i.d. distributions. As in the pairwise alignment problem noted
above, further studies in more general settings that allow for heterogeneity, dependency,
and gapping in the simple sequence and dependency among sequences in the profile are
needed to model the properties of biological sequences more precisely. Moreover, as we
have used simple indicator functions to construct matching scores, one limitation is the in-
ability to allow for mismatches that vary in degree. A natural extension in this area would
be to study profile scores with popular substitution matrices such as PAM or BLOSUM
matrices. In each of these setups, the tail behaviors of Y,;s needs to be approximated and

the distribution for their maximum needs to be derived.

Again, as in the pairwise alignment problem, we are also faced with estimation of para-
meters for profile score distributions. In Chapter 4, we have used the Maximum Likelihood
(ML) method (Mott, 1992) to obtain estimates for ¢ and €. We then compared scores M, =
 max Y,j where Y,; = &'S'ILX_" and s? = m 21 (Xnj — X»)* to quantiles from

the extreme value distribution e~¢. The performance of our approximation in the main
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theorem, Pr{a,(M, — c,) < y} — exp (—e"y [1 + % (@)62_1 e‘Y(Cz_l)}) ,
however, can only be evaluated using simulated sequences with equal lengths. This is
because real sequences with different lengths will converge to different distributions on
the right side of the equation. This can be implemented by simulating a set of random
sequences, say 10,000, with uniform compositions, and compare each sequence to a given
profile. Then, estimate ¢ and ¢ from the scores obtained. For given ¢, €, and n, quantiles
from distribution on the right hand side can then be computed via numerical methods and

compared to empirical scores normalized using ¢ and €.

The next question that arises is that: will the distribution for a particular comparison
with parameters (c, €) estimated by simulation, be close to the results of a databank search
and substituting in the values of ¢ and ¢ ? This can be evaluated by comparing critical val-
ues derived from comparing a set of profiles, say 20, to a set of simulated random sequences
with critical values identified by comparing the same set of profiles with a databank.

Finally, further numerical study can also be carried out to study the performance of the
approximations with finite sequence length n. This will be important for the evaluation of
asymptotic approximations to real biological sequences. On the other hand, extensions of
the theories in the direction of sub-asymptotic behaviors of alignment scores will also be

of interest.
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