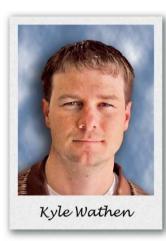

Bayesian Clinical Trial Software Overview

John D. Cook M. D. Anderson Cancer Center

Software outline

Basic utilities

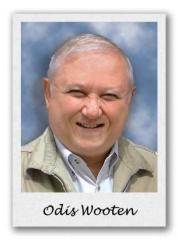
Safety monitoring

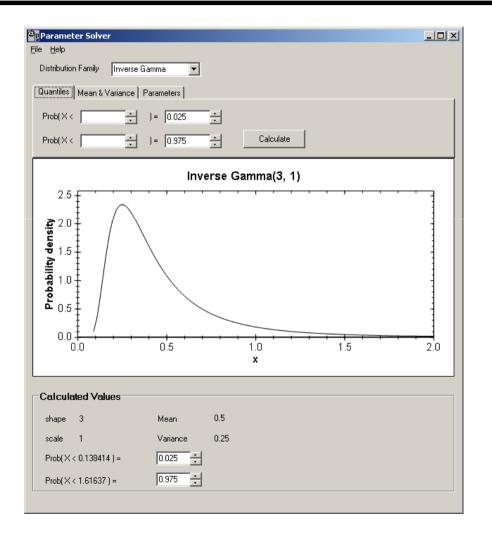


Randomized trials

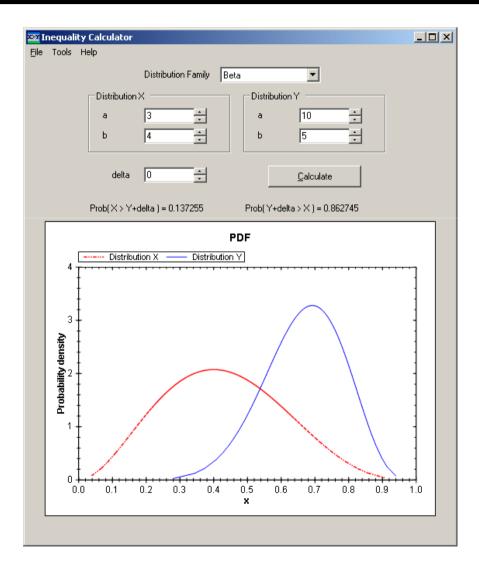

Dose finding

Software developers



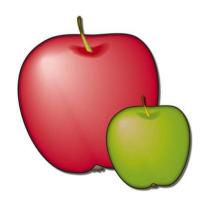

Simplest distributions

- Discrete distribution: binary
- Conjugate prior: beta
- Time distribution: exponential
- Conjugate prior: inverse gamma


Random inequalities

- P(X > Y)
- $P(X > Y + \delta)$
- Proportion: binomial / beta
- Mean time: exponential / inverse gamma
- Randomization probability
- Stopping rule

Parameter solver



Inequality calculator

Multc Lean software

- Original software Multc99, developed by Hsi-Guang Sun
- Greatly simplified, added Windows UI
- Added trial duration simulation

TTEConduct software

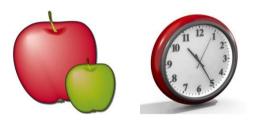
- Table allows look-ahead: Not just "Should I stop?" but "What would cause the trial to stop?"
- NB: design in months, conduct in days
- Simulation software in development

Criticism of exp / IG model

- Exponential survival time model is usually a poor fit to reality. Hazard not constant.
- Exp / IG model chosen for convenience (conjugate, trivial posterior calculation)
- Nevertheless, model robust in practice (Thall and Wooten)

What's going on?

- We're not modeling survival per se, we're making a stop/go decision.
- Survival isn't exponential but a continuous mixture of exponentials.


Monitoring with Bayes factors

- Not based on random inequalities
- Alternative must really be alternative
- Better operating characteristics
- Command line software

Software outline

Basic utilities

Safety monitoring

Randomized trials

Dose finding

Stop for futility: Predictive Probability

- Binary and time-to-event outcomes
- Three decisions: A, B, neither
- If P(neither) is large, stop for futility

Adaptive Randomization

- Randomize, but not equally
- Increase the probability of assigning what appears to be the best treatment
- Compromise between equal randomization
 and myopic optimization

Tuning parameter c

Let
$$p_A = P(\pi_A > \pi_B)$$
 and $p_B = P(\pi_B > \pi_A)$.

Assign treatment A with probability

$$\rho = \frac{\mathfrak{p}_A^c}{\mathfrak{p}_A^c + \mathfrak{p}_B^c}$$

Special values of c

- If c = 0, $\rho = 0.5$. Equal randomization
- If c = 1, $\rho = p_A$. Common choice (proposed in 1933!)
- As $c \to \infty$, $\rho \to [p_A > p_B]$ Myopic optimization

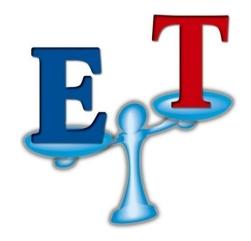
• See tech report for all values of c

Adaptive Randomization software

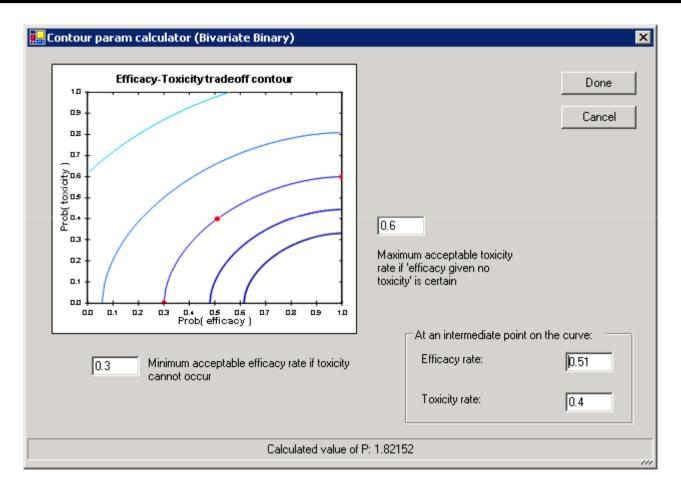
- Supports binary and TTE outcomes
- Up to 10 arms
- Equal randomization special case

CRMSimulator software

- Emphasis on ease-of-use, not generality
- Contains features commonly used at MDACC, and no more



CRM misunderstandings


- Not "dose escalation"
- Law of small numbers
- Doesn't fit 3+3 expectations

EffTox dose-finding

- Minimize toxicity, maximize efficacy
- Investigator specifies trade-off
- Uses twice as much data per patient
- Uses dose values, not just dose order

Heart of the method

Software summary

Basic utilities

Safety monitoring

Randomized trials

Dose finding

Links

- https://biostatistics.mdanderson.org/ SoftwareDownload/
- http://www.JohnDCook.com