Introduction to Adaptive Experimental Design

JoAnn Alvarez, MS joann.alvarez@Vanderbilt.Edu

Center for Quantitative Sciences Department of Biostatistics Vanderbilt University School of Medicine

October 12, 2012

Outline

Overview of adaptive designs

3 Examples of adaptive designs

- Blinded sample size re-estimation
- Simon's two-stage design
- Bayesian phase 2 trial with stopping for efficacy and futility

VANDERBILT UNIVERSITY

- Suppose you want to test the effect of a new treatment on a yes/no patient response
- success rate of current treatment is 20%
- minimum clinically important increase is 20%, for a response rate is 40%
- Based on 90% power, you design a study with 47 patients.

- during the study, you get nervous.
- after 25 patients collected, you look at the data
- 9 patients had response. $\frac{9}{25} = 36\%$
- *p*-value based on current data is 0.08.

- you decide to continue the trial and see what happens
- by the end of the trial, 16 out of 47 had responses
- the *p*-value based on $\frac{16}{47}$ responses is 0.026
- you publish your results

• What's the problem?

- What's the problem?
- the p-value of 0.026 is not correct

p-values and adaptive design

- *p*-values are calculated based on the specific design
- $\bullet\,$ If the design changes, the $p\mbox{-value}$ calculation changes
- *p*-value calculation is impossible if the changes were not prespecified

p-values and adaptive design

- almost always must pre-define interim analyses and decision rules at design stage
- helpful to involve statistician in design

Adaptive designs

What are they?

adaptive some aspect of the study design may change during the study depending on observed values after trial has begun

> changes can be based on patient clinical characteristics or patient responses

Types of adaptive features

sample size

- based on accruing outomes
- early stopping
- interim sample size re-estimation
- treatment group randomization weights (adaptive randomization)
 - pick the winner
 - arm dropping
 - increases the chance that each patient gets the most effective treatment
- dose (in phase one dose escalation)

Example of an adaptive design with early stopping and outcome-adaptive group allocation

Image from Jason Connor

Purpose of adaptive designs

- more efficient designs
 - decrease number of patients
 - decrease patient exposure time
 - faster
 - cheaper
 - better use of resources

When to use adaptive designs

- patient response is observed fast relative to patient accrual rate
- large cost associated with each patient or with duration of study
- uncertainty in computing power

Challenges of adaptive designs

- require specialized statistical expertise and large time investment
- need more time in planning and development phase
- can require very prompt or real time data entry
- can require very good coordination between study sites
- regulatory approval
- can yield biased estimates

VANDERBILT UNIVERSITY

How to compare different designs

- o power
- probability of type one error
- expected sample size (E(N)), maximum sample size
- probability of early termination (PET) for futility
- practicality (including number of looks)

Study design parameters

Statisticians can help identify the effects of different:

- timing of interim analyses
- accrual rates
- decision rules/ cut offs
- effect sizes
- maximum sample sizes

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Sample size reestimation [Gould, 1995]

 Allows for blinded sample size re-estimation mid-study in a two-arm experiment

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Allows for **blinded** sample size re-estimation mid-study in a two-arm experiment
- Sample size is re-estimated with an updated estimate of the **variance** based on the data collected so far.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Allows for **blinded** sample size re-estimation mid-study in a two-arm experiment
- Sample size is re-estimated with an updated estimate of the **variance** based on the data collected so far.
- This can be done without unblinding the treatment groups

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Allows for **blinded** sample size re-estimation mid-study in a two-arm experiment
- Sample size is re-estimated with an updated estimate of the **variance** based on the data collected so far.
- This can be done without unblinding the treatment groups
- No *p*-values are calculated in the interim analysis

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Sample size reestimation [Gould, 1995]

 Suppose you want to compare a treatment's effect to placebo on a binary patient response

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you want to compare a treatment's effect to placebo on a binary patient response
- To calculate the appropriate sample size, you need to know the overall event rate

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you want to compare a treatment's effect to placebo on a binary patient response
- To calculate the appropriate sample size, you need to know the overall event rate
- The event rate for the placebo is usually estimated from prior studies.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you want to compare a treatment's effect to placebo on a binary patient response
- To calculate the appropriate sample size, you need to know the overall event rate
- The event rate for the placebo is usually estimated from prior studies.
- It would be useful to re-calculate the sample size midway through the study based on an updated estimate

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Sample size reestimation

- allows for computing the sample size needed at an interim point
 - with a new variance estimate based on the data

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Sample size reestimation

- allows for computing the sample size needed at an interim point
 - with a new variance estimate based on the data
 - interim analysis is blinded

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Sample size reestimation

- allows for computing the sample size needed at an interim point
 - with a new variance estimate based on the data
 - interim analysis is blinded
 - then have option of increasing the sample size

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of sample size reestimation

• Suppose you want have a new treatment that is hoped to reduce progression of diabetic retinopathy

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you want have a new treatment that is hoped to reduce progression of diabetic retinopathy
- You want to test the treatment in a controlled trial

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you want have a new treatment that is hoped to reduce progression of diabetic retinopathy
- You want to test the treatment in a controlled trial
- How many patients do you need?

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of sample size reestimation

• How many patients do you need?

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- How many patients do you need?
- $\bullet\,$ Untreated, $\approx 22\%$ of diabetics have progression within 2 years

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- How many patients do you need?
- $\bullet\,$ Untreated, $\approx 22\%$ of diabetics have progression within 2 years
- This figure is estimated from a very small study

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- How many patients do you need?
- $\bullet\,$ Untreated, $\approx 22\%$ of diabetics have progression within 2 years
- This figure is estimated from a very small study
- A 50% reduction is considered the minimum clinically relevant effect

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- How many patients do you need?
- $\bullet\,$ Untreated, $\approx 22\%$ of diabetics have progression within 2 years
- This figure is estimated from a very small study
- A 50% reduction is considered the minimum clinically relevant effect
- The estimated overall event rate is $\frac{22\%+11\%}{2}=16.5\%$

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- How many patients do you need?
- $\bullet\,$ Untreated, $\approx 22\%$ of diabetics have progression within 2 years
- This figure is estimated from a very small study
- A 50% reduction is considered the minimum clinically relevant effect
- The estimated overall event rate is $\frac{22\%+11\%}{2}=16.5\%$
- Sample size calculation says for 90% in a two-sided test, you need 240 patients in each group.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of sample size reestimation

• You decide to re-estimate the sample size after you collect half the data.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- You decide to re-estimate the sample size after you collect half the data.
- You collect blinded data on 120 patients in each group.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- You decide to re-estimate the sample size after you collect half the data.
- You collect blinded data on 120 patients in each group.
- The study statistician finds that the overall event rate on the current data is 20%, not 16.5%

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- You decide to re-estimate the sample size after you collect half the data.
- You collect blinded data on 120 patients in each group.
- The study statistician finds that the overall event rate on the current data is 20%, not 16.5%
- Based on this updated number, you only really needed **190** patients in each group, not 240.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- You decide to re-estimate the sample size after you collect half the data.
- You collect blinded data on 120 patients in each group.
- The study statistician finds that the overall event rate on the current data is 20%, not 16.5%
- Based on this updated number, you only really needed **190** patients in each group, not 240.
- Since you already collected 120 per group, you decide to only collect the needed 70 remaining patients in each group.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- You decide to re-estimate the sample size after you collect half the data.
- You collect blinded data on 120 patients in each group.
- The study statistician finds that the overall event rate on the current data is 20%, not 16.5%
- Based on this updated number, you only really needed **190** patients in each group, not 240.
- Since you already collected 120 per group, you decide to only collect the needed 70 remaining patients in each group.
- You saved 50 patients per group, 100 total!!

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Simon's Optimal two-stage designs [Simon, 1989]
 - two planned stages
 - after the first stage, have option to stop for futility based on the data

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Simon's two-stage design

• Simon's Optimal two-stage designs [Simon, 1989]

• designed for phase II clinical trials

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Simon's two-stage design

• Simon's Optimal two-stage designs [Simon, 1989]

- designed for phase II clinical trials
- for a binary response

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Simon's Optimal two-stage designs [Simon, 1989]
 - designed for phase II clinical trials
 - for a binary response
 - interested in comparing proportion of treatment response to a null value

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Simon's Optimal two-stage designs [Simon, 1989]
 - designed for phase II clinical trials
 - for a binary response
 - interested in comparing proportion of treatment response to a null value
 - for a one-arm (uncontrolled) study testing $H_0: p \leq p_0$

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Simon's Optimal two-stage designs [Simon, 1989]
 - designed for phase II clinical trials
 - for a binary response
 - interested in comparing proportion of treatment response to a null value
 - for a one-arm (uncontrolled) study testing $H_0: p \leq p_0$
 - at the end of stage one, have option to end for futility

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Simon's Optimal two-stage designs [Simon, 1989]
 - designed for phase II clinical trials
 - for a binary response
 - interested in comparing proportion of treatment response to a null value
 - for a one-arm (uncontrolled) study testing $H_0: p \leq p_0$
 - at the end of stage one, have option to end for futility
 - ${\, \bullet \,}$ minimizes expected sample size in the case of H_0

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Simon's Optimal two-stage designs [Simon, 1989]
 - designed for phase II clinical trials
 - for a binary response
 - interested in comparing proportion of treatment response to a null value
 - for a one-arm (uncontrolled) study testing $H_0: p \leq p_0$
 - at the end of stage one, have option to end for futility
 - minimizes expected sample size in the case of H₀
 - They have published cut-offs in their article, and also a software program. Available in sample size software PASS

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Simon's design

 Suppose you have a drug and want to assess its antitumor activity to see if worth further development

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you have a drug and want to assess its antitumor activity to see if worth further development
- primary endpoint: proportion of patients whose tumors shrink at least 50%

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you have a drug and want to assess its antitumor activity to see if worth further development
- primary endpoint: proportion of patients whose tumors shrink at least 50%
- plan to test it in an uncontrolled trial

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you have a drug and want to assess its antitumor activity to see if worth further development
- primary endpoint: proportion of patients whose tumors shrink at least 50%
- plan to test it in an uncontrolled trial
- test $H_0: p \leq 20\%$, existing drug has 20% response rate

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Suppose you have a drug and want to assess its antitumor activity to see if worth further development
- primary endpoint: proportion of patients whose tumors shrink at least 50%
- plan to test it in an uncontrolled trial
- test $H_0: p \leq 20\%$, existing drug has 20% response rate
- clinicians agree that minimum clinically significant effect would be an increase of 20%.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Simon's design

• For 90% power, need 47 patients for a traditional, one-stage design

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- For 90% power, need 47 patients for a traditional, one-stage design
- You are hesitant to devote 47 patients to a drug that may not work

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- For 90% power, need 47 patients for a traditional, one-stage design
- You are hesitant to devote 47 patients to a drug that may not work
- Decide to consider Simon's optimal two-stage design

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Simon's design

• Input parameters: $\alpha = 0.05$, power= 90%, $p_0 = 0.20$, $p_1 = 0.40$

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Input parameters: $\alpha = 0.05$, power= 90%, $p_0 = 0.20$, $p_1 = 0.40$
- Output:

stage 1 n_1	19
total n	54
end trial after stage 1 and reject drug if	$\leq rac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under H_0	0.67

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

VANDERBILT

Example of Simon's design

- Input parameters: $\alpha = 0.05$, power= 90%, $p_0 = 0.20$, $p_1 = 0.40$
- Output:

stage 1 n ₁	19
total n	54
end trial after stage 1 and reject drug if	$\leq \frac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under H_0	0.67

• decide to use Simon's optimal two-stage design

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Simon's design

stage 1 n_1	19
total n	54
end trial after stage 1 and reject drug if	$\leq \frac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under $H_{ m 0}$	0.67

• observe first 19 patients

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Simon's design

stage 1 n_1	19
total n	54
end trial after stage 1 and reject drug if	$\leq \frac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under H_0	0.67

- observe first 19 patients
- 7 patients had greater than 50% reduction in tumor sizes

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Simon's design

stage 1 n_1	19
total n	54
end trial after stage 1 and reject drug if	$\leq \frac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under H_0	0.67

- observe first 19 patients
- 7 patients had greater than 50% reduction in tumor sizes
- Continue to stage 2

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

stage 1 n_1	19
total n	54
end trial after stage 1 and reject drug if	$\leq \frac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under H_0	0.67

- observe first 19 patients
- 7 patients had greater than 50% reduction in tumor sizes
- Continue to stage 2
- observe 35 more patients and 11 more patient responses

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Simon's design

stage 1 n_1	19
total n	54
end trial after stage 1 and reject drug if	$\leq \frac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under H_0	0.67

- observe first 19 patients
- 7 patients had greater than 50% reduction in tumor sizes
- Continue to stage 2

• total of $\frac{18}{54}$ responses

observe 35 more patients and 11 more patient responses

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

VANDERBILT

stage 1 n_1	19
total n	54
end trial after stage 1 and reject drug if	$\leq \frac{4}{19}$ responses
reject drug after stage 2 if	$\leq \frac{15}{54}$ responses
expected sample size under H_0	30.4
probability of stopping early under H_0	0.67

- observe first 19 patients
- 7 patients had greater than 50% reduction in tumor sizes
- Continue to stage 2
- observe 35 more patients and 11 more patient responses
- total of $\frac{18}{54}$ responses
- reject H_0 and decide to pursue the drug in further study!

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Simon's design

- Advantages
 - very simple
 - allow you to hedge against an ineffective treatment
- Disadvantages
 - only provides for futility stopping (not stopping for efficacy)

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Bayesian adaptive studies

Bayesian adaptive design early stopping can be based on predictive probability of trial success

predicted probability of success $P(\text{success at final analysis}|\underline{X})$

- flexible
- customizable
- can stop early for efficacy, futility

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Scenario

Suppose . . .

• We have a treatment and want to evaluate its effect on a binary outcome.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Scenario

Suppose . . .

- We have a treatment and want to evaluate its effect on a binary outcome.
- On the current standard therapy, 15% of patients have the response.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Scenario

Suppose . . .

- We have a treatment and want to evaluate its effect on a binary outcome.
- On the current standard therapy, 15% of patients have the response.
- We hope that with the new treatment, the response rate will be higher, like 35% or 45%.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Scenario

Suppose . . .

- We have a treatment and want to evaluate its effect on a binary outcome.
- On the current standard therapy, 15% of patients have the response.
- We hope that with the new treatment, the response rate will be higher, like 35% or 45%.
- We want to test this drug in one-arm experiment to see if it warrants further study.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Decide on a Bayesian adaptive design with a maximum sample size of 19.
- Opportunity to stop the trial early for futility or efficacy at fixed interim point(s): after observing 10, 13, and 16 outcomes.
- Time of looks and criteria for stopping need to be specified in advance

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Final analysis based on Bayesian posterior probability: P(p > 15% | data).
- If P(p > 15% | data) > 0.97 (success), investigate the treatment further with randomized study comparing with standard treatment.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Bayesian adaptive design: efficacy stopping rule

- Criteria for stopping early for **efficacy** based on **probability of superiority**.
- Will stop and declare success if

P(p > 15% | current data) > 0.97

at any interim look.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Bayesian adaptive design: futility stopping rule

- Criteria for stopping early for **futility** based on **predicted probability of success**, based on the number of successes observed so far.
- Will stop and draw no conclusion if

 $P({\rm success} \mbox{ at final analysis} | \textit{current data}) < 0.05$

at any interim look.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

How the actual trial would work

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

How the design performs

efficacy cut-off = 0.97, futility bound = 0.05

p_{true}	Pr(win)	E(N)	PET Futility	PET Efficacy
0.15	0.054	12.2	0.92	0.04
0.35	0.678	13.5	0.31	0.57
0.45	0.904	12.3	0.09	0.83

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Bayesian adaptive design

- Will do futility and efficacy analysis after observing 10, 13, and 16 outcomes. Maximum is 19.
- Will stop and declare success if

P(p > 15% | current data) > 0.97

at any interim look.

• Will stop and draw no conclusion if

P(success at final analysis| current data) < 0.05

at any interim look.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Bayesian adaptive design

• Begin trial!

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.
- P(p > 15%|current data) = 0.594

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.
- P(p > 15%|current data) = 0.594
- P(success at final analysis| current data) = 0.059

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.
- P(p > 15%|current data) = 0.594
- P(success at final analysis| current data) = 0.059
- Continue to 13 patients.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Example of Bayesian adaptive design

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.
- P(p > 15%|current data) = 0.594
- P(success at final analysis| current data) = 0.059
- Continue to 13 patients.
- There were no more responses!

VANDERBILT UNIVERSITY

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.
- P(p > 15%|current data) = 0.594
- P(success at final analysis| current data) = 0.059
- Continue to 13 patients.
- There were no more responses!
- P(p > 15%|current data) = 0.445

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.
- P(p > 15%|current data) = 0.594
- P(success at final analysis| current data) = 0.059
- Continue to 13 patients.
- There were no more responses!
- P(p > 15%|current data) = 0.445
- P(success at final analysis|*current data*) = 0.004

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

- Begin trial!
- Observe first 10 patients.
- There were 2 responses
- Calculate probability of superiority and predicted probability of success.
- P(p > 15%|current data) = 0.594
- P(success at final analysis| current data) = 0.059
- Continue to 13 patients.
- There were no more responses!
- P(p > 15%|current data) = 0.445
- P(success at final analysis|*current data*) = 0.004
- Stop for futility! No conclusion is drawn.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Bayesian trial with early stopping for futility and efficacy

- Advantages
 - very flexible
 - can be modified for time to event
- Disadvantages
 - requires very specialized statistical expertise

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Summary

- Designs with adaptive sample size
 - usually require planning at design stage
 - can optimize the number of patients and duration of study to the given situation

Motivational example	Blinded sample size re-estimation
Overview of adaptive designs	Simon's two-stage design
Examples of adaptive designs	Bayesian phase 2 trial with stopping for efficacy and futility

Gould, A. (1995).

Planning and revising the sample size for a trial. *Statistics in Medicine*, 14:1039–1051.

Simon, R. (1989).

Optimal two-stage designs for phase ii clinical trials. *Controlled Clinical Trials*, 10:1–10.

Blinded sample size re-estimation Simon's two-stage design Bayesian phase 2 trial with stopping for efficacy and futility

Contact information

joann.alvarez@Vanderbilt.Edu
http://biostat.mc.vanderbilt.edu/JoAnnAlvarez
Adaptive trail design group
Tuesdays 10:30 am
PRB 569

