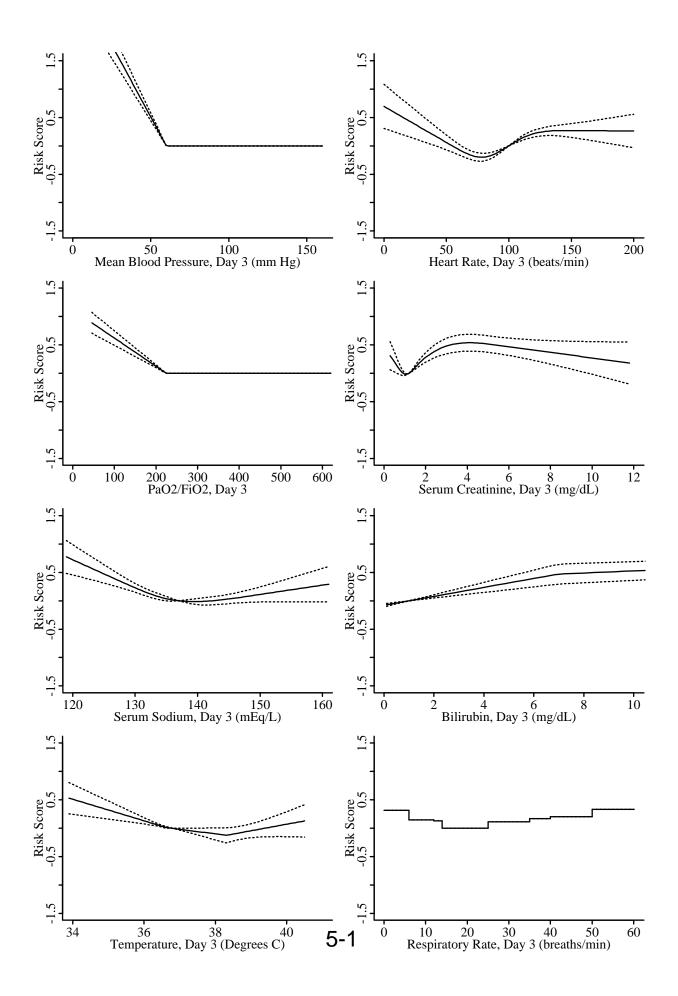
Measurement, Statistical Consulting, and Computing Issues

Frank E Harrell Jr Division of Biostatistics and Epidemiology Department of Health Evaluation Sciences University of Virginia School of Medicine Box 800717 Charlottesville VA 22908 USA fharrell@virginia.edu hesweb1.med.virginia.edu/biostat

SMITHKLINE BEECHAM BIOMETRICS ADVISORY BOARD 30 NOVEMBER – 1 DECEMBER 2000

- 1. Measurement issues in chemometrics: What's wrong with ratios?
- 2. Assay / Microarray measurement issues
- 3. Problems with ratios in clinical lab data
- 4. Strategies for analyses that are "correct enough"
- Applications of pharmacoeconomics to drug discovery
- Bayesian methods in drug discovery and dose response assessment
- 7. Problems with discrete survival data
- Competition from software, and statistical knowledge dissemination
- 9. Web-based computing as a statistician extender
- 10. Merck Drug Discovery StatServer
- 11. SAS vs. S-PLUS

- Unlike differences or log ratios, ratios are asymmetric
- What to subtract from denominator? Most researchers assume zero.
- Ratios have strange distributions
- Kronmal (1993) [2] cited many problems with using ratios in statistical modeling
 - Spurious correlation in using ratio variables even if all component variables of ratios are uncorrelated
 - Division of only the dependent variable by an independent variable can result in regression coefficient estimates for the other independent variables that cause inappropriate conclusions
 - Use of a ratio as an independent variable can result in inadequate adjustment for component variables of the ratio


- Ratio variables should only be used in a full model containing all the component variables
- Results of regression analyses incorporating ratios are not readily comparable across studies with different distributions
- Kaiser (1989) [1] states that whatever effect measure is chosen (ratio, difference, etc.) should be demonstrated to be uncorrelated with the base value

2. Assay / Microarray Sequencing Issues

- What about values below the lower limit of detectability?
- Not appropriate to eliminate samples
- If using parametric analysis it may not be appropriate to treat values as zero
- Instead, treat them as left-censored
- For rank-based analyses zeros are usually OK
- Wikman *et al.* (2000) [8]: Affymetrix p53
 Genechip's 1464 gene chip positions need to regard "each chip position as a separate entity with its own noise and threshold characteristics"
- Account for row and column effects

3. Problems with Ratios in Clinical Lab Data

- It is common to report the proportion of patients with a lab value $> 3 \times$ upper limit of normal
- Problematic: loses information from continuous variables, patients who were "almost abnormal" at baseline will have an easy time moving to the abnormal category
- Problem with non-monotonic risk relationships
 (e.g., normal range in the middle of the distribution)
- Need to treat lab values as continuous variables without allowing abnormally low values to cancel abnormally high values
- Advantageous to transform to a scale for which "abnormality points" can be added, e.g., log odds, log hazard, log survival time
- Example: scoring physiologic derangements

4. Strategies That are "Correct Enough"

- Example: can one ignore heteroscedasticity in a regression model? It depends.
- Rather than doing a weighted analysis, make the transformation of variables an integral part of the analysis
- Regression splines for independent variables
- Nonparametric smoothers in transform-both-sides generalized additive models, e.g. AVAS (Tibshirani [6]): transform Y to make variance of residuals independent of Ŷ.
- When only two variables are being analyzed at a time and only a P-value is needed, use rank test and rank correlation
- Use robust rank-based regression (Cox, proportional odds model) for multiple variables

5. Pharmacoeconomics in Drug Discovery

- Can't think of any applications except for Bayesian decision analysis incorporating costs (below)
- Are plenty of applications to drug *development*
- See Senn (1996) [5] for probabilistic decision analysis for portfolio management of compounds

6. Bayesian Methods in Drug Discovery and Dose Response Assessment

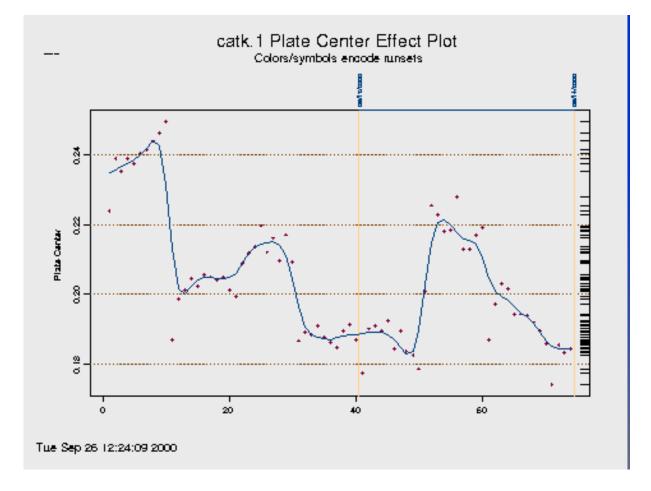
- In drug discovery type I error is of concern
- Bayesian prior distributions are usually a better way to deal with multiplicity
- Can incorporate prior distribution for the chances that a biomarker is an efficacy marker or for probability of monotonicity of dose-response
- Can do formal Bayesian decision analysis that incorporates costs of false positives and false negatives
- Bayesian methods have small-sample exactness without conditioning on only part of the data
- Opportunity for statisticians to be called on more by other reseachers: "It takes time to be a Bayesian"

- May be best to use a method that is dedicated to heavily tied data, e.g. Prentice-Gloeckner [4]
- Investigate using Efron likelihood in Cox model
- Try randomly breaking ties and using ordinary Cox likelihood

8. Competition from Software / Statistical Knowledge Dissemination

- Not enough statisticians to go around
- Researchers are using statistical software and choosing the wrong software (e.g., Excel)
- Newsletter on choice of software
- Ongoing short course series (e.g., Statistical Thinking in Biomedical Research) emphasizing study design, bias, measurement, precision, power, graphics, demos ("what a statistician does with data")
- Clients should know almost as much about statistics as we know about biology

9. Web-Based Computing as a Statistician Extender


- "Safe Statistics": Pikounis, Gunter, Liaw, Pajni (2000) [3]
- Statistical strategies that
 - "Produce useful answers 'most' of the time
 - Indicate where answers may not be useful
 - Have 'adequate' performance
 - Handle missing values and other data problems
 - Are tuned to user skill level

- In practice this means
 - Graphics
 - Well designed user interface
 - Resistant methods
 - Fewest assumptions possible (nonparametric procedures)
 - Use of subject matter knowledge whenever possible"
- Statisticians can control which methods are distributed or emphasized to non-statisticians

- S-PLUS StatServer is web based, no special client software
- 96-3456 well plates for HTS assays in drug discovery
- Take into account positional effects within plates (esp. edge effects), changing background response and assay sensitivity, trends, cycles, shifts, missing values
- Used by 3000 scientists with little formal stat knowledge, fewer than 10 statisticians to support them
- Drilling down after potential problems seen (e.g., analysis by rows or by columns)
- Heavy on graphics and nonparametric trends
- Error messages to users are also E-mailed to statisticians

HTS QC Plots	HTS Image Plot
Index Of First Plate: 1	Index Of First Plate: 1
Index Of End Plate: 74	Index Of End Plate: 20
Plot Display: Color	Layout: 4 X 5 💌
Analysis Name: catk	Graph Type: Estimated Background
Create QC Plots	Analysis Name: Catk
	Create Image Plot

- SAS 8 has narrowed the gap to 5 years
- Major advantages of S-PLUS:
 - 1. No distinction between DATA and PROC steps
 - No macro language; all commands are "live".
 Example:

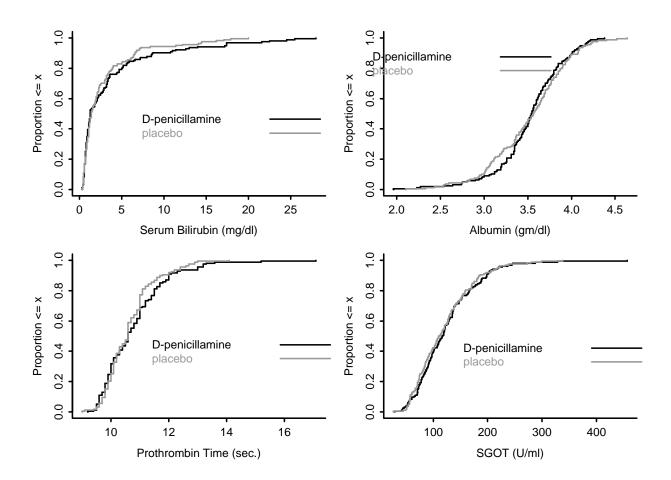
```
if(is.category(x) |
is.character(x) |
length(unique(x)) < 20)
table(x) else quantile(x)</pre>
```

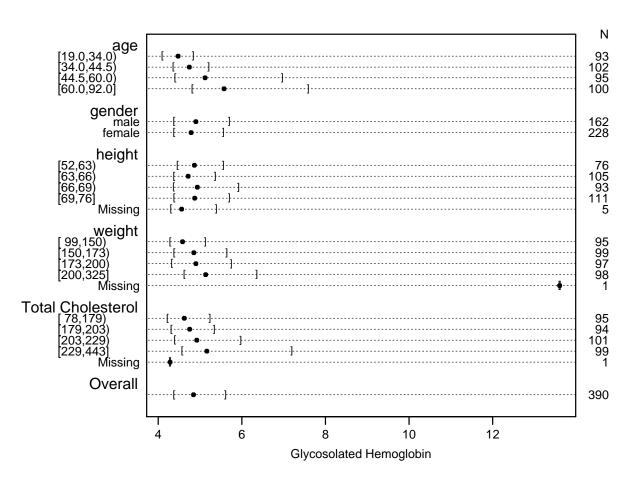
- Many more data types than SAS, users can add their own attributes to data (e.g., flag strange or imputed values)
- 4. Truly interactive
- 5. Graphics
- 6. S-PLUS 2000 comes with 2900 functions

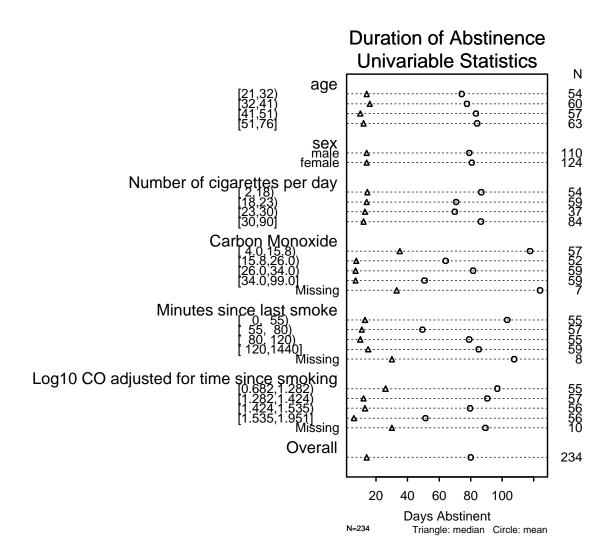
- Language is extendible and relatively simple to program; user-written functions are written in the same language used by the developers; statisticians world-wide are writing functions
- Speed of implementation of modern methods (StatLib)
- Methods for modeling, exploratory data analysis, missing data, graphics after model fitting, bootstrap, table making, much more [7]

- 10. No need for output delivery system:
 - All entities are objects, allowing all functions to communicate directly

```
- Special methods for formatting output, e.g.:
 # create BTFX table (alt: HTML)
 latex(summary(marker \sim age+sex))
 # logistic regression model with
 # regression splines, interactions
 f \leftarrow lrm(y \sim rcs(age, 5) * sex +
           rcs(pressure,4))
 f
                 # ordinary printout
                # show fitted shapes
 plot(f)
 Function(f) # create S+ function
 sascode(Function(f))  # SAS code
 # typeset fit in algebraic form
 w \leftarrow latex(f)
 html(w) # convert to HTML
 # future: convert to XML with
 # embedded MathML
```

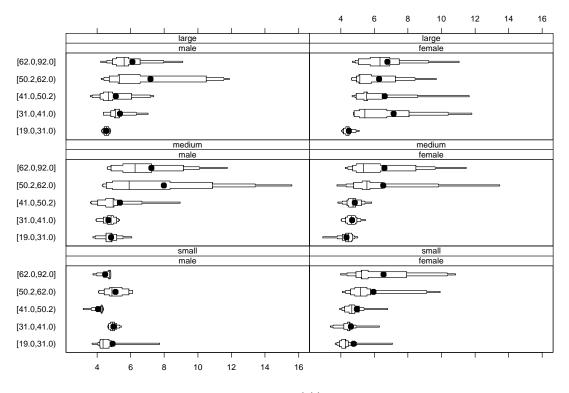

xml(f)

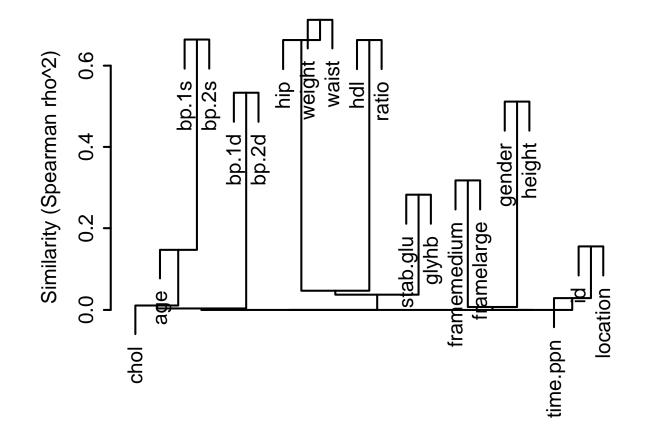

Table Making Example


	Ν	D-penicillamine $(N=154)$	placebo ($N=158$)
Serum Bilirubin (mg/dl)	418	0.725 1.300 3.600	0.800 1.400 3.200
Albumin (gm/dl)	418	3.34 3.54 3.78	3.21 3.56 3.83
Histologic Stage, Ludwig Criteria : 1	412	3% $\frac{4}{154}$	8% $\frac{12}{158}$
2		21% $\frac{32}{154}$	22% $\frac{35}{158}$
3		42% $\frac{64}{154}$	35% $\frac{56}{158}$
4		35% $\frac{54}{154}$	35% $\frac{55}{158}$
Prothrombin Time (sec.)	416	10.0 10.6 11.4	10.0 10.6 11.0
Sex : female	418	90% $\frac{139}{154}$	87% $\frac{137}{158}$
Age	418	41.4 48.1 55.8	43.0 51.9 58.9
Spiders	312	29% $\frac{45}{154}$	28% $\frac{45}{158}$

 $a\,b\,c$ represent the lower quartile a, the median b, and the upper quartile c for continuous variables.

 ${\boldsymbol N}$ is the number of non–missing values.





Male ○ Female △	Specificity Mail	20 40 60 80 100						
Use of medication Attack of asthma Waking with an attack of cough Waking with shortness of breath Waking with tightness in the chest Wheezing without a cold Wheezing and breathless Wheezing at any time	ΔΟ ΔΟ ΔΟ ΔΟ ΔΟ ΔΟ ΔΟ Δ Ο Δ							
	Sensitivity Mail	Sensitivity Telephone						
Use of medication Attack of asthma Waking with an attack of cough Waking with shortness of breath Waking with tightness in the chest Wheezing without a cold Wheezing and breathless Wheezing at any time								

у

Points	0 10 20 30 40		50 60			70) 80			90						
Age (Killip I)	10	20	30	40	50		60		70	80		90	1	.00	110	
Age (Killip II)			10	20	30	40	50	6	50	70	80	90	1	00	110	
Age (Killip III)					10	20	30	40	50	60	70	80	90	100	-	
Age (Killip IV)						10	20	30	40	50	60	70	80	90	100	110
Systolic BP (mm Hg) 1	20-280	1	80	60	40	20	(I)								
Heart rate (per minute)	60 50 30	90 12 10	20 150	180	210 2	240										
Previous MI	Yes No															
MI location i	other nferior															
Total Points	0	20		40	60		80)	,	100	-,	120		140		160
30-Day Mortality For SK Treatment		0.001		0.010	0.04	 0	0.2	00	0.50	0 0	.800	-				
Mortality Reduction by	r t-PA		0.0	001	0.005	0.	.020	- 0	0.050							

pbc 19 Variables 418 Observations
bili : Serum Bilirubin (mg/dl)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95 418 0 98 3.221 0.50 0.60 0.80 1.40 3.40 8.03 14.00
lowest : 0.3 0.4 0.5 0.6 0.7, highest: 21.6 22.5 24.5 25.5 28.0
albumin : Albumin (gm/dl)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95 418 0 154 3.497 2.750 2.967 3.243 3.530 3.770 4.010 4.141
lowest : 1.96 2.10 2.23 2.27 2.31, highest: 4.30 4.38 4.40 4.52 4.64
stage : Histologic Stage, Ludwig Criteria
n missing unique Mean 412 6 4 3.024
1 (21, 5%), 2 (92, 22%), 3 (155, 38%), 4 (144, 35%)
protime : Prothrombin Time (sec.)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95 416 2 48 10.73 9.60 9.80 10.00 10.60 11.10 12.00 12.45
lowest : 9.0 9.1 9.2 9.3 9.4, highest: 13.8 14.1 15.2 17.1 18.0
sex : Sex
n missing unique 418 0 2
male (44, 11%), female (374, 89%)
fu.days : Time to Death or Liver Transplantation Education Internation Internation Internation International Inter
n missing unique Mean .05 .10 .25 .50 .75 .90 .95 418 0 399 1918 245.1 606.8 1092.8 1730.0 2613.5 3524.2 4040.6
lowest : 41 43 51 71 77, highest: 4500 4509 4523 4556 4795
age : Age
n missing unique Mean .05 .10 .25 .50 .75 .90 .95 418 0 345 50.74 33.84 36.37 42.83 51.00 58.24 64.30 67.92
lowest : 26.28 28.88 29.56 30.28 30.57 highest: 74.52 75.00 75.01 76.71 78.44
spiders : Spiders
n missing unique 312 106 2
absent (222, 71%), present (90, 29%)

References

- [1] Lee Kaiser. Adjusting for baseline: Change or percentage change? *Statistics in Medicine*, 8:1183–1190, 1989.
- [2] R. A. Kronmal. Spurious correlation and the fallacy of the ratio standard revisited. *Journal of the Royal Statistical Society A*, 156:379–392, 1993.
- [3] Bill Pikounis, Bert Gunter, Andy Liaw, and Neeraj Pajni. Automated analysis software for screening using S-PLUS StatServer. S-PLUS Users Conference, October 2000.
- [4] R. L. Prentice and L. A. Gloeckler. Regression analysis of grouped survival data with applications to breast cancer data. *Biometrics*, 34:57–67, 1978.
- [5] Stephen Senn. Some statistical issues in project prioritization in the pharmaceutical industry. *Statistics in Medicine*, 15:2689–2702, 1996.
- [6] Robert Tibshirani. Estimating transformations for regression via additivity and variance stabilization. *Journal of the American Statistical Association*, 83:394–405, 1988.
- [7] William N. Venables and Brian D. Ripley. *Modern Applied Statistics with S-Plus*. Springer-Verlag, New York, third edition, 1999.
- [8] Friedrik P. Wilman, Ming-Lan Lu, Thomas Thykjaer, Sanne H. Olesen, Lars D. Andersen, Carlos Cordon-Cardo, and Torben F. Orntoft. Evaluation of the performance of a p53 sequencing microarray chip using 140 previously sequenced bladder tumor samples. *Clinical Chemistry*, 46:1555– 1561, 2000.