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1. Introduction 
 
GWAsimulator is a C++ program that simulates genotype data for SNP chips.  It implements a 

rapid moving-window algorithm (Durrant et al. 2004) to simulate whole genome case-control or 
population samples.  For case-control data, the program retrospectively sample cases and controls 
according to user-specified multi-locus disease models.  The program can use HapMap phased 
genotype data as input and has the flexibility of simulating genotypes for different populations and 
SNP chips.  Because many large-scale GWA data are becoming available, they can be used instead of 
the HapMap data as the input, as long as the phase information is generated.  These data may provide 
better representation of the population under study and more accurate LD information than the 
HapMap due to much larger sample sizes.  When the HapMap data are used as the input, the simulated 
data have similar linkage disequilibrium (LD) patterns as the HapMap data. 

 
The simulation algorithm faithfully follows the local LD structure of the input phased data.  

Switching to a different population or SNP chip only requires a simple change of input files.  The 
program is efficient in several aspects.  Simulated data are internally stored as bit vectors, which 
minimizes the amount of memory and allows data simulation of a large sample size.  Unlike 
prospective simulation algorithms, GWAsimulator samples cases and controls retrospectively and 
avoids data throwaway.  In addition, there is no need to store a large pool of population chromosomes 
to sample from.  Compared to prospective and coalescence based algorithms, GWAsimulator is faster, 
making it feasible for evaluating the performance of GWA analysis methods through realistic 
simulations.  The program is also easy to be built upon with user’s data analysis functions; this avoids 
saving whole-genome data to files, which can be time-consuming.  The program has been successfully 
applied in our methodology development (Li et al. 2008). 
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The paper associated with this program has been accepted by Bioinformatics (Li and Li 2007). 
 

2. Download and compile the program 
 
GWAsimulator is portable to a variety of operating systems.  The program can be downloaded 

from http://biostat.mc.vanderbilt.edu/GWAsimulator.  Once the package is downloaded, unzip the 
package into a directory using software such as WinZip (in Windows) or command line (in 
Unix/Linux/Mac OS X) 

tar –zxf GWAsimulator_v1.1_linux.tar.gz 
The package should include the program source code (GWAsimulator.cpp), a compilation shortcut 
program (build), an example control file (control.dat), an example data analysis program 
(dataanalysis.cpp), a manual (GWAsimulator.pdf; this file), and a subdirectory of example 
input phased data files. 

 
Precompiled executable files are available for Windows/x86, Linux/x86, and Mac OS (a 

universal program for x86/ppc/ppc64).  (1) The Windows/x86 version (GWAsimulator.exe) was 
compiled by Cygwin g++ v3.4.4 on Window XP with service pack 2.  However, the feature of output 
file compression relies on an external program, gzip, which may not be available in many Windows 
systems.  If you need this feature, you can follow the instructions in the README.txt file in the 
Windows package to install gzip.  (2) The Linux/x86 version (GWAsimulator) was compiled by g++ 
v4.1.2 on Linux 2.6.20.  (3) The Mac OS x86/ppc/ppc64 universal program (GWAsimulator) was 
compiled by g++ 4.0.1 on Mac OS X 10.4. 

 
Although the executable file may be ready to use, you can always recompile the program.  

Recompilation often can take advantage of the latest compiler technology and can optimize the 
program to your local hardware/software configurations. 

 
The program g++ can be used to compile the program.  Please check the version of the g++, 

because different versions of the compiler require different declarations of bit_vector, the data type 
used by the program to store simulated genotype data.  To check the version, use 

g++ ––version 
If the version is 3.4 or later, bit_vector needs to be declared using the following statement near the 
beginning (this is the default): 

typedef std::vector<bool, std::allocator<bool> > bit_vector; 
For earlier versions of g++, this line may need to be removed or commented out.  To compile the 
program, you can use the compilation shortcut program by issuing  

./build 
Alternatively, you can issue the full command 

g++ –O2 –lm –o GWAsimulator GWAsimulator.cpp 
 

3. Input phased data 
 
The program requires the user to provide phased data, in 23 files, as its input.  The 23 input 

files should be named consistently with the only difference being the chromosome number, from 1 to 
23 (for chromosome X).  In the input files, each row is a phased chromosome, with a space between 
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the alleles at two adjacent SNPs.  The program only considers biallelic SNPs, and the alleles should be 
coded as either 0 or 1.  The pathname of the input files will be specified by the user in the control file. 

If one wants to simulate data for a SNP chip and the input data are obtained from the HapMap 
database (www.hapmap.org), phased data for only the SNPs on the chip should be extracted and used 
as input data.  Each phased chromosome should be a row in the input file and will be assumed to be 
unrelated to the other chromosomes.  For the HapMap data, the numbers of unrelated phased 
autosomes and X chromosomes should be 120 and 90 for both CEU and YRI, 90 and 68 for CHB, and 
90 and 67 for JPT.  Simulation of a different population or a different SNP chip requires a simple 
change to a different set of input files. 

 

4. Control file 
 
The program requires a control file, in which the user specifies various parameters for the 

program to use.  An example control file is structured as the following: 
 

Illumina300KCEU/chr   _Illu300k.phased 
120     90 
1       genotype 
5 
1000    1000    1000    1000 
7       0 
0.05 
19   2885 1   1.5  M   1000 4000 
11   9067 1   1.5  M   8000 10000 
23   7607 0   1.5  1.5   7000 9000 
20   3357 0   1.1  2.0   1000 5000 
18   9659 1   1.1  M   6000 10000 
2   10714 0   1.1  D   10000 12000 
6   4322 1   1.0  1.1   3000 5600 
Interactions 
Pair    DL1 DL2   1/1  1/2   2/1  2/2 
Inter2  1  6   1.0  2.0   4.0  5.0 
Inter2  2  4   2.0  2.0   3.0  3.0 

 
Line 1 contains the prefix and affix of the pathname of the input data files.  For each 

chromosome, the program will insert the chromosome number (single digit for 1-9 and two digits for 
10-23) to obtain the full pathname for the input file.  For example, for the two strings in the above 
example control file, the input file for chromosome 8 is accessed through pathname 
Illumina300KCEU/chr8_Illu300k.phased 

 
Line 2 specifies the number of independent phased chromosomes in the input files.  The first 

number is for autosomes and the second is for chromosome X.  If the HapMap phased data are used to 
prepare the input files, the numbers should be 120 and 90 for both CEU and YRI, 90 and 68 for CHB, 
and 90 and 67 for JPT.  As explained in Section 3, each row in the input files should be a phased 
chromosome. 

 
Line 3 specifies if the simulated data will be output to files (0=no output, 1=output) and the 

format of the output files.  If the simulated data are not output to files, the program should be 
incorporated with an analysis program so that the simulated data can be analyzed on the fly without 
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being stored to files. 
If the data are output to files, three formats are available in this version. 
(1) linkage:  each row is a person, with pedigree ID, individual ID, father ID, mother ID, sex 

(1=male, 2=female), affection status (0=unknown, 1=unaffected, 2=affected), followed by 
SNP alleles (two alleles per SNP, “1”=allele 0, “2”=allele 1). 

(2) genotype:  each row is a person and each column is a SNP, with genotype 0, 1, 2, as the 
number of copies of allele 1.  For X chromosome, male genotypes are 0 or 2. 

(3) phased:  a person has two rows, each being a phased chromosome. 
The files will be saved in the directory where the program was started and gzipped to save disk space.  
They are named chr#.dat.gz, where # is the chromosome number (single digit for 1-9 and two 
digits for 10-23).  The program will remove all existing files named chr#.dat or chr#.dat.gz 
before saving the new files.  A warning message for removing files will be displayed.  For regional 
simulation (see line 6), only simulated chromosomes are saved. 

Note:  The files can be big and file saving can take significant amount of time. 
 
Line 4 contains the moving window size for data generation.  The default is 5, that is, every 4-

SNP haplotype is used to simulate the allele of the next SNP.  The program will generate a warning 
message if a user specifies a window size that is too large compared to the number of input phased 
chromosomes (2(windowsize+1) ≥ number of input chromosomes). 

 
Line 5 specifies the numbers of female cases, male cases, female controls, and male controls.  

If the number of disease loci on line 6 is zero, population samples are simulated, with the numbers of 
females and males being those for female controls and male controls. 

 
Line 6 specifies the number of disease loci and indicator for regional simulation.  If the number 

of disease loci is zero, population samples will be simulated, and the regional indicator and the rest of 
the control file will be ignored. 

 
If the number of disease loci is positive, case-control samples will be simulated, and the 

program continues to read additional information of the control file to obtain disease model 
information.  If the regional indicator is 0, genomic data (genotypes for all SNPs in input data) will be 
simulated, and the start/end position information (see below) is not required and will be ignored when 
present.  If the regional indicator is 1, start and end positions (see below) for each disease chromosome 
are required, and the program generates (and outputs) genotype data only for the specified regions. 

 
Note:  If you wish to simulate regional data for population sampling, a trick is to use case-

control sampling but specify a disease model with disease genotype relative risks as 1.  Similarly, to 
simulate regional data for non-disease chromosomes in case-control sampling, include the 
chromosomes as disease chromosomes but with genotype relative risks as 1. 

 
Line 7 is the disease prevalence. 
 
Disease loci information:  Starting from line 8 (to 7+number of disease loci), each line 

contains information for a disease locus: chromosome number, position, disease variant allele, 
genotypic relative risks, and optionally, the start and end positions (see line 6 explanations).  The 
current version of the program allows one disease variant per chromosome.  See Section 9 for more 
details on disease model determination. 
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The disease locus position is the position in the input phased file, not the physical position on a 
chromosome.  For example, the first disease locus in the above example control file is the 2885th SNP 
in the chromosome 19 input file, with allele 1 as the disease risk allele.  The first relative risk, RR1, is 
the risk ratio of the genotype with one copy of the risk allele versus that with zero copy of the risk 
allele.  Similarly, the second relative risk, RR2, is the risk ratio of the genotype with two copies of the 
risk allele versus that with zero copy of the risk allele.  If it is “M”, then multiplicative effect is 
assumed and RR2 = RR12.  If it is “D”, then dominance effect is assumed and RR2 = RR1.  For 
recessive effect, specify 1.0 for RR1.  All relative risks should be ≥1.  The start and end positions are 
required only when the number of disease loci is >0 and the regional indicator is 1 (both on line 6), and 
will be ignored otherwise. 

 
Two-way interaction effects:  After reading in the disease loci information, the program 

continues to read in information until a blank line.  (This is different from the previous versions.)  For 
each line, if the first field is “Inter2”, it will be treated as information on interaction effects between 
two disease loci; otherwise, the line is ignored.  This allows the user to insert comments, as in the 
above example control file, to separate the interaction section so that it is easy to read and maintain.  
See Section 9 for more details on disease model determination. 

 
On each line starting with “Inter2”, the user provides information on the two disease loci 

(integers from 1 to number of disease loci) and four numbers for interaction effects.  The interaction 
effects are departure from product relative risks.  For example, the first line after “Interactions” in the 
above example is 

Inter2  1  6   1.0  2.0   4.0  5.0 
This line provides information on the interaction effects between the 1st disease locus (on chromosome 
19) and the 6th disease locus (on chromosome 2).  Let g1 = 0, 1, 2 be the number of disease variant 
(here, allele 1) at the locus 1, g6 = 0, 1, 2 be the number of disease variant (here, allele 0) at the locus 6.  
When there are no interaction effects, the relative risk of genotype (g1 = i, g6 = j) versus (g1 = 0, g6 = 0) 
is r1ir6j, where r10 = 1, r11 = 1.5, r12 = 1.52 = 2.25, r60 = 1, and r61 = r62 = 1.1.  When there are 
interaction effects, the relative risk will be r1ir6jdij, where d11 = 1.0, d12 = 2.0, d21 = 4.0, and d22 = 5.0 
are obtained from the control file. 

 
Note that the above line in the example control file is the same as the following: 
Inter2  6  1   1.0  4.0   2.0  5.0 
 
Note:  Any additional lines after the first blank line will be ignored.  Therefore, the extra lines 

in the control file that accompanies the software distribution can be kept to remind the user of the 
parameters and options. 
 

5. Command line 
 
To start simulation, the command line will need to have two arguments: control file and seed 

number.  The seed number should be a positive integer and should be different for each simulation 
replicate.  The seed number will be used by the random number generator in the program.  This design 
allows the user to have a full control over the simulation, which may be useful especially for cluster 
use (see section 7).  An example command line is: 

./GWAsimulator control.dat 7845412 
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6. Output 
 
The program will output its progress to the standard output (often it is the screen).  This can be 

redirected, especially when running on cluster nodes for which standard output is not available.  The 
syntax for redirection may vary across different shells.  The user should consult the manual for the 
shell being used. 

 
If case-control data are simulated, the program will output disease model information into a file 

named diseasemodel.txt.  See Section 9 for more details on disease model determination. 
 
If the simulated data are output to files (i.e., the first value of line 3 in control file is 1), data 

files will be generated with names chr#.dat.gz, where # is the chromosome number (single digit for 
1-9 and two digits for 10-23).  Note that the files can be big and file saving can take significant amount 
of time.  See Section 4 for explanations of the available output formats. 

 

7. Cluster use 
 
The seed number should be different across simulation replicates.  Generation of seed numbers 

on the basis of machine time often is not a good idea because it can result in the same seed number 
across different simulation replicates, especially when the program is executed at about the same time 
on multiple nodes.  It may be better to first generate a long list of seed numbers, and then use those 
numbers sequentially in each simulation replicate. 

 
Different simulation replicates need to be started from different directories to avoid over-

writing each other. 
 

8. Incorporation of user’s analysis function 
 
The program can be easily built upon with user’s functions for further data analysis.  This way, 

there is no need to save whole-genome simulated data to file.  The software distribution has an 
example data analysis program (dataanalysis.cpp), which calculates the allelic chi-squared test 
statistics for all the simulated SNPs and store them in a single array.  To try this program, simply 
uncomment the statement 

#include "dataanalysis.cpp" 
before the main() function and the function call 

dataanalysis(NUMCASEF, NUMCASEM, NUMCONTF, NUMCONTM); 
in the main() function, then recompile the program using the compilation shortcut program ./build.  
User’s own programs can be similarly incorporated into GWAsimulator.  See Section 2 for more 
details on compilation. 

 

9. Determination of disease model  
 
For simulations of case-control data, a disease model is needed.  The program allows the user 

to specify the disease model parameters, including disease prevalence, the number of disease loci, for 

GWAsimulator (version 1.1) Manual  6 



each disease locus, its location, risk allele, and genotypic relative risks, and two-way interaction effects 
between pairs of disease loci.  The frequencies of the risk alleles can be calculated based on the input 
phased data.   

 
Suppose the user wants to generate an m-locus model with prevalence K.  Let gi = 0, 1, 2 denote 

the number of copies of the risk allele at SNP i (i = 1, …, m).  Let pi be the risk allele frequency at SNP 
i (i = 1, …, m), and ri1 and ri2 be the risk ratios of genotypes 1 and 2 versus 0, respectively.  Assuming 
Hardy-Weinberg equilibrium, the population genotypic frequencies are Pr(0) = (1–pi)2, Pr(1) = 2pi(1–
pi), and Pr(2) = pi

2.  Let f(g1, …, gm) = Pr(affected | g1, …, gm) denote the penetrance for genotype 
{g1, …, gm}.  When there are no interaction effects, the program assumes the penetrance is a function 
of the genotypes such that  

}2{1}1{1}2{12}1{111 11
)],,([logit ==== +++++=

mm gmgmggm IIIIggf ββββα LK , 
where logit(x) = ln[x/(1 – x)].  The values of α and βij will be determined by the program so that the 
model’s genotypic relative risks and prevalence agree with those specified by the user.  We use the 
following approximations to determine the values of α and βij . 

 
Determination of βij:  We assume the marginal, single-locus model for SNP i follows 

approximately }2{2}1{1)]([logit == ++=
ii gigiii IIgf ββα .  To simplify the notation, denote the single-

locus penetrances for genotypes gi = 0, 1, 2, as f0 = 1/[exp(–αi) + 1], f1 = 1/[exp(–αi)×exp(–βi1) + 1], 
and f2 = 1/[exp(–αi)×exp(–βi2) + 1], we have  

ri1 = f1/f0 = [exp(–αi) + 1]/[exp(–αi)×exp(–βi1) + 1], 
ri2 = f2/f0 = [exp(–αi) + 1]/[exp(–αi)×exp(–βi2) + 1], 

and then 
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We now calculate exp(–αi).  For an autosome, since K = (1 – pi)2 × f0 + 2pi(1 – pi) × f1 + pi

2 × f2, 
we have 

K / f0 = (1 – pi)2 + 2pi(1 – pi) × f1 / f0 + pi
2 × f2 / f0 

= (1 – pi)2 + 2pi(1 – pi) × ri1 + pi
2 × ri2. 

Then exp(–αi) can be calculated as  
exp(–αi) = 1/f0 – 1 = [(1 – pi)2 + 2pi(1 – pi) × ri1 + pi

2 × ri2] / K – 1. 
For X chromosome, since K = ½ (1 – pi)2 × f0 + pi(1 – pi) × f1 + ½ pi

2 × f2 + ½ (1 – pi) × f0 + ½ pi × f2, 
we have 

K / f0 = ½ (1 – pi)(2 – pi) + pi(1 – pi) × f1 / f0 + ½ pi(1 + pi) × f2 / f0 
= ½ (1 – pi)(2 – pi) + pi(1 – pi) × ri1 + ½ pi(1 + pi) × ri2. 

Then exp(–αi) can be similarly calculated. 
 
When the prevalence is low, βi1 ≈ ln(ri1) and βi2 ≈ ln(ri2). 
 
Two-way interaction effects:  The program can simulate two-way interaction effects between 

pairs of disease loci.  For example, if there are two-way interaction effects between the k-th and l-th 
disease loci, the program assumes the penetrance is a function of the genotypes such that  

.

)],,([logit
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Interaction between multiple pairs of disease loci is allowed.  For every pair, four more parameters will 
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be added to the above function.  Similarly as for disease loci, the user provides interaction parameters 
on the marginal, two-locus model between two disease loci, and the program translates those 
parameters into γ coefficients in the above function. 
 

The parameters provided by the user are departure from product relative risks.  For example, 
for the pair of the k-th and l-th disease loci, if the parameters provided are d11, d12, d21, d22 , then the 
two-locus relative risk of genotype (gk = i, gl = j) (i, j = 1, 2) compared to baseline (gi = 0, gj = 0) is rkl,ij 
= rk1rl1dij .  To obtain the corresponding γ coefficients, we assume the two-locus marginal model 
follows approximately 

.

)],([logit
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For a disease of low prevalence, since ln(rkl, ij) ≈ logit[f(gk = i, gl = j)] – logit[f(gk = 0, gl = 0)] = βki + βlj 
+ γkl, ij , and βki ≈ ln(rki) and βlj ≈ ln(rlj), we have γkl, ij ≈ ln(dij).  This is how the program determines the 
γ coefficients. 

 
Determination of α:  Once we have all the values of βij (and γkl, ij when there are interaction 

effects), for each multi-locus genotype {g1,…,gm}, its penetrance f(g1,…,gm) is a function of α.  Using 
the prevalence constraint, we can solve the following equation for α: 

∑ ∑=
1

),,(),,Pr( 11
g g

mm
m

ggfggK KKL . 

 
For example, for the disease model parameters in the example control file in Section 4, the final 

disease model is 
beta0 =   -4.3928 
Locus  chr   #SNPs  DLpos  DV  DVFreq   GRR     GRR2    beta1    beta2 
    1   19    5789   2885   1  0.0500   1.500   2.250   0.4308  0.8754 
    2   11   14520   9067   1  0.3417   1.500   2.250   0.4246  0.8594 
    3   23    9120   7607   0  0.5000   1.500   1.500   0.4255  0.4255 
    4   20    7802   3357   0  0.4333   1.100   2.000   0.0995  0.7362 
    5   18   10441   9659   1  0.1417   1.100   1.210   0.1004  0.2014 
    6    2   25215  10714   0  0.2417   1.100   1.100   0.1004  0.1004 
    7    6   20269   4322   1  0.0667   1.000   1.100   0.0000  0.1006 
Interaction terms gamma_ij: 
Pair  DL1  DL2  gamma11  gamma12  gamma21  gamma22  
  1     1    6  0.000    0.693    1.609    1.609 
  2     2    4  0.693    0.693    1.099    1.099  

The disease model information is also saved to a file named diseasemodel.txt. 
 

10. Simulation algorithm 
 

For simulations of population samples, no disease model is involved, and the program assumes 
all chromosomes are non-disease chromosomes (see below).  For simulations of case-control data, 
once the disease model is determined, the program calculates the conditional probabilities Pr(G | case) 
and Pr(G | control) over all disease locus genotypes given the subject is affected or unaffected.  The 
program then generates disease locus genotypes for  cases and controls according to these conditional 
probabilities.  This retrospective approach is different from prospective simulation schemes in which a 
joint genotype {g1, …, gm} is simulated and is kept or discarded depending on whether a random 
number is smaller or larger than the penetrance of the genotype.  Compared to prospective simulation 
schemes, which can discard many genotypes, especially for disease models with a small prevalence, 
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our retrospective sampling approach is more efficient. 
 
After the disease locus genotypes are generated, the program then simulates genotypes for the 

other SNPs on the disease chromosomes using a moving-window algorithm (Durrant et al. 2004).  We 
assume all SNPs follow Hardy-Weinberg equilibrium in the general population.  For each disease 
chromosome, the two alleles at the disease locus, say d, serve as the starting points for growing the two 
copies of the chromosome.  For each copy, the program randomly selects a five-SNP haplotype at loci 
[d – 2, d + 2] from the input phased data that has the same allele as the already simulated allele at d.  
The program then gradually grows the whole chromosome as follows: for SNPs on the right side of the 
disease locus, it generates an allele at locus d + i given the haplotype at [d + i – 4, d + i – 1] for i ≥ 3; 
the conditional probabilities for the alleles at locus d + i given the haplotype at [d + i – 4, d + i – 1] are 
determined based on the input phased data.  Similarly, for SNPs on the left side of the disease locus, it 
generates an allele at locus d – i given the haplotype at [d – i + 1, d – i + 4] for i ≥ 3.  Genotypes for 
non-disease chromosomes are generated similarly except that a randomly selected SNP is designated 
as the starting SNP.  In this algorithm, every four consecutive SNPs are used to determine the allele at 
the next SNP, but the window size can be modified by the user through the control file.  

 
The simulated chromosomes generated by this algorithm are not exact copies of those in the 

original input data.  Rather, the input phased chromosomes are used to generate plausible haplotypes in 
a wider population that have a similar local LD structure as the input phased data. 

 

11. Properties and limitations of the program 
 

How representative are the simulated data of the population under study?  This depends on how 
representative the input data are.  With respect to the HapMap phased data, various studies have 
demonstrated the similarity of LD patterns between HapMap samples and other samples.  For example, 
Willer et al. (2006) observed similar LD patterns between HapMap CEU samples and a Finnish dataset.  
When the HapMap data are used as the input, we found that the simulated data are in general similar to 
the HapMap data, especially for LD patterns for markers that are close to each other.  However, 
because the simulation algorithm generates a marker allele based on the haplotype of only a few 
previous markers, we also see variations in the LD patterns for markers that are more apart from each 
other, reflecting a potentially larger variety of LD patterns as we will see in real data. 

 
Do biases exist in the simulated data?  Because the program relies on a set of input data, 

limitations of the original data may be passed on to the simulated data.  If the HapMap data are used as 
the input data, the ascertainment bias (Clark et al. 2005) in the HapMap can be reflected to some extent 
in the simulated data.  However, our program can use other sources of input data when available. 

 
What effect does the uncertainty of the input phase information introduce into simulated 

datasets?  The simulation algorithm relies on short-range phase information.  Using the default window 
size 5, phased data on five adjacent markers are used.  For a SNP chip with 500,000 SNPs, the average 
length of a five adjacent marker region is 24 kb.  For such a short region, phased data often achieve 
very high certainty.  Thus, the longer-range phase uncertainty in the HapMap data is expected to have 
a limited effect on the simulated data. 

 
Are there limitations?  Limitations of the input data can be carried over to the simulated data.  

The program requires large-scale genotyping data, which is currently only available for Yorubans, 
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Chinese/Japanese and northern Europeans (CEPH Utah) through the HapMap project.  This method 
may not be useful for populations that have not been extensively sampled, such as South Asian, Middle 
Eastern, sub-Saharan African or Native American populations.  In addition, if the input data are not 
variable enough due to ascertainment bias or small sample size, the generated data might not show 
enough variability for the population under study. 

 
Is it correct that we must already know the exact disease locus in HapMap in order to generate 

simulated datasets?  The presumed disease locus needs to be specified for the program.  If one doesn’t 
want to choose a SNP from the source database as the disease locus, he/she has to create a SNP in the 
input file with complete phase information with all the other SNPs.  However, we recognize such 
information may not be available and this could limit the applicability of the software. 

 
Can data other than HapMap be used with this software; such as, for instance, Perlegen data?  

The software is not restricted to the HapMap data.  Any phased data can be used as the input.  Because 
many large-scale GWA data are becoming available, they can be used as the input as long as the phase 
information is generated.  These data may provide better representation of the population under study 
and more accurate LD information than the HapMap due to much larger sample sizes.   
 

What is the effect of changing the size of the sliding window?  When the window size is 5, we 
use every four-marker haplotype to predict the allele at the next marker.  At these five markers, the 
input phased data would be effectively tabulated into a 16×2 table with each row representing one of 
the 16 possible haplotypes at the previous 4 markers, and each column represent one of the 2 alleles at 
the fifth marker 5.  When there are 120 input phased chromosomes, any larger window size will make 
the table too sparse and the prediction less variable.  The program has a built-in warning message if a 
user specifies a window size that is too large compared to the number of input phased chromosomes. 

 
Is the expected time linear in the number of samples?  How does time increase if the window 

size is increased beyond 5?  The expected time is almost linear in the number of samples.  The 
program does spend some time on reading in data.  When the sample size is too large, necessary 
memory swapping may slightly slow down the program.  The window size has little effect on the time 
because the program effectively moves along one marker at a step. 

 
Do the simulated data reflect more of the structure that happens to be in the input data and less 

of the structure that is in the population but not reflected in the input data?  The simulation algorithm 
dictates that the simulated data mimic the local LD patterns of input data, which might be a limitation 
of the algorithm.  However, when the HapMap data are used as the input, various studies have 
demonstrated the similarity of LD patterns between HapMap samples and other samples.  For example, 
Willer et al. (2006) observed similar LD patterns between HapMap CEU samples and a Finnish dataset.  
On the other hand, the algorithm grows a chromosome in a Markov fashion, that is, the next marker 
allele depends only on the alleles at the previous 4 markers.  This way, the program can generate a 
much richer variety of mid- and long-range LD patterns than those of the input data, while keeping the 
short-range LD patterns similarly as the input data.  This allows the program to simulate data that 
mimic what could have happened due to recombination between markers of distance, resulting in a 
wider tree structure than that of the input data. 

 
Does the user specify the allele frequency for the disease SNPs?  The user specifies the disease 

SNPs, but does not need to specify the allele frequency as it can be implicitly determined from the 
input phased data. 
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What effect does the assumption of HWE have on the simulations?  The program assumes all 
SNPs are in HWE in the population, which is a good approximation for majority of the SNPs in the 
genome.  However, we recognize that the HWE assumption may be violated for some SNPs.  The 
effect of this assumption on the subsequent analysis often depends on the nature of the analysis.  For 
each chromosome, the algorithm in our program grows the two copies of the chromosome 
independently from a starting SNP.  Because of this, even if the starting SNPs are simulated to follow a 
genotype distribution that is not in HWE, markers that are far from the starting SNP will eventually 
behave like they are in HWE. 

 

12. References 
 
1. Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005) Ascertainment bias 

in studies of human genome-wide polymorphism. Genome Res. 15:1496-1502. 
2. Durrant C., Zondervan K.T., Cardon L.R., Hunt S., Deloukas P., Morris A.P. (2004) Linkage 

disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes. 
Am. J. Hum. Genet. 75:35-43. 

3. Li C., Li M., Lange E.M., Watanabe R.M. (2008) Prioritized subset analysis: improving power 
in genome-wide association studies. Hum. Hered. 65:129-141. 

4. Li C, Li M (2007) GWAsimulator: A rapid whole genome simulation program. Bioinformatics 
(in press). link 

5. Willer CJ, Scott LJ, Bonnycastle LL, Jackson AU, Chines P, Pruim R, Bark CW, Tsai YY, 
Pugh EW, Doheny KF, Kinnunen L, Mohlke KL, Valle TT, Bergman RN, Tuomilehto J, 
Collins FS, Boehnke M. (2006) Tag SNP selection for Finnish individuals based on the CEPH 
Utah HapMap database. Genet. Epidemiol. 30:180-190. 

GWAsimulator (version 1.1) Manual  11 


	Introduction
	Download and compile the program
	Input phased data
	Control file
	Command line
	Output
	Cluster use
	Incorporation of user’s analysis function
	Determination of disease model
	Simulation algorithm
	Properties and limitations of the program
	References

