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When sampling from two multivariate normal populations having
equal covariance matrices, both the Fisher Tinear discrimi-
nant function (LDF) and logistic multiple regression model
(LRM) can be used to derive valid estimates of the probability
that a new observation comes from one of the two populations.
In this setting, the LDF has been shown to yield asymptotically
smaller relative classification error rates. When assumptions
for the LDF are violated, LRM has been shown to be superior.

In many situations, one is interested in using more information
from a probability model than what is needed to devise a

binary classification rule. In this paper we will study the
relative performance of the LDF and LRM when all assumptions

of the LDF are satisfied, to compare the spectrum of posterior
probabilities arising from the two models. The cross-validation
predictive accuracy and extent of separation (discrimination)
of the posterior probabilities from the two methods will be
assessed.
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1. INTRODUCTION

Suppose that a p-dimensional random vector X can be observed from one of two p-
variate normal populations with equal covariance matrices,

X~ Np (UU,E) with probability T ,

X o~ Np (u],z) with probability T. (1.1)

If a random sample under model (1.1) is available, say (X], YT)’ (XZ’ Yz),...,

n’> 'n
with probability I Bayes' theorem (Truett et al., 1967) can be used to derive

(X , Y ), where Yj is an indicator of the population being sampled so that Yj=1

a model for the probability of Yj conditional on Xj:

¥ ¥ 1 ,
i (YJ'HXJ’) T T+ exp{- (a+XjB)} (1.2}

Under the assumptions in (1.1), the maximum 1ikelihood estimates of a and B are
given by
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B & S (X :'X )Is
0 (1.3)
a log, ny/ng = 1/2(X+Xy) 8
where
¥a B Y Wffew R v
6 ", Ly YilMor i, &) Byt
J J
s =1 ZO(XJ—XO)(XJ.—XO)' + ET(XJ_X”(XJ_X])LM (1.4)
% Y

These estimates form the basis of the LDF procedure, with the LDF being a + X&.
The LDF has been used extensively, especially in biomedical and epidemiologic
applications (see Abernathy, et al., 1966, for example). Lachenbruch (1975) has
provided an excellent extensive bibliography.

By assuming only random sampling and (1.2), maximum 1ikelihood estimates of a and
f can be derived conditional on the cobserved xj (Walker and Duncan, 1967). These
estimates must be computed iteratively; there is no closed-form solution to the
1ikelihood equations arising from (1.2). These conditional maximum 1ikelihood
estimates form the basis of the LRM estimation procedure.

Whichever estimation method is used, the customary binary classification rule
consists of assigning an observation X to population 1 if the estimate of
Pr(Yj¢1|X) from (1.2) is greater than 1/2, or to population O otherwise. Efron
(1975) demonstrated that if (1.1) holds and n increases without bound, the LDF
yields lower rates of binary classification errors relative to the LRM. He
showed that the relative efficiency of the LRM also decreases when T is far from
1/2 or when the separation between populations increases. (This relative effi=-
ciency was found to range from about 1/2 to 2/3.) The separation is measured by
the square root of the Mahalancbis distance, given by

D= [luymug) 171 (ugmug) 1% (1.5)

When (1.1) is not satisfied, Halperin, Blackwelder, and Verter (1971) have shown
the LDF method yields biased estimates of a and 8, and others (Press and Wilson,
1978, D'Agostino and Pozen, 1982) have shown that the LRM has better classifica-
tion error rates. For a variety of reasons, Press and Wilson strongly advocate



Discrimination Analysis 335

the use of the LRM when there is any evidence that (1.1) is violated, both in
formulating a binary decision rule and in deriving absolute posterior probabili-
ties.

Even when (1.1) holds, we believe there are several unanswered questions con-
cerning the comparison of the LDF and LRM. 1) What is the relative behavior of
the two for finite sample sizes? 2) Should one calculate relative error rates,
or the difference of absolute error rates? 3) Should one even calculate error
rates? Are the two models really only used to derive binary decision rules?
Shouldn't a more general measure of predictive discrimination or predictive
accuracy be used to judge the performance of the two models?

We believe the questions in 3) are especially important. It is apparent, es-
pecially in biological and medical applications, that these models are frequently
used to derive probabilities of Y=1 rather than for making binary decisions,
which can be quite arbitrary depending on the cutoff value chosen. Even when the
user of the model is not accustomed to dealing with absolute probabilities, she
often wishes to establish a "gray zone" for application of the model. In diag-
nostic modeling problems, for example, a physician may classify the disease as
"present" if the estimated probability is greater than 0.90, "absent" if less
than 0.10, and perform another diagnostic test if the probability is between 0.10
and 0.90. In this example, the trinary decision rule could be studied, but the
element of arbitrariness of the 0.10 and 0.90 thresholds detracts from the analy-
sis. Another major disadvantage of using simple error rates is that a predicted
probability of say 0.51 carries the same penalty as a probability of 0.99 when
the observation arose from population 0.

In this paper we will discuss four measures of comparing the predictive accuracy
of the two models and present results of simulation studies that use these
measures to compare LDF and LRM when (1.1) holds.

2. MEASURES OF PREDICTIVE ACCURACY

There are two important aspects of the predictive accuracy of a model. Reliabil-
ity refers to the degree of bias of estimates. If a model estimates Pr(¥Y=1|X) to
be 0.80, 80% of observations with Tike values of X should have Y=1. Discrimina-
tion refers to the ability of a model to discriminate or separate values of Y.
When Y is binary, discrimination is a measure of the extent to which observations
with Y=1 have higher predicted probabilities of Y=1 than do the observations with
¥=0. Discrimination is the more important aspect of predictive accuracy, we
believe, because good discrimination is necessary for accurate predictions.
Reliability can be achieved by calibration without affecting discrimination,
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whereas a model that does not discriminate well cannot be fixed.

For each method of assessing accuracy discussed below, it is assumed that the
model is derived on a training sample and tested in a separate test sample, to
obtain an unbiased estimate of the method's accuracy.

A very general measure of discrimination can be derived from the Kendall-type
(Goodman and Kruskal, 1979) rank correlation between predicted probabilities and
observed outcomes. The simplest way to state such correlation indices is through
the concordance probability which we label ¢. When predicting the probability
that Y=1, this index is defined by the proportion of pairs of observations, one
having Y=0 and the other having Y=1, such that the one having Y=1 also had the
higher predicted probability. If the two probabilities are tied, that pair
receives a score of 1/2 instead of O or 1, i.e.

:
Yy

n
; j£1[I(Pj>P1’) + 1/2 I(Pj=P_.I)]/nDn.i, (2.1)
0 vjﬂ

o
1}
I Ne-13

where PK denotes an estimate of P(Yk=1lxk) from (1.2). The gquantity 2(c-1/2) is
Somer's Dyp rank correlation coefficient (Goodman et al., 1979). In this binary
Y setting, c¢ is proportional to the Wilcoxon-Mann-Whitney statistic for comparing
P
area under a "receiver operating characteristic" curve, a quantity routinely used
to measure the diagnostic ability of medical tests (Hanley and McNeil, 1982).

K values from the Y=0 and Y-1 samples. The c¢ index in this case is also the

The ¢ index takes on a value of 1 for perfect discrimination and 1/2 for random
predictions. An advantage of the ¢ index is its ease of interpretation and its
generalizability to more complex problems such as ordinal response and censored
survival time data (Harrell, et al., 1984).

The ¢ index is purely a measure of discrimination. There are many measures of
predictive accuracy that take discrimination into account but also penalize a
predictor for being unreliable. One such measure is the logarithmic probability
scoring rule (Cox, 1970), stated by Shapiro (1977) as

Q=

1

13>

][H]ogz (P_.[Yi (1—P1.)1_Y1')]/n . (2.2)

Q obtains a value of 1 for perfect predictions (P1=Y1 for all 1), 0 for random
predictions, and values less than O for predictions that are worse than random.

Another accuracy score similar to Q is the quadratic score of Brier (1950) con-
sidered extensively in meteorologic forecast assessment. We will state this index
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here as

(Pi-Yi)Z/n (2.3)

Perfect predictions receive a score of 1, and perfectly bad predictions receive
a score of 0.

A fourth way to quantify the relative accuracy of two predictors, which also
takes both reliability and discrimination into account, involves using both pre-
dictors as covariates in a model to predict the values of Y in the test sample.
We then ask the question: do the predictions of method 1 (P}) add information
about predicting Y to the predictions of method 2 (P%) and vice-versa? A formal
statistical test can readily be made for both hypotheses, and the relative pre-
dictive ability of each method may be measured by comparing a statistic testing
the strength of an individual predictor to a statistic for testing the strength
of the best linear combination of the predictors. Since Y is binary, it is
natural to use the LRM itself for this purpose, taking as covariates logit (P})
and logit (P?), where logit (q) = 1oge[q/(1—q)]. Then a statistic for testing
whether Pi adds information to that provided by Pi is a likelihood ratio chi- :
square statistic with one degree of freedom. A measure of the "adequacy" of Pi
is given by

. 1
A(P!) . L{Togit Pi) , (2.4)

L L(Togit Pl, logit P%)

where L(logit PE) is the log likelihood due to logit P} alone, and L(logit P}

logit P?) is the log likelihood due to the best Tinear combination of logit

Pl and logit P?. It should be noted that L(logit P}) would be a linear transla-

tion of Q in (2.2) had the logistic slope coefficient for logit P} been fixed at

1 and the intercept been fixed at 0. However, we are allowing these parameters to be
estimated in the test sample. We define A(P?) in a similar way using (2.4). A
disadvantage of both the Q and A measure is that if predicted probabilities of 0

or 1 exist, the measures are undefined. Since estimates of 8 can be infinite for

the LRM, this can be a problem. However, there is no problem with the LRM pre-
dicted probabilities themselves in such cases.

3. SIMULATION STUDIES

To estimate the four measures of predictive accuracy for LDF and LRM discussed in
section 2 based on independent model validation, a series of simulation experi-
ments was conducted. The value of p (the dimension of X) was fixed at 5 for all
studies, and the covariance matrix was fixed at
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1 0 0 0 0
T e v o

¥ = T 92 B
1 0

1

and Ho Was fixed at (0, 0, 0, 0, 0). Values of 1, were varied to yield different
separations (1.5) as shown in Table 1.

Table 1. Values of y and Corresponding Separations

Hy D
] ] 25 5 ] .94
1.0 1.0 1.0 1.0 .0 1.87
1.4 1.4 1.4 1.4 1.4 2.62
1515 175 1.75 1 :75 1.75 i
2.0 2.0 2.0 2.0 2.0 3.74
2.5 2:5 2:h 255 2.5 4.68

The sample sizes consisted of n=50 and n=130. The prior probability H1, was set
at 0.65 and 0.85 because the results of Efron (1975) suggest that LRM should have
decreased efficiency as H] moves farther from 0.5. For each combination of n,
Hys and M, a training sample and test sample each of size n was generated using
the RANNOR and RANUNI random number generators in SAS (Ray, 1982a). The LDF co-
efficients were estimated using the SAS DISCRIM procedure (Ray, 1982b), and the
LRM parameters were fitted using the LOGIST procedure (Harrell, 1983). Posterior
probabilities were then calculated on the test sample and c, B, and Q were calcu-
lated for the test sample. These ¢, Q, and B values were averaged over 60 sam-
ples (replications) for each combination of parameters. For the evaluation which
used LRM likelihood ratio statistics in (2.4), all test samples were combined for
a pafticular combination of parameters and only one set of summary statistics was
calculated based on ( bservations.

4. RESULTS

The results of the simulation study are shown in Table 2. It can readily be seen
that the discrimination ability of both the LDF and LRM increases smoothly with
increasing D. In the situations studied, LDF is superior to LRM, but by quite a
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small amount, judged by ¢, Q and B. The index A, where computable, quantifies
the "adequacy" of LRM at 90% on the average.

Table 2. Discrimination and Predictive Accuracy Logistic Regression
Model vs. Linear Discrimination Function

D 1 n’ LDF LRM LDF LRM LDF LRM LDF LRM d

.94 .65 50 .69 .69 .99 .85 «Hl .07 .79 i) .06
130 Ry .72 1.00 .95 .16 .15 .80 .80 .06

.85 50 .67 .67 == -- -- -- .87 .86 .06

130 il J11.00 .88 .44 .42 .88 .88 .03

1.87 .65 50 .89 .88 1.00 .90 -- -- 87 .86 .06
130 .90 .90 1.00 95 .45 .42 .88 .88 .04

.85 50 .88 .85 -- -- -- -- .91 .89 .06

130 .90 .89 .99 .86 .62 .57 .92 .92 .03

262 .65 50 .97 .94 -- -- -- -- 33 .89 .08
130 .96 .96 1.00 .93 .65 .59 .93 .92 .03

.85 50 .94 92 -- - s = .94 .91 .08

130 .96 .96 1.00 91 7 e} .95 195 .03

3.27 .65 50 39 .97 — = -= -- .96 .93 .06
130 799 .98 -- -- -- -- .96 .95 .03

.85 50 .98 « 97 - - e it .97 95 .05

130 .98 .97 = o -- -- .97 .95 .05

3.74 .65 50 99 H97) -- -- -- -- .97 .94 .05
4.68 .65 50 1.00 1.00 -- -- -- -- .99 .98 .02

D defined in (1.5) A defined in (2.2)
I, = prior pr?bab;11ty B defined in (2.3)
¢ defined in (2.1 1 2
: : d = average |P' - P
A defined in (2.4) could not be estimated due to at least
one infinite estimate of g

The asymptotic results of Efron (1975) suggest that the relative performance of
LRM should suffer for larger D. There is a small indication of this in Table 2.
For example, ¢ differs by more than 0.01 in many cases for larger D. However, as
D exceeds 2, both LDF and LRM appear to offer excellent predictive accuracy.

Another way to study the relative quality of posterior probabilities arising from
LDF and LRM is to assess how the two sets of probabilities differ on the average.
Over all cases studied, the average absolute difference between P] and P2 was
0.06 when the prior probability was 0.65 and 0.04 for a prior probability of
0.85. Thus the two methods yield very similar probability estimates on the
average.
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Examining the distributions of absolute differences according to the level of LDF
posterior probability sheds further Tight. For small to intermediate D, LRM prob-
abilities agreed well with LDF for all levels of LDF probabilities. Table 3 dis-
plays this distribution for a large value of D (4.68) and for n=50, I, = 0.65.
For this case, the overall average difference was 0.02, and 2858 of the 3000 test
observations had an LDF posterior probability less than 0.05 or exceeding 0.95.
Of these, the average absolute difference between LDF and LRM probabilities was
0.007. Of the remaining 142 observations, the average disagreement was 0.26.
Thus, a problem with LRM may 1ie in an instability of estimates in the middle
probability range. In samples with large separations, one or more of the maximum
Tikelihood estimates of regression coefficients may be infinite. For such situa-
tions, some large finite regression estimates must be used, and there will not be
many estimated probabilities intermediate betwen zero or one. The ones that do
fall in this intermediate range are likely to be unstable. This is probably re-
lated to Efron's finding for large D regarding a dropoff in relative accuracy for
LRM using a rule based on exceeding the 0.5 predicted probability cutoff. How-
ever, it is important to note that in this situation, the LRM is able to separate
Y=0 from Y=1 very well with extreme probabilities. Also, the proportion of cor-
rect classifications (using a 0.5 probability cutoff) for this extreme separation
case is virtually as good with LRM as with LDF (0.986 vs. 0.976). Here the ratio
of correct classification rates is near one although the relative efficiency of

LRM as measured by the ratio of classification errors is 0.58.

Table 3. Distribution of Absolute Differences Between LDF and LRM
Probability Estimates n=50, D=4.68, H]=.65
A11 Test Samples Combined

pl Frequency Average \P1—P2\

0 - .05 971 .01
.05 - .15 37 .17
15 - .25 11 .32
;b = 538 11 .36
.35 - .45 12 .47
.45 - b5 8 .34
55 - .65 8 .47
.65 - .75 14 231
18w 8h 8 .21
.85 - .95 38 .16
.95 -1.00 1887 .005
Overall 3000 .02

5. DISCUSSION AND CONCLUSIONS
In assessing the predictive accuracy of a given method, it is important to study
the entire spectrum of predicted values. The purpose of a probability model is



Discrimination Analysis 341

generally to predict absolute probabilities. In this Tight, the properties of
predicted probabilities from the LRM or LDF in relation to the dependent variable
Y should be used to gauge the usefulness of a LRM or LDF. Relative classification
rates, especially misclassification rates, are not adequate measures of relative
performance for probability models.

If one accepts this premise, one must choose a measure of discrimination or pre-
dictive accuracy. All four such measures studied here indicate that even when
the conditions under which LDF was optimized are satisfied, the performance of
LRM is very nearly as good as that of LDF for reasonable sample sizes and values
of D. Predicted probabilities from the two methods also have a small absolute
difference on the average when multivariate normality holds. Since others
(Halperin et al., 1971) have shown that LDF can yield arbitrarily biased prob-
ability estimates when its assumptions are violated (e.g. one of the predictor
variables is dichomotous), we argue that LRM is the tool of first choice among
these two competitors. With the availability of efficient computers and computer
programs, the issue of the computational requirements of the LRM becomes unim-
portant.
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