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Introduction

The three general goals of survival analysis are to:
compare survival curves among two or more therapies,
elucidate the factors that influence survival and estimate
their effects, and estimate the future survival for an indi-
vidual or for a population. In medical effectiveness re-
search, these three components are inextricably linked.
Naftel (in this volume) presents a compelling frame-
work for accomplishing these goals through the use of a
powerful parametric survival model. Although his dis-
cussion centers on a particular parametric model, the
principles propounded are relevant to all forms of sur-
vival modeling.

This paper will discuss treatment comparison, covari-
ate selection, and prediction in the context of any surviv-
al model, in addition to the strengths and weaknesses of
the multiphase model and some implications of survival
analysis. A brief appendix describes the multiphase
model.

Comparing Treatment Effects

Comparing two treatments is relatively easy if both
treatments are from the same underlying hazard func-
tion family. Then the underlying hazard function can be
modified by covariates in a proportional hazards man-
ner or through direct modification of one or more of the
parameters of the hazard function (see appendix). If
each treatment has a different form of hazard function,
there isno generally accepted method. If a differenthaz-
ard function is assumed for each treatment, one can only
easily test for factors affecting treatment differences by
stratifying on treatment and then testing for covari-
ate-by-treatment interactions (Thall and Lachin, 1986;
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also see the appendix to Califf, Harrell, Lee, and others,
1989, for a description). :

Naftel (in this volume) uses an alternative strategy.
The model is fit to each treatment’s data. If the underly-
ing hazard functions are different, that is prima facie evi-
dence that the treatments have different time-varying
outcomes. The question then becomes, “At what times
do the survival curves differ?” The predicted survival
and 70-percent confidence limits are produced for each
treatment for an individual patient based on the patient’s
particular covariate values. The two survival curves are
then compared across any time points of interest. Where
the curves are distinctly different—that is, where the
confidence limits are widely separated or, equivalently,
where the 95-percent confidence interval for the surviv-
al difference does not include zero—the treatments are
declared different.

A classical statistician would find this approach
troublesome. Examining each time point for signifi-
cance may yield spurious conclusions due to the multi-
plicity of tests. The counterargument is that we have al-
ready found the treatments to be different; we are now
only interested in where they are “practically” different.
The multiplicity-of-tests problem is mitigated by sever-
al factors. First, the model tends to produce “smooth”
estimates of the prediction curves, and thus differences
between adjacent time points tend to be similar; there
are no erratic adjacent differences. A further mitigating
factor is the knowledge of the disease and its treatment
and the understanding of modeling process the physi-
cian and statistician bring to the problem at hand. The
knowledgeable investigator is unlikely to make too
much of an isolated difference.

Covariates

An area not discussed at length in Naftel’s paper (in
this volume) but essential in any survival analysis is the
difficult problem of choosing appropriate covariates.
Four general areas relate to covariates: selection and re-
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liability, composite covariates or indices, the functional
form of the covariate, and the number of covariates.

Selection and reliability. In most situations, many
covariates influence outcome in addition to treatment.
One common method of determining relevant covari-
ates is through the use of a stepwise regression method.
This method is systematic and objective, but as in all
other aspects of the modeling process, there are dangers.
The process of choosing the final set of covariates re-
quires many tests of significance—the multiple compar-
ison problem—that may lead to a large Type I error.

To understand the stability of the variable selection
process, Efron and Gong (1983) proposed “bootstrap”
methods, in which the data set is sampled with replace-
ment m times, where m is some suitably large number.
As an example, one of us (Harrell) ran a simulation for
selection of covariates relating to time until death on a
population of critically ill patients (N = 984, deaths =
574). There were 18 candidate variables (denoted here
only by the numbers 1-18). Thirty resampling runs were
done. The variables selected are shown in Table 1. The
number of variables selected ranged from 3 to 10 (Fig-
ure 1). Some variables were selected only once, but no
variable was selected every time. The purpose of this
simulation is not to suggest removing stepwise regres-
sion from the repertoire of modeling techniques, but to
urge caution in uncritically accepting the results.

Several methods can be used to examine the reliability -

of the model and the reliability of the covariate esti-
mates. For the overall model, one simple method is to
plot the average model-predicted survival estimate
against the corresponding Kaplan-Meier survival esti-
mate for each decile of predicted survival. Estimates of

survival can be analyzed similarly for subsets defined by
covariates (for example, diabetics and nondiabetics),
thus giving an estimate of how well the model predicts
foraparticular covariate. Note thatin this latter case, the
covariate defining the subset does not have to be acova-
riate included in the model. Sex may not affect survival,
but a good model would predict well for both the male
and female subsets. Because models developed on a
particular data set generally estimate well within the
same data set, however, additional methods should be
employed.

One of these methods 1s data splitting. In its simplest
form, the strategy is to divide the data set randomly into
two subsets: a training data set and a test data set. The
model developed on the training data set is then applied
to the test set. Comparing the model predictions in the
test data set with Kaplan-Meier estimates of survival
will yield an estimate of model reliability.! Data split-
ting results in discarding a large fraction of the data for
both model fitting and estimation of model reliability
and, hence, is inefficient.

Data splitting can be improved by k-group cross-vali-
dation. This is done by subdividing the data set into k
mutually exclusive and exhaustive subsets. The k sepa-
rate models are developed using stepwise variable se-
lection on the (k-1)/k fraction of the data, and the model
is validated on the remaining 1/k fraction of the data. Es-

I'This is also being done in a larger framework. There is consider-
able effort through the Chronic Ischemic Heart Disease Patient
Outcomes Research Team (Pryor, D.B., principal investigator,
AHCPR grant no. HS06353-01, Outcome assessment program in
ischemic heart disease, 1989) to testmodels developed at one insti-
tution on data sets collected at other institutions.

Figure 1. Number of covariates selected in resampling simulation
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Source: Duke University Heart Center.




Table 1. Variables selected in a resampling simulation

Variable
Rin 1 2 3 4 5 6 7 8 9 10 11 12 13 ‘'i4 15 16 17 18 n
1 = ® . 3
2 . . . . N o ° . 8
3 e . . . . ° N 7
4 . . e . N . . 7
5 ° . . . ° 5
6 . . . . . . o . 8
7 . e e . . . 6
g . ° ° N . . . 7
9 . o o N . . . 7
10 ° ® . o 4
11 . ° N . . . . 7
12 o o ® N . . ® 7
13 ¢ o N ° . . . . o . 10
14 . . N . . . . 7
15 ¢ = o e ) . . 6
16 .« e . . 4
17 N . . . . 5
18 . s e . . 5
19 . N N N . 5
20 e s N . . 5
21 e . ® ® . . . . ° 9
22 e e ° . 4
23 . ° . N 4
24 N . . . . . . 7
25 e . ® e . ° . 7
26 N . . . . 5
27 e ° ® . . D 6
28 . . . . e . 6
29 e ° . . . 5
30 ° ° . . . . 6
N 11 21 16 . 27 3 1 6 3 25 11 6 28 5 1 5 6 3 4

Run = Simulation run number
n = Number of variables selected for the run
N = Number of times a specific variable was selected
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timates of fit (for example, R?, difference between pre-
dicted and observed survival) are then averaged overthe
k validation runs. If the model validates, it is then fit to
the entire data set for final parameter estimates. If the
model does not validate, carefut examination of the un-
derlying hazard and candidate covariates should be un-
dertaken.

Another method uses the bootstrapping technique
(Efron, 1982). Here, the same set of data can be used to
both fit and validate the model. Bootstrapping allows
one to estimate and correct for the tendency of the pre-
dicted estimate to correlate better with Kaplan-Meier
survival estimates than would be expected if the valida-
tion were done on separate data sets.

Indexes. A second consideration in variable selection
is that several variables may jointly describe a particular
aspect of a patient’s condition, such as heart function or
anginal pain. Because such an aspect of a patient’s con-
dition may manifest itself in different ways in different
patients, the inclusion of all related variables in the mod-
elmay dilute the overall effect of any individual compo-
nent. Combining variables that describe the same con-
dition into a composite index can yield more powerful
results than using the'individual variables. Harrell, Lee,
Califf, and others (1984) gave an example in which 30
variables were reduced to 10 indexes. As an example,
anginal symptoms in Table 2 form a composite based on
three separate measures of anginal pain: severity, type,
and frequency (Califf, Mark, Harrell, and others, 1988).

Functional form. The third problem in fitting a model
is the functional form of the covariate. For example, is
the incremental risk the same over the entire ran ge of the
covariate? Should x be used as measured or some func-
tion of x? Several investigators (Harrell and Lee, 1986;
Harrell, Lee, and Pollock, 1988; Harrell, Pollock, and

Lee, 1987; Stone and Koo, 1985; Durrelman and Simon,
1989; Sleeper and Harrington, 1990) described an ap-
proach in which splines are used to determine the shape
of the function of the covariate. For mstance, in the
study by Califf, Harrell, Lee, and others (1989), the left
ventricular ejection fraction (LVEF) for the population
ranged from 6to 91. A cubic spline fit to the data (Figure
2) indicated that an LVEF above 60 had no incremental
benefit. By truncating the LVEF to 60, the mode] likeli-
hood ¥? was increased significantly. For more complex
functional forms, each component of the spline fit is en-
tered in the model. To test for an overall covariate effect,
ay?withk-1degrees of freedom is computed where k is
the number of knots (join points) required to model the
effect. Linearity is tested with k-2 degrees of freedom.

Investigators (for example, Therneau, Grambasch,
and Fleming, 1990; Schoenfeld, 1982; Pettitt and Daud,
1990) have proposed methodologies for examining the
nature of the effects of covariables across time. The use
of time-dependent covariates to model the covariables’
effectover time is also possible with parametric survival
models (Hermndon and Harrell, 1989).

Number of covariates. The fourth problem is the
number of covariates a given data set can support. It is
well known—but seldom taken into account—that as
the number of parameters estimated exceeds a given val-
ue, predictions on a new sample actually become worse.
This problem s particularly acute with regard to estima-
tion of absolute survival probabilities.

The most reliable predictor is one that always predicts
the mean outcome. If the end users desire discrimina-
tion ability, some reliability has to be sacrificed. The
question then becomes “How many parameters can one
estimate and stillhave reasonable reliability?” In fact, if

Figure 2. Spline transformation for left ventricular ejection fraction
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too many parameters are estimated, even the discrimi-
nation will worsen due to overfitting (Harrell, Lee,
Califf, and others, 1984).

To demonstrate this effect, we did two simulation ex-
periments involving fitting Cox models with p uniform-
ly distributed (on [-0.5,0.5]) covariates, X, when p is var-
ied from 1 to 29. In the first experiment, for each p, 10
samples of size n = 750 were drawn from an exponential

distribution with true hazard Aexp(x) where xB=x,3,+

XoBot - +xpPp, and Bi=Po= -+ =,=0.25. Awas cho-
sento yield an average S-year survival of 0.75. The sam-
ples had an average of 185 deaths. For each sample, a
Cox model was fitted to the p covariates, and the pre-
dicted 5-year survival was computed for all subjects.
These estimates were compared with the true survival
probabilities for the same subjects. Average absoluteer-
rors were averaged over the 750 subjects and over the 10
samples. A second experiment was done with n = 250,
with an average of 64 deaths at 5 years.

In Figure 3, the solid lines represent results from the
n = 750n experiment and the dashed lines represent re-
sults from the n =250 experiment. Results for the “sick”
(high-risk) patients are denoted with boxes (M ). Lines
without boxes denote results for the “average” patient.
The curves for the average patients were constructed by
averaging the error over the entire patient population.
The curves for the sick patients were constructed by av-
eraging over patients from the lower decile of predicted
survival.

If the investigator wishes to limit the average error to
some fixed value, say 0.05, there is an upper limit on the
number of parameters to be estimated. For the average
patient, in the n =750 experiment, the expected survival
error is monotonically increasing in p and exceeds 0.05
when p > 14. For the n = 250 experiment, the error

Figure 3. Average error in Cox 5-year survival estimates

reaches 0.05 when p > 5. Absolute survival error rises
more steeply for the highest decile of predicted risk.
Survival estimation is often crucial for these sickest pa-
tients. Here, the error exceeds 0.05 for p > 5 (n = 750)
and for p > 3 (n = 250). Thus, when the number of pa-
rameters is large compared with the number of events in
the sample, overfitting occurs. This overfitting has
more effect for patients with very high or very low pre-
dicted survival, because overfitting causes predicted
survival to shrink toward the mean survival. Harrell,
Lee, Matchar, and Reichert (1985) proposed that there
should be at least 10 events for every candidate covari-
ate in order to guard against this overfitting. Other work
has shown this applies almost equally in a stepwise vari-
able selection where p is the number of candidate vari-
ables. We need to constantly remind ourselves of the
penalty for creating very complex models.

One final point is that covariate selection should be
done with the physician and the statistician working as a
team, each supplying their own particular expertise and
knowledge to the enterprise.

Prediction

Broadly speaking, there are two functions of predic-
tion—forecasting and hypothesis testing (see Bunge,
1979, for a general discussion). In survival analysis,
forecasting is the deduction of future probabilities of
survival for a given patient or population. An example
of hypothesis testing is confirming or refuting the hy-
pothesis that a specific covariate influences survival.

Naftel (in this volume) points out that survival models
provide curves for each treatment to both the patient and
the physician; these curves represent the most likely
probability of survival at each time point. Survival pre-
diction serves a number of worthwhile purposes.
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By comparing the curves over time, the patient and
physician can make a more informed decision about
treatment selection. If the patient’s personal goal is to
maximize the likelihood of short-term survival, a specif-
ic treatment may be chosen. If the patient’s goal is to
maximize long-term survival, an alternative treatment
may be chosen.

Onalarger scale, the prediction curves can provide in-
formation to public and private health care providers
about the most likely survival curve for specific patient
groups. Given the predicted survival curves, these agen-
cies may recommend different treatments and reim-
bursement strategies for different patient groups.

Multiphase Model

The multiphase model is structurally more complex
than other parametric models. The primary goal in its
development was to model a wide variety of survival
shapes and provide ameans to determine how covariates
influence various parts of the survival curve.

Strengths. The multiphase model can estimate the ef-
fects of covariates at different time segments along the
survival curve. Table 2 lists covariates that influenced
outcome in 2,967 coronary artery bypass graft patients
(Califf, Harrell, Lee, and others, 1989). Smith, Harrell,
Rankin, and others (1991) used the multiphase model to
analyze these data. Table 2 lists these results along with
those from an analysis using logistic regression for
30-day mortality and with results from the Cox model
for long-term survival. A comparison of these three
analyses shows a strength of the multiphase model.

The early phase mimics results of the logistic model.
Both have the ability to estimate covariate effects when
the covariate is influential for a short time after treat-
ment is begun. Itis possible that the initial hazard due to
the treatment may last for shorter or longer periods of
time depending on other patient characteristics. In such
a case, the logistic model using fixed-length followup
(in-hospital, 30-day, or 6-month mortality) may not be
adequate to describe accurately the relevant covariates
that affect the early treatment hazard. The multiphase
model can estimate such effects more accurately, pro-
vided that patients are followed long enough to define
the early phase accurately.

The Cox model identifies covariates that are found in
at least one of the phases of the multiphase model. The
Cox model “averages” over the entire hazard, whereas
the multiphase model identifies covariates that domi-
nate the hazard at particular times. Thus, the Cox model
and the multiphase model tend to give consistent results
overall, but the multiphase model yields additional in-
formation on when the covariates most influence sur-
vival, A modification of the Cox model can permit the

partition of survival into separate phases but at the ex-
pense of considerable computational burden (Anderson
and Senthilselvan, 1982).

Another strength of the model is that it is implemented
as a procedure in SAS (Blackstone and Naftel, 1988),
one of the most versatile, powerful, and widely used of
the extant statistical analysis software packages. Thus,
data input and results output are relatively straightfor-
ward.

Weaknesses. The learning curve for using this model
1s steep and daunting. In order to model some survival
curves accurately, up to three different hazard functions
must be specified with as many as nine shaping parame-
ters (four in the early phase, one in the middle phase,
four in the late phase) to be estimated. One successful
strategy for estimating the hazard parameters is to in-
clude only one distribution and achieve the best fit, then
fix the parameters and add a second phase; when the best
fit is achieved, fix the parameters in the second phase
and add the third phase. When parameters for this last
phase have been estimated, constraints on all parameters
are removed and the model is refitted to get a complete
set of hazard parameter estimates. Ateach step, the sig-
nificance of the phase can be assessed with the likeli-
hood ratio test.

When all the phases have been identified, the hazard
parameters are fixed, and the separate streams of covari-
ates are added. When covariate selection is completed,
all constraints on the hazard parameters are released and
the model is run again to get final estimates for the haz-
ard parameters, covariate effects, and the covariance
matrix. This entire procedure can be long, onerous, and

Table 2. Comparison of covariates selected by three
survival models

Logistic Multiphase! Cox

Covariate 30 day death early late model
Earlier year of surgery J ° . .
Lowerejection fraction o . . .
Greaterextent of

coronary artery disease ° ° o .
Olderage ° ° . .
More conductionabnormality ° J . .
History of hypertension e . N .
Greateranginal symptoms e e o
Lower weight ° . .
Greater vascular disease . .
Presenceof diabetes . .
Greatermyocardialdamage . .

"Multiphase analysis originally published by Smith, Harrell, Rankin,
and others,1991.

Note: A dot (¢) indicates that covariate was significant (p <.05).




expensive. In addition, up to three streams of covariate
effects may be modeled. Thus, the previously described
problems of finding spuriously significant covariates
are compounded greatly.

As currently implemented, there is no ability to test for
equal covariate effects across phases during the step-
wise covariate selection process. Only after covariate
selection can a test be done on those covariates selected
for two or more phases. If a covariate is selected for one
phase but not for another, no test of equality of effect is
possible unless the covariate is forced into the model.
Furthermore, if a covariate has a similar effect over two
or more phases, there is no facility for estimating a com-
mon effect. The next version of the model, however,
will have this very useful facility (Naftel, personal com-
munication, September 1991).

We recommend that the papers by Blackstone, Naftel,
and Turner (1986), Bradley, Bradley, and Naftel (1984),
Turner (1975), Turner, Hazelrig, and Blackstone
(1982), and Turner and Pruitt (1978) be reviewed in or-
der to understand the interrelationships among the dis-
tribution subfamilies.

Summary

Many models are available for use in assessing treat-
ment effects, including the nonparametric models such
as the Cox model, the parametric variations on the Cox
model (Herndon and Harrell, 1989), and other paramet-
ric models (for instance, Bailey, 1988), as well as the
multiphase model. These models may incorporate sepa-
rate streams of covariates or use time-dependent covari-
ates to assess treatment effect. Each of these models is
under continual development and offers great promise
for more accurate identification of important covariates.

No model or process completely solves all the prob-
lems outlined here, but the multiphase model is a new
and powerful analytic technique for treatment compari-
son, covariate selection, and prediction and deserves
further evaluation.- It has been used successfully in a
wide range of applications requiring many different
hazard shapes.? The hallmark of any survival modeling
strategy should be simplicity, and everyone engaged in
this pursuit should carefully examine whether the prob-
lem and the quality and quantity of data at hand warrant
the complexity of the model (or indeed, any model) be-
ing used. Also, the more complex the model, the more
important validation becomes.

2The American College of Cardiology/American Heart Associ-
ation Task Force Report (1991) has extensiveexamples of itsusein
studies of coronary artery discase, and an extensive bibliography.

3Pryor, D.B., Principal investigator, AHCPR grant no.

HS06353-01, Outcome assessment program in ischemic heart dis-
ease, 1989.

Other issues that were not discussed by Naftel (in this
volume) but that ultimately bear on the survival analysis
problem include the use of treatment data not collected
in a randomized clinical trial and the analysis of treat-
ment data where treatment is confounded with data col-
lection site. These issues have been addressed (Hlatky,
Califf, Harrell, and others, 1988)%, and continue to be
studied.

The prediction process has some interesting ethical
ramifications. The method permits an objective assess-
ment of risk. The patient and the health care provider,
however, looking at the same treatment survival curves
may make two diametrically opposite choices. Con-
flicts may arise if the health care providers are unwilling
to pay for the patient’s choice. Thus, there is potential
for conflict between two sets of ethics: those of the pa-
tient as an individual and those of society as a whole.

Survival analysis, with its ability to predict the benefit
of one treatment over another, is only one part of the
larger problem of how to allocate health care resources.
The next step is to be able to predict the cost (either cost
to the patient, cost to the health care provider, or in some
sense, cost to society) with the same precision and accu-
racy that we can predict benefit. The modeling process
could play a central role in the resolution of this impor-
tant problem.
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Appendix

Survival models. In general, survival models can be
thought of as a special case of a two-state (alive, dead)
Markov process (appendix figure). The transition rate
from the alive state to the dead state is governed by the
hazard function A(t;®) where t is time and O isavector
of parameters that govern the shape of the hazard func-
ton. The corresponding survival function is S(t)=
exp{-A(t,0)}, where A(t,®) is the cumulative hazard
up to time t. The central issue of survival analysis is to
describe A(;©) and to determine what covariates
modify A(t;0). There are two general methods of incor-
porating covariates into the model. The first is to as-
sume that one or more of the parameters, ©, are linear
combinations of the covariates, x (eg @l-:gf_)). This




method was used early by Feigl and Zelen (1965) and
more recently by Bailey (1988).

Appendix figure.

Alive A (59) Dead

Anothermethod is to multiplicatively scale A(t;®) by
exp(xf) so that the adjusted hazard is A(t;x.0) =A(t:©)
exp(xf). This is the proportional hazards formulation.
If a specific parametric form of the hazard function is as-
sumed, the model is called parametric. If no specific
function form is assumed, then the mode] is semi-para-
metric (Cox, 1972).

The multiphase model assumes the cumulative hazard
to be the weighted sum of three hazards, where the
weights are scaling functions of the covariates. One
phase describes the early phase of survival. A second
phase describes intermediate survival. The third phase
describes late survival. Each of these three phases is
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present over all time but dominates survival during only
one time interval. The total cumulative hazard function
is the sum of the three phases; that is

Ar(t) LB - AR D+ (x2,B2) - As(t,0))+
Us(x3.B3) - A3(1.03), ©

where, for i=I(early), 2(middle), and 3(late),
Li=exp(x;B;) is the scaling parametric function of the co-
variates, x;=vector of covariates, ﬁi:vector of regres-
sion coefficients, Aj;=cumulative hazard function,
Oji=vector of parameters governing the shape of the cu-
mulative hazard, and t=time to failure. The specific
functional forms of A; are given by Blackstone, Naftel,
and Tumer (1986). The survival function is given by
S()=exp{-A1(t)}. The model permits the description of
a survival function using any one, two, or all three of
these phases.

The form of the scaling parametric functions, L;, is
equivalent to a proportional hazards assumption for
each phase of the model. Because the model can de-
scribe each phase of the survival curve by a different set
of covariates, the separate phases of the survival curve
can be adjusted independently.




