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1 Introduction

Chris Fonnesbeck sent Jeffrey a link to an interesting blog post, “How economists
get tripped up by statistics” (http://blogs.reuters.com/felix-salmon/2012/07/10/
how-economists-get-tripped-up-by-statistics/). The original article referenced in
the blog post is http://emresoyer.com/Publications_files/Soyer%20%26%20Hogarth_
2012.pdf; it has been published as Soyer, E., & Hogarth, R. M. (2012). The illusion of pre-
dictability: How regression statistics mislead experts. International Journal of Forecasting,
28(3), 695-711. doi:10.1016/j.ijforecast.2012.02.002.

Jeffrey thought it would be interesting to reproduce the scenario presented in the blog
(Conditions 1, 3, and 5 in the original paper), and that’s what I’ve tried to do here. I also
thought it would be a good chance to practice using knitr (http://yihui.name/knitr/);
it seems like a big improvement over Sweave, and I hope this example will help other people
use it too.

Soyer and Hogarth asked their subjects four questions; here we’ll look only at the one pre-
sented in Salmon’s blog post. Salmon slightly misstated the question in the post, however,
so we’ll use Soyer and Hogarth’s original wording: “What would be the minimum value of
X that an individual would need to make sure that s/he obtains a positive outcome (Y > 0)
with 95% probability?” We’ll try to answer the question first using just the scatterplot,
then using just the regression output, and then finally using both the scatterplot and the
regression output.

2 Answering the question using only the scatterplot

First of all, let’s try to make a scatterplot like the one Soyer and Hogarth presented:
n <- 1000
xmean <- 50.72
ymean <- 51.11
xsd <- 28.12
ysd <- 40.78
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R2 <- 0.5
rxy <- sqrt(R2)
covxy <- rxy * xsd * ysd

Soyer and Hogarth used a sample of size 1000; see Table 1 for details.

Variable Mean SD
x 50.72 28.12
y 51.11 40.78

Table 1: Sample characteristics

One way to recreate their scatterplot might be to generate a bivariate normal random
sample with the same means and covariance structure as the Soyer and Hogarth data. We
have the means and standard deviations of X and Y , but what is cov(X,Y )? Because they
used simple linear regression, we can get the sample correlation by taking the square root
of the R2 from their regression model; and we can get the covariance from this correlation
and the two standard deviations. Their value for R2 was 0.5, so our value for rxy is 0.7071
and our value for cov(x, y) is 810.8631. If we want to generate a bivariate normal random
sample with these characteristics, we can do so as follows:
covMat <- matrix(c(xsd^2, covxy, covxy, ysd^2), ncol= 2)
s1 <- mvrnorm(n= n, mu= c(xmean, ymean), Sigma= covMat, empirical= TRUE)
s1 <- data.frame(s1)
names(s1) <- c("x", "y")

Another way to generate a sample similar to Soyer and Hogarth’s might be to consider
the x’s to be fixed, rather than random, and to generate the Y ’s using the RMSE and
approximate coefficients from the regression model, as follows:
x2 <- 100 * runif(1000)
e2 <- rnorm(1000, mean= 0, sd= 29)
y2 <- 1 * x2 + e2
s2 <- data.frame(x= x2, y= y2)

# prepare a summary table
r1 <- c(xmean, xsd, rxy, mean(s1$x), sd(s1$x), cor(s1)[1,2], mean(s2$x),

sd(s2$x), cor(s2)[1,2])
r2 <- c(ymean, ysd, NA, mean(s1$y), sd(s1$y), NA, mean(s2$y), sd(s2$y), NA)
compTable <- data.frame(rbind(r1, r2))
compTableRounded <- round(compTable, 2)

Let’s compare the summary statistics from the two methods:
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Variable Soyer and Hogarth Bivariate Normal Fixed x
mean sd cor(x,y) mean sd cor(x,y) mean sd cor(x,y)

x 50.72 28.12 0.71 50.72 28.12 0.71 49.47 28.74 0.71
y 51.11 40.78 51.11 40.78 49.99 40.74

Table 2: Comparison of summary statistics from two sample-generation techniques (and
Soyer and Hogarth’s data)

Figure 1 and Figure 2 are scatterplots from the two methods.

Figure 2 more closely resembles the graph from Soyer and Hogarth’s paper, so we’ll use
that one from here on.
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# scatterplot for BVN sample
with(s1, plot(x, y, xlim= c(0,100), xaxp= c(0, 100, 20), ylim= c(-150, 250)))
m1 <- lm(y ~ x, data= s1)
abline(h= 0, col= "grey50")
abline(m1)
summM1 <- summary(m1)
m1Sigma <- summM1$sigma
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Figure 1: Bivariate normal data. The standard error of the regression (σ̂e) is 28.8503
(compare to Soyer & Hogarth’s value of 29).
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# scatterplot for sample generated from "fixed" x's
with(s2, plot(x, y, xlim= c(0,100), xaxp= c(0, 100, 20), ylim= c(-150, 250)))
m2 <- lm(y ~ x, data= s2)
abline(h= 0, col= "grey50")
abline(m2)
summM2 <- summary(m2)
m2Sigma <- summM2$sigma
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Figure 2: Data generated from fixed x’s. The standard error of the regression (σ̂e) is 28.6968
(compare to Soyer & Hogarth’s value of 29).
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Soyer and Hogarth asked people, “What would be the minimum value of X that an indi-
vidual would need to make sure that s/he obtains a positive outcome (Y > 0) with 95%
probability?” We can answer this question using only Figure 2 if we are comfortable making
a few assumptions:

1. The observations are independent.

2. In the population, the mean value of Y really is a linear function of X.

3. The population variance of Y is the same for all values of X; or, Yi = β0 + β1xi + εi,
where ε is distributed with mean 0 and constant variance σ2. I don’t think normality
is required for us to answer this question visually, but I’m not totally sure about that.

Based on Figure 2, these assumptions seem reasonable.

So, to answer Soyer and Hogarth’s question, we can look at the graph, and find the smallest
value of x for which about 95% of the y-values are greater than 0. To me it looks like there
are about 15 data points for each value of x, so to make things easier I’ll call that 20 data
points for each value of x. Then we just need to find the first point on the x-axis where,
from that point on, there’s no more than one y-value below 0 for any x. I’d say that’s
about x = 50. That’s pretty close to 47, which is the approximate right answer according
to Soyer and Hogarth. (Note that my counting was not so good: based on the method of
data generation, there are probably only 10 data points for each value of x. But the method
still worked well enough. . . )
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3 Answering the question using just the summary statistics
and the regression output

We should also be able to get the answer using just the summary statistics given above
and the numbers from the regression output. So let’s look at the regression output for our
sample:
summM2

Call:
lm(formula = y ~ x, data = s2)

Residuals:
Min 1Q Median 3Q Max

-100.93 -19.86 -0.83 19.42 86.11

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2070 1.8071 0.11 0.91
x 1.0063 0.0316 31.86 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 28.7 on 998 degrees of freedom
Multiple R-squared: 0.504,Adjusted R-squared: 0.504
F-statistic: 1.02e+03 on 1 and 998 DF, p-value: <2e-16

# get values to use in table
const <- coef(summM2)[1, 1]
constSE <- coef(summM2)[1, 2]
xCoef <- coef(summM2)[2, 1]
xCoefSE <- coef(summM2)[2, 2]
m2Rsq <- summM2$r.squared

We can’t expect all the numbers to match Soyer and Hogarth’s exactly, but they’re pretty
close (see Table 3).

3.1 My approach

To answer Soyer & Hogarth’s question using just the numbers in Table 1 and Table 3, we
can use the formula for a 100(1 −α)% prediction interval for the value of a new observation
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Quantity Soyer and Hogarth LS
X 1.001 (0.033) 1.0063 (0.0316)

Constant 0.32 (1.92) 0.207 (1.8071)
R2 0.50 0.5042
N 1000 1000

σ̂e (= RMSE) 29 28.6968

Table 3: Comparison of regression outputs

Y0 at x = x0. Here’s Casella & Berger’s version of the formula:

β̂0 + β̂1x0 ± tn−2,α/2S

√
1 + 1

n
+ (x0 − x̄)2

Sxx

That is, we can use the formula if certain conditions are met, or if we are willing to make the
assumptions mentioned in the first section (this time with the definite inclusion of normality
of the errors). Soyer and Hogarth do tell us to assume that the model “is indeed a very good
approximation of the real world relation between X and Y , and that the linear estimation
is suitable. Furthermore, among alternative specifications, this model is the one that gives
the highest R-squared.”

To find our x0, we could set the lower bound of the 95% CI equal to 0, and plug in all the
other quantities. We have β̂0, β̂1, n and S (that’s the same as σ̂e) from Table 3, and we
know x̄ fromTable 1. Instead of using tn−2,α/2, we can use Zα/2, because the sample is so
big. So that just leaves Sxx, which is equal to

∑n
i=1(xi − x̄)2, or (n − 1) times the sample

variance of x, which we can get from Table 1.

Solving for x0 would take a lot of algebra, though. So let’s try it the easy way instead, and
just look for integer x0’s using R:
Sxx <- sd(s2$x)^2 * (n - 1)
foundX0 <- FALSE
x0 <- 0
while(!foundX0){

SE <- m2Sigma * sqrt(1 + (1 / n) + ((x0 - mean(s2$x))^2 / Sxx))
LB <- const + xCoef * x0 - qnorm(.975) * SE
if(LB >= 0){

print(x0)
foundX0 <- TRUE

} else{
x0 <- x0 + 1

}
}

[1] 56

But my answer, 56, is much higher than Soyer & Hogarth’s answer of 47. Looking at their
paper, I think I see why: they used a one-sided 95% prediction interval. Doing it this way

8



hadn’t occurred to me, but it seems to make sense here because it corresponds to the visual
approach I used with the scatterplot: I put all the probability in the lower tail. Here’s what
happens when I use a one-sided prediction interval:
foundX02 <- FALSE
x02 <- 0
while(!foundX02){

SE <- m2Sigma * sqrt(1 + (1 / n) + ((x02 - mean(s2$x))^2 / Sxx))
LB <- const + xCoef * x02 - qnorm(.95) * SE
if(LB >= 0){

print(x02)
foundX02 <- TRUE

} else{
x02 <- x02 + 1

}
}

[1] 47

So this time my answer, 47, matches their answer. But I’m left wondering: in reality does
it make sense to use a one-sided interval here?

3.2 Soyer and Hogarth’s approach

Soyer and Hogarth actually used a different approach to solve the problem. They noted
that for any value of x, the residuals are distributed as N(0, SER2), where SER is another
name for RMSE or σ̂e and is equal to 29 (or in our case, 28.6968). They looked for the
specific value of x for which only 5% of the residuals would be expected to be longer in the
same direction than the difference between zero and the fitted value for that x. That is,
they looked for the x that would satisfy

P (ê < 0 − (β̂0 + β̂1x)) = .05

or, if we standardize,

P

(
Z <

[0 − (β̂0 + β̂1x)] − 0
SER

)
= .05

9



but we know that P (Z < −1.645) = .05, so we have

−(β̂0 + β̂1x)
SER

= −1.645

−(β̂0 + β̂1x) = −1.645 ∗ SER
−β̂1x = −1.645 ∗ SER+ β̂0

x = −1.645 ∗ SER+ β̂0

−β̂1

x = 1.645 ∗ SER− β̂0

β̂1

Solving in R. . .
x1 <- ((qnorm(.95) * m2Sigma) - const) / xCoef
x2 <- ((qnorm(.975) * m2Sigma) - const) / xCoef

. . . we get x = 46.6986 if we use a one-sided approach as Soyer and Hogarth did, and
x = 55.6842 if we use a two-sided approach. These values are consistent with the integer
values I found above (47 and 56).

4 Answering the question using both the scatterplot and the
numbers

Now let’s go back to our original scatterplot with the regression line, and add in a symmetric
95% prediction interval. We can show the 95% confidence interval on the same plot just to
show how much narrower it is. Because we’re interested in the value of a single observation,
we want to use the prediction interval, not the confidence interval. I’ll show two different
ways of doing this in R:
# prepare for the ggplot
s2WithPred = data.frame(s2, predict(m2, interval = 'prediction'))

Warning: Predictions on current data refer to _future_ responses

# prepare for the base R plot
newxs <- seq(0, 99, by=1)
c1 <- data.frame(predict(m2, newdata= data.frame(x= newxs),

interval = 'confidence'))
c2 <- data.frame(predict(m2, newdata= data.frame(x= newxs),

interval = 'prediction', level= .90))
c3 <- data.frame(predict(m2, newdata= data.frame(x= newxs),

interval = 'prediction', level= .95))

10



# make ggplot w/ regression line, confidence interval and prediction interval
ggplot(s2WithPred, aes(x= x, y= y)) +

geom_point() +
geom_smooth(method= 'lm', aes(fill= 'confidence'),

alpha= 0.5) +
geom_ribbon(aes(y= fit, ymin= lwr, ymax= upr,

fill= 'prediction'), alpha= 0.2) +
scale_fill_manual('Interval', values= c('green', 'blue')) +
opts(legend.position= c(0.20, 0.85)) +
guides(fill= guide_legend(

override.aes= list(alpha = c(0.5, 0.2))))
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Figure 3: One way to plot this in R (ggplot2 graphics).
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# make base R plot w/ regression line, confidence interval,
# and two prediction intervals
with(s2, plot(x, y, xlim= c(0,100), xaxp= c(0, 100, 20), ylim= c(-100, 200)))
abline(h= 0, col= "grey50", lty= 1)
abline(m2, lwd= 2)
lines(cbind(newxs, c1$lwr), col= "red", lwd= 2, lty= 2)
lines(cbind(newxs, c1$upr), col= "red", lwd= 2, lty= 2)
lines(cbind(newxs, c2$lwr), col= "purple", lwd= 2, lty= 4)
lines(cbind(newxs, c3$lwr), col= "blue", lwd= 2, lty= 3)
lines(cbind(newxs, c3$upr), col= "blue", lwd= 2, lty= 3)
legend("topleft",

legend= c("95% CI", "Symmetric 95% Pred. Int.", "LB of 1-sided 95% Pred. Int."),
lty = c(2, 3, 4),
col= c("red", "blue", "purple")

)
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Figure 4: Another way to plot this in R (base R graphics).
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Both plots provide visual confirmation our answer using the symmetric two-sided approach;
in addition, Figure 4 confirms our answer using a one-sided approach.
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5 The nonreproducible part: how to do this in Stata

What if we wanted to do all of this in Stata instead? Using Stata 12, here is code with
output:

clear
set seed 20120712
drawnorm Errs, n(1000) means(0) sds(29)
gen Xs = 100 * runiform()
*
***************************************
summarize Xs

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

Xs | 1000 48.66937 29.52073 .0633842 99.96919

gen Ys = 1 * Xs + Errs
*
***************************************
summarize Ys

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

Ys | 1000 49.98331 41.80034 -56.43404 162.1941

***************************************
*
regress Ys Xs

Source | SS df MS Number of obs = 1000
-------------+------------------------------ F( 1, 998) = 1139.74

Model | 930626.71 1 930626.71 Prob > F = 0.0000
Residual | 814894.263 998 816.527317 R-squared = 0.5332

-------------+------------------------------ Adj R-squared = 0.5327
Total | 1745520.97 999 1747.26824 Root MSE = 28.575

------------------------------------------------------------------------------
Ys | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
Xs | 1.033898 .030625 33.76 0.000 .9738017 1.093995

_cons | -.3358742 1.743017 -0.19 0.847 -3.756273 3.084525
------------------------------------------------------------------------------
*
*
*
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Figure 5: The graph from Stata.

* line breaks are for presentation only-- paste into Stata on one line!
graph twoway

(lfitci Ys Xs, level(95) stdf ciplot())
(scatter Ys Xs)
(lfitci Ys Xs,

level(95) fcolor(blue) alwidth(none) fintensity(50) ciplot())
(lfit Ys Xs),
legend(order(1 4) label(1 "95% Prediction Interval")

label(4 "95% Confidence Interval"))
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6 Session Information: R/Package Versions
_

version.string R version 2.15.1 (2012-06-22)

Version Depends
colorout 0.9-9 <NA>
ggplot2 0.9.1 R (>= 2.14), stats, methods
gridExtra 0.9 R(>= 2.4.0), grid
Hmisc 3.9-3 R (>= 2.4.0), methods, survival
knitr 0.7 R (>= 2.14.1)
plyr 1.7.1 R (>= 2.11.0)
rms 3.5-0 Hmisc (>= 3.7), survival (>= 2.36-3)
setwidth 1.0-0 <NA>
vimcom 0.9-2 <NA>
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