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Preliminaries

Director: Tatsuki Koyama, PhD

Schedule: Monday, August 7th - Friday, August 11th from 1:00 PM - 4:00 PM

Description: This course will introduce fundamental concepts and techniques for basic statisti-

cal analysis, including types of variables, data summary, hypothesis testing, simple linear

regression, and power analysis.

• This course covers basic concepts in statistical data analysis.

• This course is not a tutorial on using a statistical software.

Learning objectives: After participating in this activity, participants should be able to:

1. Critically read statistical analysis plans and analysis reports.

2. Identify study design appropriate for research question.

3. Select and perform simple statistical analysis for each study design.

Software: We will use R, a programming language and software environment for statistical com-

puting and graphics. R can be downloaded from www.r-project.org.



Chapter 1

Introduction

1.1 What is (bio)statistics?

Biostatistics The application of statistics to a wide range of topics in biology. (Wikipedia)

Statistics The study of the collection, analysis, interpretation, presentation, and organization of

data. (The Oxford Dictionary of Statistical Terms)

When we have census data, interpretation of the data is straightforward. (A census is the proce-

dure of systematically acquiring and recording information about the member of a given popula-

tion.)

In medical research, it is almost always impossible to get the data on everyone in the population

of interest. So we take a representative sample from the population and make inference about the

population.

Samples vary from one another. Statistics allows us to make inference about the unknown

population parameters using the data at hand (samples) and computing statistics.

The following definitions are from Freedman et. al1

Population A whole class of individuals on which we want to make a general statement.

Parameters Some numerical facts about the population.
1Freedman D, Pisani R, Purves R.(2007): STATISTICS. Fourth Edition. New York. Norton & Company.

1



CHAPTER 1. INTRODUCTION 2

Sample A part of population that can be examined.

Statistics Numbers which can be computed from a sample.

1.2 Example

1.2.1 Prostate Cancer Intervention Versus Observation Trial (PIVOT)

n engl j med 367;3 nejm.org july 19, 2012 203

The new england 
journal of medicine
established in 1812 july 19, 2012 vol. 367 no. 3

Radical Prostatectomy versus Observation for Localized 
Prostate Cancer

Timothy J. Wilt, M.D., M.P.H., Michael K. Brawer, M.D., Karen M. Jones, M.S., Michael J. Barry, M.D.,  
William J. Aronson, M.D., Steven Fox, M.D., M.P.H., Jeffrey R. Gingrich, M.D., John T. Wei, M.D.,  

Patricia Gilhooly, M.D., B. Mayer Grob, M.D., Imad Nsouli, M.D., Padmini Iyer, M.D., Ruben Cartagena, M.D., 
Glenn Snider, M.D., Claus Roehrborn, M.D., Ph.D., Roohollah Sharifi, M.D., William Blank, M.D.,  

Parikshit Pandya, M.D., Gerald L. Andriole, M.D., Daniel Culkin, M.D., and Thomas Wheeler, M.D.,  
for the Prostate Cancer Intervention versus Observation Trial (PIVOT) Study Group

A BS TR AC T

From the Center for Chronic Disease Out-
comes Research, Minneapolis Veterans 
Affairs (VA) Health Care System, and 
Section of General Medicine, University 
of Minnesota School of Medicine, Min-
neapolis (T.J.W.); Urologic IDEA, Seattle 
(M.K.B.); the VA Cooperative Studies 
Program Coordinating Center, Perry Point 
(K.M.J.), and the Agency for Healthcare 
Research and Quality, Rockville (S.F.) — 
both in Maryland; the General Medicine 
Division, Massachusetts General Hospi-
tal, Boston (M.J.B.); VA Medical Center, 
Greater Los Angeles Healthcare System, 
Los Angeles (W.J.A.), and VA Medical 
Center, Long Beach (P.I.) — both in Cali-
fornia; Richmond VA Medical Center, 
Richmond, VA (B.M.G.); the Department 
of Urology, University of Pittsburgh, and 
VA Pittsburgh Health Care System, Pitts-
burgh (J.R.G.); the University of Michi-
gan, Ann Arbor ( J.T.W.); the VA New Jer-
sey Health Care System, East Orange 
(P.G.); VA Medical Center Syracuse, Syra-
cuse (I.N.), Brooklyn VA Medical Center, 
Brooklyn (W.B.), and VA Western New 
York Health System, Buffalo (R.C.) — all in 
New York; Louis A. Johnson VA Medical 
Center, Clarksburg, WV (G.S.); the De-
partment of Urology, Southwestern Med-
ical Center, University of Texas Dallas, 
Dallas (C.R.), Temple VA Medical Center, 
Temple (P.P.), and Baylor College of Medi-
cine, Houston (T.W.) — all in Texas; Jesse 
Brown VA Medical Center, Chicago (R.S.); 
Washington University, St. Louis (G.L.A.); 
and the University of Oklahoma, Nor-
man (D.C.). Address reprint requests to 
tim.wilt@va.gov.

This article was updated on July 19, 2012, 
at NEJM.org.

N Engl J Med 2012;367:203-13.

DOI: 10.1056/NEJMoa1113162
Copyright © 2012 Massachusetts Medical Society.

BACKGROUND

The effectiveness of surgery versus observation for men with localized prostate 
cancer detected by means of prostate-specific antigen (PSA) testing is not known.

METHODS

From November 1994 through January 2002, we randomly assigned 731 men with 
localized prostate cancer (mean age, 67 years; median PSA value, 7.8 ng per milliliter) 
to radical prostatectomy or observation and followed them through January 2010. 
The primary outcome was all-cause mortality; the secondary outcome was prostate-
cancer mortality.

RESULTS

During the median follow-up of 10.0 years, 171 of 364 men (47.0%) assigned to radi-
cal prostatectomy died, as compared with 183 of 367 (49.9%) assigned to observation 
(hazard ratio, 0.88; 95% confidence interval [CI], 0.71 to 1.08; P = 0.22; absolute risk 
reduction, 2.9 percentage points). Among men assigned to radical prostatectomy, 
21 (5.8%) died from prostate cancer or treatment, as compared with 31 men (8.4%) 
assigned to observation (hazard ratio, 0.63; 95% CI, 0.36 to 1.09; P = 0.09; absolute 
risk reduction, 2.6 percentage points). The effect of treatment on all-cause and 
prostate-cancer mortality did not differ according to age, race, coexisting conditions, 
self-reported performance status, or histologic features of the tumor. Radical pros-
tatectomy was associated with reduced all-cause mortality among men with a PSA 
value greater than 10 ng per milliliter (P = 0.04 for interaction) and possibly among 
those with intermediate-risk or high-risk tumors (P = 0.07 for interaction). Adverse 
events within 30 days after surgery occurred in 21.4% of men, including one death.

CONCLUSIONS

Among men with localized prostate cancer detected during the early era of PSA test-
ing, radical prostatectomy did not significantly reduce all-cause or prostate-cancer 
mortality, as compared with observation, through at least 12 years of follow-up. 
Absolute differences were less than 3 percentage points. (Funded by the Department 
of Veterans Affairs Cooperative Studies Program and others; PIVOT ClinicalTrials 
.gov number, NCT00007644.)

The New England Journal of Medicine 
Downloaded from nejm.org at VANDERBILT UNIVERSITY on June 30, 2015. For personal use only. No other uses without permission. 

 Copyright © 2012 Massachusetts Medical Society. All rights reserved. 

“From November 1994 through January 2002, we randomly assigned 731 men with

localized prostate cancer to radical prostatectomy or observation and followed them

through January 2010. The primary outcome was all-cause mortality; the secondary

outcome was prostate cancer mortality.”

Inclusion criteria

1. 75 years or younger

2. Localized disease

3. PSA < 50mg/mL

4. Diagnosed within 12 months



CHAPTER 1. INTRODUCTION 3

5. Radical prostatectomy candidate

The following are the population of interest and the sample if we are to make an inference about

all prostatectomy patients.

Population All prostate cancer patients meeting the inclusion criteria who receive radical prosta-

tectomy.

Sample 364 patients in this study who were assigned to the radical prostatectomy group.

Parameter All-cause mortality in the population (% of the population who die).

Statistic All-cause mortality in the sample (% of N = 364 of the sample who die).

Conclusions: 171 of 364 (47.0%) men assigned to radical prostatectomy died.

The number, 47.0%, is specific to our sample, and if we had a different sample, the number

probably would have been different. Using various techniques in statistics, we sort of understand

how the samples (the corresponding statistics) vary. And that understanding allows us to say

something about the unknown population parameter, the true all-cause mortality of the all prostate

cancer patients meeting the inclusion criteria and received and will receive the radical prostatec-

tomy.

An estimate of the all-cause mortality for the prostatectomy patients is 47.0% and its 95%

confidence interval is (41.8%,52.2%).

“We do not know the true all-cause mortality, but it is probably close to 47.0%. Perhaps between

41.8% and 52.2%.”

1.2.2 Example: Comparative Effectiveness Analysis of Surgery And Radiation

(CEASAR)

CEASAR is an observational study which recruited men who were diagnosed with prostate cancer

from 2011 to 2012.

• CEASAR enrolled 3,691 men.
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• Two of the primary variables are sexual and urinary function scores (UCLA Prostate Cancer

Index) based on quality of life survey.

• Quality of life score (QoL) ranges from 0 to 100.

• Majority of patients underwent surgery (radical prostatectomy), and other treatment options

include radiation and active surveillance.

In this course, we use a small subset of the data as a practice data set. (This is from an ongoing

project, and data have been altered.)

getwd()

[1] "/Users/tatsukikoyama/Dropbox/CQS/CqsSummerInstitute/2017Biostats1"

d <- read.csv("R/practiceCeasarData.csv", header = TRUE, as.is = FALSE)
d$Race <- factor(d$Race, levels = c("White", "Black", "Other"))
d$Education <- factor(d$Education, levels = c("High school", "Some college", "College graduate",

"Graduate school"))
d$Income <- factor(d$Income, levels = c("- 30K", "30K - 50K", "50K - 100K", "100K -"))
d$Gleason <- factor(d$Gleason, levels = c("6 or less", "3 + 4", "4 + 3", "8,9,10"))

names(d) # Variable names

[1] "Risk" "Gleason" "PSA" "Age" "Race"
[6] "MaritalStatus" "Education" "Income" "QoL0" "QoL6"

[11] "Treatment" "HeartDisease" "Hypertension" "Athma" "Diabetes"

dim(d) # Number of rows and columns

[1] 200 15
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Table 1.1: Descriptive Statistics by Treatment

N Radiation Surgery Test Statistic
N = 70 N = 130

Age 200 63.0 67.0 73.0 56.0 63.5 68.0 F1,198=11.8, P<0.0011

Race : White 200 69% (48) 75% (97) χ2
2 =1.18, P=0.5552

Black 10% ( 7) 10% (13)

Other 21% (15) 15% (20)

MaritalStatus : Not married 200 27% ( 19) 10% ( 13) χ2
1 =9.95, P=0.0022

Education : High school 200 47% (33) 25% (33) χ2
3 =11.6, P=0.0092

Some college 21% (15) 23% (30)

College graduate 20% (14) 26% (34)

Graduate school 11% ( 8) 25% (33)

Income : - 30K 195 34% (23) 15% (19) χ2
3 =13.2, P=0.0042

30K - 50K 24% (16) 20% (26)

50K - 100K 25% (17) 31% (40)

100K - 16% (11) 34% (43)

PSA 200 5.00 6.30 9.05 4.70 5.80 7.45 F1,198=2.69, P=0.1031

Gleason : 6 or less 200 46% (32) 47% (61) χ2
3 =3.84, P=0.2792

3 + 4 44% (31) 34% (44)

4 + 3 4% ( 3) 7% ( 9)

8,9,10 6% ( 4) 12% (16)

HeartDisease : Yes 200 9% ( 6) 15% ( 19) χ2
1 =1.52, P=0.2182

Hypertension : Yes 200 67% (47) 52% (68) χ2
1 =4.1, P=0.0432

Diabetes : Yes 200 17% ( 12) 18% ( 24) χ2
1 =0.05, P=0.8172

QoL0 200 32.6 51.9 68.2 41.5 64.2 81.8 F1,198=8.98, P=0.0031

QoL6 200 19.6 48.0 73.9 10.8 24.7 59.2 F1,198=5.82, P=0.0171

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.
N is the number of non–missing values. Numbers after percents are frequencies. Tests used:
1Wilcoxon test; 2Pearson test
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Basic Concepts

2.1 Types of data

Response variable (Y ) (Outcome variable, Dependent variable) Clinical endpoint and lab mea-

surements that represent an effect.

Explanatory variable (X) (Exposure variable, Independent variable) Something that may be as-

sociated with the response variable and of major interest.

Confounding variable (Confounder) (Adjustment variable, Effect modifier) A variable not of ma-

jor interest but may be associated with response and/or independent variables.

A few example:

• Survival ∼ Breast Cancer Treatment

Possible confounders: age, BMI, smoking history.

• Prostate Cancer Treatment ∼ Participatory decision making score

Possible confounders: tumor stage, age, comorbidities.

2.1.1 Types of measurements

• Binary (Dichotomous): A variable with 2 possible categories.

6
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• Categorical (Nominal): More than 2 categories that are not naturally ordered. e.g., Race,

Location.

• Ordinal: A categorical variable with natural order. e.g., Income bracket

• Count: An ordinal variable with no upper limit.

• Continuous: A numeric variable having many possible values.

What type of variables are these?

1. Age: Younger than 65, 65 to 75, older than 75.

2. Education level.

3. Number of ER visits.

4. Blood pressure.

5. Tumor response: Complete response, Partial response, Stable disease, Progressive dis-

ease.

6. Number of stained cells.

7. Age: Younger than 65, 65 and older.

8. Age.

A continuous variable can always be categorized or dichotomized, but doing so is never a good

idea. There is loss of information, and a larger sample size is required to yield the same statistical

information (precision or power ).

Random variable : A variable whose possible values are numerical outcomes of a random phe-

nomenon. It is usually denoted by a capital alphabet X and Y . And its values are usually

denoted by x and y.

Example:
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• X is systolic blood pressure of patients in a study. x = 122,124,141, · · ·

• X is race of patients. x = white, black, Asian, · · · .

2.2 Distribution

The distribution of a random variable X is a profile of its variability and other tendencies. A distri-

bution is characterized by:

• Binary variable: the probability (proportion) of “yes” (or one of the categories).

• Categorical variable (more than 2 levels): the probability (proportion) of each category.

• Continuous variable: cumulative probability distribution. P[X ≤ x] for all values of x. (There

are many other ways...) Sometimes, the mean and standard deviation are sufficient.

2.3 Descriptive statistics

• Categorical variables (including binary and ordinal variables) can be described by the pro-

portion of each category.

Because proportions add up to 1 (100%), we only need to report K − 1 proportions for a

variable with K categories.

table(d$Race) # Distribution of ''Race''

White Black Other
145 20 35

prop.table(table(d$Race)) # Proportions of each category

White Black Other
0.725 0.100 0.175

table(d$Education)
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High school Some college College graduate Graduate school
66 45 48 41

prop.table(table(d$Education))

High school Some college College graduate Graduate school
0.330 0.225 0.240 0.205

• To represent (summarize) a continuous variable, a measure of central tendency and a mea-

sure of variation are often used.

– Measure of central tendency

Mean, median, geometric mean

– Measure of variation

Standard deviation, inter-quartile range (IQR)

2.3.1 Mean, median, geometric mean

Mean (aka “average”, arithmetic mean)

x =
∑

n
i=1 xi

n

• Add all the numbers and divide by the number of items.

• Works well in general but not always.

Grossly influenced by outliers.

Grossly influenced by skewness.

Median: The middle value.

• Works well with outliers and skewness.

Geometric mean: Multiply all the numbers and take the nth root.

• Works only for positive numbers.
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• Works well with skewed data with outliers.

• Used often without being mentioned because it is antilog of the mean of log-transformed

data.

Symmetric data

data1

F
re

qu
en

cy

20 25 30 35 40 45

0

5

10

15

20

With a few outliers

data2

F
re

qu
en

cy

20 25 30 35 40 45

0

5

10

15

20

With a huge outlier

data3

F
re

qu
en

cy

20 30 40 50 60 70 80

0

5

10

15

20

Mean Median

Symmetric data 25.0 24.7

With a few outliers 26.0 24.9

With a huge outlier 26.7 24.9
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Right skewed data

data4

F
re

qu
en

cy

0 20 40 60 80 100 120

0

5

10

15

20

Log transformed

log(data4)

F
re

qu
en

cy

1 2 3 4

0

2

4

6

8

10

Mean Median Geometric mean

Right skewed data 32.4 23.8 23.1

Log transformed 3.1 3.2

x <- rnorm(n = 40, mean = 100, sd = 15)
## Generate 40 random numbers from Normal(100, 15) distribution.

mean(x) ## mean

[1] 101.3

median(x) ## median

[1] 101.17

prod(x)^(1/length(x)) ## geometric mean

[1] 100.38
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mean(log(x)) ## mean of log-transformed data

[1] 4.609

exp(mean(log(x))) ## anti-log of mean of log-transformed data

[1] 100.38

2.3.2 Variance, standard deviation, standard error, IQR

Variance

s2 =
∑

n
i=1(xi− x)2

n−1

• Variance is average of squared-distance from the mean.

• Denominator is n−1 instead of n to make the value a little bigger to compensate for the fact

we are estimating the mean. (i.e., more uncertainty)

• The more spread the data the bigger the variance.

Standard deviation (s) is the square root of variance.

• Standard deviation and the mean have the same units as the original data.

• Variance and standard deviation are always positive.

• Variance and standard deviation are 0 when all the data are the same (constant).

• Variance and standard deviation are grossly influenced by outliers.

• Variance and standard deviation are only useful for symmetric data.
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Symmetric data

data1

F
re

qu
en

cy

20 25 30 35 40 45

0

5

10

15

20

With a few outliers

data2

F
re
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cy

20 25 30 35 40 45

0

5

10

15

20

With a huge outlier

data3

F
re

qu
en

cy

20 30 40 50 60 70 80

0

5

10

15

20

Mean Median Variance Standard deviation

Symmetric data 25.0 24.7 7.2 2.7

With a few outliers 26.0 24.9 22.9 4.8

With a huge outlier 26.7 24.9 59.2 7.7

Standard error ... Later!

IQR

• Quantiles (percentiles): q-th sample quantile is the value such that q% of the data fall below.

For example, 20% of the data fall below the 20th percentile.

– 50th percentile is the median (Q2).

– 25th quantile is the lower quartile (Q1).

– 75th quantile is the upper quartile (Q3).
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• Interquartile range (IQR) is the difference of Q3 and Q1. (or Q1 to Q3).

– IQR is the range such that the middle 50% of the data fall.

– It is meaningful for any continuous data (skewed, outliers), perhaps except when there

are a large number of ties.

Mean Median Variance sd Q1 Q2 Q3

Symmetric data 25.0 24.7 7.2 2.7 23.2 24.7 27.0

With a few outliers 26.0 24.9 22.9 4.8 23.2 24.9 27.2

With a huge outlier 26.7 24.9 59.2 7.7 23.3 24.9 27.2

2.3.3 CEASAR: summarizing continuous variables

Let’s look at age of the patients in the CEASAR data.

range(d$Age)

[1] 42 79

mean(d$Age)

[1] 63.92

median(d$Age)

[1] 65

var(d$Age)

[1] 70.92

sd(d$Age)

[1] 8.422

quantile(d$Age, c(0.25, 0.5, 0.75))

25% 50% 75%
58 65 70

And PSA.
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range(d$PSA)

[1] 0.9 48.2

mean(d$PSA)

[1] 7.099

median(d$PSA)

[1] 6.05

var(d$PSA)

[1] 24.46

sd(d$PSA)

[1] 4.946

quantile(d$PSA, c(0.25, 0.5, 0.75))

25% 50% 75%
4.80 6.05 8.10
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Age: CEASAR data
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Summary

• For symmetric data, mean and standard deviation are good summaries of the distribution.

• For any data, median and quartiles are good summaries of the distribution.

So why do we even compute the mean and standard deviation?

They are very useful when they are useful! (More about this later: Normal, Central Limit

Theorem)
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Normal Distribution

Many random variables (are assumed to) have a Normal distribution. A normal distribution is

symmetric and is bell-shaped.

Histogram of x
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This is a Normal distribution with mean= 100 and sd= 15. X ∼Normal(100,15) or X ∼Normal(100,152).

• A normal distribution can be uniquely specified by the mean and standard deviation.

• 50% of the data are above (below) the mean.

• About 2.5% of the data are above 2 standard deviations above (below) the mean.

• About 15% of the data are above 1 standard deviation above (below) the mean.

Normal(100, 15)

x
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0.005
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0.025

P[X > 130] = 0.0228

P[X < 85] = 0.159

pnorm(85, mean = 100, sd = 15, lower.tail = TRUE)

[1] 0.1587

pnorm(130, mean = 100, sd = 15, lower.tail = FALSE)

[1] 0.02275
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1 - pnorm(130, 100, 15)

[1] 0.02275

Normal distribution is very useful because ...

• when the data come from a normal distribution the distribution of sample means is normal.

• the distribution of sample means is normal even when the data do not come from a normal

distribution.

There are exceptions.

True only when sample size is large.

A (made-up) example:

Suppose that a psychological test score has the true (unknown) distribution shown below.

True unknown distribution of Test Scores
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mean sd Q1 median Q3
Test Score 42.35 30.17 14.26 37.88 68.66

Because the data are not normally distributed, it would be incorrect to say things like “2.275% of

the data are 2 standard deviations above the mean.” (This is only true for normal distributions.) It

is still correct to say 25% of the data are above the third quartile (68.66). (This is always true.)

Now suppose that we took a sample of size n = 225 from this distribution and compute the

sample mean. And it was 41.5. If we take a different sample of size n = 225, the new sample mean

will be different from 41.5. In reality, we only take one sample, but here, let’s say we keep taking

samples of size n = 225 and keep computing the sample means. And the first 10 are:

sampleMeans[1:10]

[1] 41.45 43.78 42.70 38.99 41.35 42.06 42.92 39.93 40.69 44.04

The distribution of 1,000 sample means looks like:
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Histogram of sample means
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mean sd Q1 median Q3
Test Score 42.35 30.17 14.26 37.88 68.66

Sample Average 42.35 2.04 40.99 42.30 43.70

If the data come from a distribution with mean µ and sd σ , the sample means have Normal(µ, σ/
√

n)

distribution, where n is the sample size. This is the Central Limit Theorem.

30.17/
√

225 = 2.01.

• When making an inference about the population mean, we can assume that its distribution

follow Normal(µ, σ/
√

n) regardless of the underlying (true) distribution of the data.

• The quantity σ/
√

n is standard error = standard deviation of the sample mean.

• The mean of a skewed data may not be that interesting because it is not a good measure of

central tendency.



CHAPTER 3. NORMAL DISTRIBUTION 22

Standard deviation or standard error?

• A distribution can be summarized with “mean & standard deviation” or “mean & standard

error”.

• With standard deviation, you can compute “mean + sd” and say, “Ok about 15% of the data

are above this number.

• With standard error, you can compute “mean + se” and say, “...” You can’t say much. “mean

+ se” is an important number when making an inference (later), but as a summary of a

distribution, there isn’t much use.

• “median & quartile” is a better combination to report, anyway.

So far, we have always assumed that the true distribution to be known, but obviously, it is not the

case in reality. What we want to do is to make an inference about the unknown population using

the information from samples. The 2 key components in statistical inference are estimation and

hypothesis testing. Perhaps the former is a little bit more important, but we’ll talk about hypothesis

testing because it’s easier to explain!
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Hypothesis Testing

4.1 Fundamentals

Hypothesis Usually a statement about the population parameters (such as the population mean,

difference of the population means, and the population proportions). Note that the population

parameters are the unknown truth.

• µ = 100 (The population mean is 100.)

• π = 0.2 (The population proportion is 20%.)

• µ1−µ0 = 0 (The mean of population 1 is the same as the mean of population 0.)

It can be about population distributions, but that is rare. (e.g., The true distribution is Normal.)

Null hypothesis is the statement you hope to reject/dismiss. (H0)

• “Probability of success is 20%.” when you want to say that the probability of success is

greater than 20%.

• “There is no difference in the group means.” when you want to say that the true means

are different.

Alternative hypothesis is the statement you want to use as a conclusion. (H1 or Ha)

23
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• H0 : π = 0.2

H1 : π > 0.2

This is an example of one-sided alternative.

• H0 : µ1 = µ2

Ha : µ1 6= µ2

This is an example of two-sided alternative.

How we think when we conduct a hypothesis testing.

1. Compute the probability of acquiring the data we actually acquired assuming that H0 is true.

Strictly speaking, “acquiring the data we actually acquired or something more extreme.

2. If that probability (p-value) is small, we say that something is wrong...

3. The data we have cannot be wrong, so what’s wrong must be our assumption (i.e., H0).

P-value is the probability of observing the data actually observed or something more extreme

under H0.

• Note that a p-value can be computed without ever referring to the alternative hypothesis.

• We can just compute the p-value, but a lot of times, we are required to make a go/no-go

decision. So using the data, we decide to either “reject H0” or “not reject H0”.

• The null hypothesis is a statement about (true but unknown) population parameter, and it

can be either true or false. H1 is a complement of H0, and it can be either true or false.

• Sometimes rejecting H0 is correct, and sometimes it is not. The following table summarizes

what happens when we reject or fail to reject H0.

Truth

Conclusion H0 is true. H0 is not true.

Reject H0 Type I error Correct

Fail to reject H0 Correct Type II error
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Type I error is an error of rejecting a true H0.

We use α to denote the probability of such an error.

Type II error is an error of failing to reject a false H0.

We use β to denote the probability of such an error.

Power is 1−β : probability of correctly rejecting a false H0.

• Customarily, we set α to 5%.

• Note that we can reject H0 when the p-value is less than 5%. That is, if the probability

of observing what we observed (or something more extreme) is less than 5% that is an

evidence against H0.

• Warning: H0 can never be shown to be true (believable), i.e., even a p-value of 95% does not

allow us to say “H0 is shown to be true”. Not even “H0 seems to be true/believable/credible.”

4.2 SPADI example

After the rotator cuff repair surgery using a new technique, the Shoulder Pain and Disability Index

(SPADI) is measured on each patient. We would like to test the average SPADI is higher than 72,

which is the known average for the conventional surgical technique. We also know (or assume)

that the true standard deviation is 8.

Let µ be the true (but unknown) mean SPADI for the new technique. We’d like to test

H0 : µ = 72

H1 : µ > 72

Note: Perhaps it is more appropriate to write H0 : µ ≤ 72. Either is acceptable for a one-sided

alternative hypothesis.

To test these hypotheses, a random sample of size 16 was taken from the population of pa-

tients. We know that the sample average X has the null distribution,

X ∼ Normal
(

72,
8√
16

)
.
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This is the distribution of X assuming that the null hypothesis is true. Suppose that the observed

sample mean was 75.

66 68 70 72 74 76 78

Sample means under the null

X

x

P−value

## p-value ##
pnorm(75, mean = 72, sd = 8/sqrt(16), lower.tail = FALSE)

[1] 0.06681

P-value is 0.067, and it is not smaller than 5%, so we do not have strong enough evidence to

conclude that the true average SPADI for the new technique is higher than 72.

• Can we say the true average is 72? -No.

• Can we say the true average is lower than 72? -No.

• So what can we say? -Nothing.



CHAPTER 4. HYPOTHESIS TESTING 27

When we do not reject H0, we cannot conclude anything other than “The sample size was too

small.” or “We didn’t do the experiment right.” More on this later.

Now suppose that the sample size is 36. The sample average was still 75.

66 68 70 72 74 76 78

Sample means under the null

X

x

P−value

## p-value ##
pnorm(75, mean = 72, sd = 8/sqrt(36), lower.tail = FALSE)

[1] 0.01222

With these data, we reject H0. We have enough evidence to claim that the true mean is greater

than 72 (with type I error rate of 5%.).
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Statistical hypothesis testing

Q: Is the true mean less than 72?

A: If the true mean is less than 72, then the probability of observing what we observed is very

small (0.012).

Q: So are you saying that the true mean is less than 72?

A: No.

So what is the true mean? That is a more interesting research question than “Is the true mean

greater than 72?”.

⇒ Estimation

4.3 Multiplicity

• When type I error rate is controlled at 5%, we conduct a hypothesis test with a 5% probability

of making an erroneous conclusion (reject H0 that is true).

• If we conduct more than one hypothesis test, the probability of making at least one erroneous

conclusion becomes more than 5%.

When we test K (independent) hypotheses, probability of rejecting at least one true null hypothesis

is

P[At least one type I error] = 1− (1−0.05)K

K 1 2 3 4 10 20 50

P[At least one type I error] 5% 9.75% 14.26% 18.55% 40.13% 64.15% 92.31%

To make P[family-wise error] = 5% 5% 2.53% 1.70% 1.27% 0.51% 0.26% 0.01%

So if we want to make P[at least one error] controlled at 5%, we need to make each test more
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stringent. Solve

0.05 = 1− (1−α)K

for α. This is controlling family-wise type I error rate, and it is a general but conservative multiplicity

control.

Analysis of Variance A generalization of two group comparison to comparisons of more than 2

groups. Sometimes, all pair-wise comparisons are of interest; however, oftentimes, you can

pre-specify comparisons of interest.

Kruskal Wallis test The non-parametric counterpart to ANOVA.

Multiple comparison procedures

Bonferroni Very general; applicable to many situations but conservative (not very powerful).

Holm’s procedure is uniformly better than Bonferroni.

Dunnett Applicable when multiple groups are compared to a common control group.

Tukey-Kramer Applicable when all pair-wise comparisons are sought.

Scheffé Applicable with general contrasts (e.g., µ1− (µ2 +µ3)/2 = 0, i.e., “The mean of groups 2

and 3 is equal to the mean of group 1.”)

• If only pair-wise comparisons are of interest, Tukey-Kramer is preferred.

Holm Applicable in general.

• Suppose that there are K comparisons of interest. Compute p-value for each compari-

son.

• Compare the smallest p-value to α/K. If the p-value is smaller, reject the corresponding

H0 and continue. Otherwise end.

• Compare the second smallest p-value to α/(K− 1). Continue in the same manner as

long as H0’s are getting rejected.
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• The largest p-value is compared α if all other p-values are smaller than the respective

threshold.

FDR A different concept. Popular method when testing many, many hypotheses.

• Benjamini-Hochberg

• Benjamini-Hochberg-Yekutieli

• Bonferroni, Tukey-Kramer, and Scheffé are used as post-hoc tests for ANOVA, which tests

an overall hypothesis. H0 : µ1 = µ2 = · · ·= µK (All the means are the same.); H1 : At least one

mean is different.

• If the overall test is not significant, no group-wise comparisons are granted.

p.values <- c(0.002, 0.58, 0.0015, 0.077, 0.002, 0.14, 0.0014, 0.33)
pv.ordered <- sort(p.values)
Bonf <- p.adjust(pv.ordered, method = "bonferroni")
Holm <- p.adjust(pv.ordered, method = "holm")
Bh <- p.adjust(pv.ordered, method = "BH")
Bhy <- p.adjust(pv.ordered, method = "BY")

data.frame(pv = pv.ordered, Bonf, Holm, Bh, Bhy)

pv Bonf Holm Bh Bhy
1 0.0014 0.0112 0.0112 0.0040 0.01087
2 0.0015 0.0120 0.0112 0.0040 0.01087
3 0.0020 0.0160 0.0120 0.0040 0.01087
4 0.0020 0.0160 0.0120 0.0040 0.01087
5 0.0770 0.6160 0.3080 0.1232 0.33484
6 0.1400 1.0000 0.4200 0.1867 0.50733
7 0.3300 1.0000 0.6600 0.3771 1.00000
8 0.5800 1.0000 0.6600 0.5800 1.00000
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Estimation

5.1 Point estimates

When we want to make inference about the population parameters, we take a (representative)

sample from the population and compute a statistic using the data from the sample. Using the

sample statistic, we estimate the population parameter.

• Sample mean to estimate the population mean.

• Sample proportion to estimate the population proportion.

• Sample correlation to estimate the population correlation.

• Sample difference of means/proportions to estimate the population difference.

5.2 Confidence intervals

SPADI example

Recall that the sample mean was 75 from a sample of size 16. The population standard deviation

was known to be 8. We estimate the population mean to be 75 (sample mean).

31
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The center is 75.

71.08 75 78.92

2.5% 2.5%

The center is 71.08.

71.08 75

2.5%

The center is 78.92.

75 78.92

2.5%

If the true (unknown) mean is 71.08, observing a sample mean of 75 is barely plausible. And if the

true mean is 78.92, observing a sample mean of 75 is barely plausible. Any values between these

2 numbers would make observing x = 75 not very unusual. Let’s call this interval (71.08, 78.92) a

95% confidence interval.

Interpreting a 95% confidence interval.

• “Probability that the true mean is between 71.08 and 78.92 is 95%” is wrong.

The true mean is unknown but a constant. It is a regular number, so it is either in an interval

or it is not. There is no probability (randomness) about it.

• Remember that the numbers, 71.08 and 78.92, are specific to the particular samples we

observed. With different samples we will get a different confidence interval.

• If we imagine repeating this experiment many times, each sample will give us a different
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confidence interval. Most of (95% of) these confidence intervals contain the true, unknown

mean, but some of them (5%) do not.

“We don’t know if the true mean is in (71.08, 78.92). But we are using a process that produces

intervals, 95% of which include the true mean. (We don’t know if the one that we have is one of

them...)

## Recall that the population standard deviation is 8.
sig <- 8
## Sample mean is 75.
x.bar <- 75
## Sample size is 16.
n <- 16

## 2.5% of the data will fall below this number.

qnorm(p = 0.025, mean = x.bar, sd = sig/sqrt(n))

[1] 71.08

qnorm(p = 0.975, mean = x.bar, sd = sig/sqrt(n))

[1] 78.92
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Comparing Means

6.1 One sample test for mean

In CEASAR data, first we will look at the Surgery group, and we want to test if the true baseline

QoL is 55. σ is assumed to be 35.

table(d$Treatment)

Radiation Surgery
70 130

surgery <- subset(d, Treatment == "Surgery")
# surgery <- d[ d$Treatment == 'Surgery', ]
dim(surgery)

[1] 130 15

• Because we want to see if the mean is different from 55. This is a 2-sided test.

H0 : µ = 55

H1 : µ 6= 55

• We want to limit the type I error rate to 5%. But now this is a 2-sided test, we can make type I

error rate on the upper side and lower side, (H0 will be rejected if X is much bigger and much

34
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smaller than 55.) and 5% needs to be split into two. 2.5% each. So if the p-value is less than

2.5%, we will reject H0.

• Do we have a normally distributed data? Maybe not. But we are not that concerned because

we are pretty sure that X is normally distributed.

Baseline QoL

Baseline QoL
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(msq0 <- mean(surgery$QoL0))

[1] 61.35

(n <- nrow(surgery))

[1] 130

• The following is the distribution of x under H0.
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45 50 55 60 65

The shaded area is the p-value. How do we compute this?

We use the standard normal distribution, which is Normal(0,1). We can convert any normal

distribution to the standard normal by

z =
X−µ0

σ/
√

n
.

And we know X ∼ Normal
(

55, 35√
130

)
, so

z =
61.35−55
35/
√

130

=
6.35
3.07

= 2.068
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Once we compute a Z value, we can look up the table of standard normal probabilities. Or

(z.value <- (msq0 - 55)/(35/sqrt(n)))

[1] 2.068

pnorm(z.value, lower.tail = FALSE)

[1] 0.0193

Or we can use pnorm function without standardizing the value.

(pval <- pnorm(msq0, mean = 55, sd = 35/sqrt(n), lower.tail = FALSE))

[1] 0.0193

So the shaded area is 0.0193, which is smaller than 2.5%. So we reject H0 and conclude that the

we have enough evidence to claim that the true mean is different from 55. Can we say “bigger”?

Probably. With this hypothesis testing, strictly speaking all we can claim is difference, but we can

estimate the true mean and see if it is bigger than 55.

Confidence interval. A 95% confidence interval is an interval centered at the observed sample

mean. Its width depends on the standard error (σ/
√

n).

X±Z0.975×
σ√

n
,

where Z0.975 is the z value (from the standard normal distribution), and we know it is 1.96.

qnorm(0.975)

[1] 1.96

If we want different value from 95% (confidence limit), we can compute the corresponding z value

using qnorm function. For example, for a 90% confidence interval, we’d use 1.645.

qnorm(0.95)

[1] 1.645
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For the current problem, a 95% confidence interval is

X±Z0.975×
σ√

n

= 61.35±1.96×3.07

= 61.35±6.02

= (55.33, 67.37)

So we think that the true mean is somewhere between 55.33 and 67.37.

6.2 Unknown variance

So far, we have assumed that the (unknown, true) population variance (and standard deviation)

to be known. It is rare that we know the population standard deviation. When we don’t know the

population standard deviation, we substitute it with the sample standard deviation. Instead of

z =
X−µ

σ/
√

n
,

we use

t =
X−µ

s/
√

n
,

where s is an estimate of the true standard deviation from the sample. t does not have a normal

distribution any more. Instead, its distribution is a Student’s t distribution.

t distribution

• developed by William Gossett, who used the pen name “Student”.
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• It is centered at 0.

• It is symmetric around 0.

• It looks a lot like a normal distribution but has heavier tails.

• Its shape depends on the degree of freedom, which depends on the sample size.

For a simple one-sample problem, the degree of freedom is n−1, which comes from the fact

s2 =
∑

n
i=1(xi− x)2

n−1
.

• As the degree of freedom increases, t distributions start to look a lot like the standard normal

distribution.
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−3 −2 −1 0 1 2 3

df=5
df=20
df=30
Normal

97.5 percentiles (to form a 95% confidence interval)

qnorm(0.975)

[1] 1.96

qt(0.975, df = c(5, 10, 15, 20, 25, 30))

[1] 2.571 2.228 2.131 2.086 2.060 2.042

6.2.1 CEASAR example: revisited

Now we repeat the last example (beginning of Chapter 6) without assuming that the standard

deviation is 35. Sample standard deviation is
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(s <- sd(surgery$QoL0))

[1] 22.78

t =
x−µ0

s/
√

n

=
61.35−55

22.78/
√

130

=
6.35
2.00

= 3.178

P-value is

(t.value <- (msq0 - 55)/(s/sqrt(n)))

[1] 3.178

pt(t.value, df = n - 1, lower = FALSE)

[1] 0.0009273

To compute a confidence interval, we replace Z0.975 with t0.975,d f . For degree of freedom 129 (n =

130), we have

(t975 <- qt(0.975, df = n - 1))

[1] 1.979

so that

X± t0.975,129×
s√
n

= 61.35±1.979×2.00

= 61.35±3.95

= (57.40, 65.30)
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Using R.

t.test(surgery$QoL0, mu = 55, alternative = "two.sided")

One Sample t-test

data: surgery$QoL0
t = 3.2, df = 129, p-value = 0.002
alternative hypothesis: true mean is not equal to 55
95 percent confidence interval:
57.4 65.3

sample estimates:
mean of x

61.35

• Why is this p-value different? My way is to divide α = 5% by 2 and compare the p-value to

2.5%. Their way is to multiply the p-value by 2 and compare it with α = 5%.

• Why is this degree of freedom 130 instead of 129. After d f = 100, R rounds df to the nearest

10.

6.3 Paired t test

Paired data arise when two observations are made on the same individual. Or more generally, two

correlated data are analyzed.

• Observations before and after treatment.

• Same individuals taking two drugs (cross-over clinical trial).

• Experiments involving siblings (one acting as a control).

The biggest advantage of an experiment utilizing paired data is reduced variance.

Var(X−Y ) =Var(X)+Var(Y )−2Cov(X ,Y )

=Var(X)+Var(Y )−2Cor(X ,Y )
√

Var(X)Var(Y )
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So as long as the correlation is greater than 0, variance of X −Y is smaller than Var(X)+Var(Y ),

which is the variance of X−Y when they are uncorrelated.

Generally, we would like to test hypotheses about difference of the averages. We often write µ1

and µ2 to denote the population means at time 1 and 2, respectively, and use µd to denote µ2−µ1.

So to test there is no difference between two time points (two drugs, two siblings), we write

H0 : µd = 0

H1 : µd > 0

if what we want to say is µ2 > µ1.

Even though there are two groups of data (time 1 and time 2), we compute their differences and

treat the whole problem as one-sample problem. Paired t test is one-sample t test on differences!

Let’s see if the QoL scores decreased for the radiation group. Our hypotheses are:

H0 : µd = 0

H1 : µd < 0

First we compute the difference of QoL for everyone in the radiation group.

radiation <- subset(d, Treatment == "Radiation")
qol <- subset(radiation, select = c("QoL0", "QoL6"))
qol$Diff <- qol$QoL6 - qol$QoL0

head(qol, 20)

QoL0 QoL6 Diff
7 35.0 34.7 -0.3
12 79.4 93.6 14.2
15 60.0 71.8 11.8
16 28.0 3.6 -24.4
19 62.1 18.6 -43.5
21 67.0 80.7 13.7
22 78.3 76.3 -2.0
24 87.0 72.8 -14.2
25 63.6 53.9 -9.7
27 68.9 59.1 -9.8
28 31.7 13.6 -18.1
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30 64.4 75.9 11.5
32 80.0 77.4 -2.6
34 33.2 0.8 -32.4
37 67.8 73.0 5.2
39 18.9 23.2 4.3
40 88.4 71.7 -16.7
51 38.6 20.6 -18.0
54 28.8 42.5 13.7
58 32.6 11.1 -21.5

Change in QoL: Radiation group

qol$Diff
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t.test(qol$Diff, mu = 0, alternative = "less", conf.level = 0.95)

One Sample t-test

data: qol$Diff
t = -1.8, df = 69, p-value = 0.04
alternative hypothesis: true mean is less than 0
95 percent confidence interval:

-Inf -0.4041
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sample estimates:
mean of x

-4.416

t.test(qol$QoL6, qol$QoL0, alternative = "less", paired = TRUE)

Paired t-test

data: qol$QoL6 and qol$QoL0
t = -1.8, df = 69, p-value = 0.04
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -0.4041
sample estimates:
mean of the differences

-4.416

A one-sided confidence interval is given for a one-sided test. Sometimes, we want a two-sided

confidence interval. To make a confidence interval and a one-sided test consistent, we can com-

pute 90% confidence interval for one-sided test with α = 5%.

t.test(qol$Diff, mu = 0, alternative = "two.sided", conf.level = 0.9)

One Sample t-test

data: qol$Diff
t = -1.8, df = 69, p-value = 0.07
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:
-8.4274 -0.4041

sample estimates:
mean of x

-4.416
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What happens if we cannot assume that X follows a normal distribution even approximately? This

happens when the underlying distribution of X is not normal and sample size is small. We’ll have

to use a nonparametric method , which does not require normality. (Later!)

6.4 Two sample data -Equal variance

Now we consider comparing two means from two groups of data (unpaired).

• There are two populations; one with mean µ1 and variance σ2
1 , and another one with mean

µ2 and variance σ2
2 .
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• First we assume σ2
1 = σ2

2 (Equal variance) and test

H0 : µ1 = µ2

H1 : µ1 6= µ2

• Sample sizes are n1 and n2.

• Test statistic is

t =
x1− x2

se of numerator

• If we know the true variance σ2, the variance of x1 - x2 is

σ2

n1
+

σ2

n2
= σ

2
(

1
n1

+
1
n2

)

• We need to estimate σ2 from the two samples.

s2
p =

(n1−1)s2
1 +(n2−2)s2

2
n1 +n2−2

.

This is called “pooled variance”.

• The true standard error of the difference of the sample means is

σ

√
1
n1

+
1
n2

,

and its estimate is

s

√
1
n1

+
1
n2

,
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and

t =
x1− x2

s
√

1
n1
+ 1

n2

.

• Degree of freedom is the sum of the individual d.f., n1−1+n2−1 = n1 +n2−2, which is the

denominator of s2. −2 comes from having to estimate two sample means.

• If H0 is true, t has the tn1+n2−2 distribution.

6.4.1 CEASAR example: two-sample t test

We think that younger patients are more likely to receive surgery. Let’s confirm this. Let µs and µr

be the average ages of the surgery and radiation groups, respectively. We are to test

H0 : µs−µr = 0

H1 : µs−µr < 0.

Let’s use α = 5%.

Here are some information about age of the patients.

mean(surgery$Age)

[1] 62.56

sd(surgery$Age)

[1] 8.242

mean(radiation$Age)

[1] 66.46

sd(radiation$Age)

[1] 8.217

The pooled variance is:
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s2
p =

(ns−1)s2
s +(nr−1)s2

r

ns +nr−2

=
(129)8.242 +(69)8.222

198

= 67.795.

sp =
√

67.795

= 8.234

And t statistic is

t =
xt − xs

sp
√

1/ns +1/nr

=
62.56−66.46

8.23
√

1/130+1/70

=−3.19.

And p-value is

pt(-3.19, df = 198, lower.tail = TRUE)

[1] 0.0008272

We can do this using t.test function.

t.test(surgery$Age, radiation$Age, alternative = "less", paired = FALSE, var.equal = TRUE)

Two Sample t-test

data: surgery$Age and radiation$Age
t = -3.2, df = 198, p-value = 0.0008
alternative hypothesis: true difference in means is less than 0
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95 percent confidence interval:
-Inf -1.878

sample estimates:
mean of x mean of y

62.56 66.46

A 95% confidence interval for the difference of the means has the form:

x2− x2± t0.975,d f × sp
√

1/n1 +1/n2

For the current problem (for µs−µr)

62.56−66.46± t0.975,1988.23
√

0.022

t0.975,198 is 1.972, and

−3.90±2.41 = (−6.303,−1.488)

Using R, we get the same answer:

t.test(surgery$Age, radiation$Age, alternative = "two.side", paired = FALSE, var.equal = TRUE,
conf.level = 0.95)

Two Sample t-test

data: surgery$Age and radiation$Age
t = -3.2, df = 198, p-value = 0.002
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-6.303 -1.488

sample estimates:
mean of x mean of y

62.56 66.46

With such large sample sizes, the answers would not differ much if we used a normal distribution

instead.
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qt(0.975, df = 198)

[1] 1.972

qnorm(0.975)

[1] 1.96

6.5 Two sample data -Unequal variances

• When the true group variances are not assumed to be the same, we can not combine two

samples to estimate the true variance. (We can not use the pooled variance.)

• This case the test statistic is

t =
x1− x2√

s2
1

n1
+

s2
2

n2

(tt <- t.test(surgery$Age, radiation$Age, alternative = "less", paired = FALSE, var.equal = FALSE))

Welch Two Sample t-test

data: surgery$Age and radiation$Age
t = -3.2, df = 142, p-value = 0.0009
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -1.876
sample estimates:
mean of x mean of y

62.56 66.46

• Where does df 140 come from? (Note: Newer version of R gives a right df.)

• The Satterthwaite approximation is a formula to calculate an “effective” degrees of freedom
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in a two-sample t test.

d f =

(
s2

1
n1
+

s2
2

n2

)2

1
n1−1

(
s2

1
n1

)2
+ 1

n2−1

(
s2

2
n2

)2

= 141.8.

tt$parameter

df
141.8

• In the old days, we used d f = smaller n−1.
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Nonparametric Methods

When the underlying distribution is not normal and we don’t have large enough samples to apply

the Central Limit Theorem, we cannot use the methods based on normal approximation (paramet-

ric methods). In such a case, a non-parametric method may be useful.

Parametric test Nonparametric test

1 sample t Wilcoxon signed-rank

2 sample t Wilcoxon rank sum

ANOVA Kruskal-Wallis

Pearson’s correlation Spearman’s rank correlation

Example: Suppose that we have the following samples from Group A and Group B.

(A0 <- c(8, 7, 4, 9, 11, 12, 5, 13, 12))

[1] 8 7 4 9 11 12 5 13 12

(B <- c(3, 4, 2, 6, 9, 4, 2))

[1] 3 4 2 6 9 4 2

t.test(A0, B, paired = FALSE, var.equal = FALSE)

Welch Two Sample t-test

data: A0 and B

53
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t = 3.3, df = 14, p-value = 0.005
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.638 7.791

sample estimates:
mean of x mean of y

9.000 4.286

With addition of just one large number, t.test looks very different.

(A1 <- c(8, 7, 4, 9, 11, 12, 5, 13, 12, 100))

[1] 8 7 4 9 11 12 5 13 12 100

(B <- c(3, 4, 2, 6, 9, 4, 2))

[1] 3 4 2 6 9 4 2

t.test(A1, B, paired = FALSE, var.equal = FALSE)

Welch Two Sample t-test

data: A1 and B
t = 1.5, df = 9.2, p-value = 0.2
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-6.931 34.560

sample estimates:
mean of x mean of y

18.100 4.286

The non-significant result is due to increased standard deviation, which is particularly not robust

to outliers.

sd(A0)

[1] 3.24

sd(A1)

[1] 28.94

• Non-parametric methods are not heavily influenced by outliers or skewness.

They do not use the means or standard deviations. Instead they transform the data to ranks.
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• What are the hypotheses about? (They are not about the means.)

Loosely speaking these tests are about the population medians.

• The confidence interval and the test may not correspond to each other.

One sample test

First let’s see if the median of the population A1 is not equal to 6. We use a Wilcoxon signed rank

test.

wilcox.test(A1, mu = 6, alternative = "two.sided", conf.int = TRUE)

Warning in wilcox.test.default(A1, mu = 6, alternative = "two.sided", conf.int = TRUE): cannot
compute exact p-value with ties
Warning in wilcox.test.default(A1, mu = 6, alternative = "two.sided", conf.int = TRUE): cannot
compute exact confidence interval with ties

Wilcoxon signed rank test with continuity correction

data: A1
V = 50, p-value = 0.02
alternative hypothesis: true location is not equal to 6
95 percent confidence interval:

6.5 53.5
sample estimates:
(pseudo)median

10

If we use a t test,

t.test(A1, mu = 6, alternative = "two.sided", conf.int = TRUE)

One Sample t-test

data: A1
t = 1.3, df = 9, p-value = 0.2
alternative hypothesis: true mean is not equal to 6
95 percent confidence interval:
-2.601 38.801

sample estimates:
mean of x

18.1
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Two sample test

Now test if the medians of the population A1 and B are the same. For this 2 sample test, we use a

Wilcoxon rank-sum test (aka Mann-Whitney U test).

wilcox.test(A1, B, alternative = "two.sided", conf.int = TRUE)

Warning in wilcox.test.default(A1, B, alternative = "two.sided", conf.int = TRUE): cannot compute
exact p-value with ties
Warning in wilcox.test.default(A1, B, alternative = "two.sided", conf.int = TRUE): cannot compute
exact confidence intervals with ties

Wilcoxon rank sum test with continuity correction

data: A1 and B
W = 62, p-value = 0.008
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
2 9

sample estimates:
difference in location

5.25

The corresponding t test is:

t.test(A1, B, alternative = "two.sided", conf.int = TRUE)

Welch Two Sample t-test

data: A1 and B
t = 1.5, df = 9.2, p-value = 0.2
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-6.931 34.560

sample estimates:
mean of x mean of y

18.100 4.286

Rank-based tests like Wilcoxon rank-sum are about the same as t test on ranks.

dx <- data.frame(y = c(A1, B), g = rep(c("A", "B"), c(length(A1), length(B))))
dx$r <- rank(dx$y)
dx
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y g r
1 8 A 10.0
2 7 A 9.0
3 4 A 5.0
4 9 A 11.5
5 11 A 13.0
6 12 A 14.5
7 5 A 7.0
8 13 A 16.0
9 12 A 14.5
10 100 A 17.0
11 3 B 3.0
12 4 B 5.0
13 2 B 1.5
14 6 B 8.0
15 9 B 11.5
16 4 B 5.0
17 2 B 1.5

t.test(r ~ g, data = dx, alternative = "two.sided")

Welch Two Sample t-test

data: r by g
t = 3.6, df = 14, p-value = 0.003
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

2.679 10.678
sample estimates:
mean in group A mean in group B

11.750 5.071

Perhaps, these non-parametric tests should be our default choice...
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Proportions

8.1 One proportion

When outcome is binary (Yes/No; Success/Failure), we count the number of ’successes’ (X) out

of n. The number of successes has Binomial(n, p) distribution, where p is the true (unknown)

probability of success. We are interested in estimating this p. (population proportion)

• Given that X ∼ Binomial(n, p), the mean is np and variance is np(1− p). And standard devia-

tion is
√

np(1− p).

• The sample proportion, p̂ = X/n, has the mean p and standard deviation p(1− p)/n.

• To make an inference about p, we either use an approximate method (normal approximation)

or an exact method.

• When sample size is large (X ≥ 30), normal approximation is good.

Approximate 95% confidence interval for p is

p̂±1.96

√
p̂(1− p̂)

n

58
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To test H0 : p = p0, use

z =
p̂− p0√

p0(1− p0)/n
,

which is approximately Normal(0,1) under H0. When estimating p, we never use a t distribution.

Example: Using the CEASAR data, estimate the proportion of the radiation patients who had

diabetes, and test if it is different from 20%, and give a 95% confidence interval.

table(radiation$Diabetes)

No Yes
58 12

prop.table(table(radiation$Diabetes))

No Yes
0.8286 0.1714

From this, we get p̂ = 0.1714. The null value, p0 = 0.20. So we have

z =
0.1714−0.20√

0.20(1−0.80)/70

=−0.5976
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0.05 0.10 0.15 0.20 0.25 0.30 0.35

Sampling distribution of p

P-value is

pnorm(-0.5976)

[1] 0.2751

and this is compared to 5%/2. We do not have enough evidence to reject p = 0.20.

To compute a 95% confidence interval, we use

qnorm(0.975)

[1] 1.96

so that it is p̂±1.96
√

(p̂(1− p̂))/n

phat <- 12/70
margin <- qnorm(0.975) * sqrt(phat * (1 - phat)/70)
phat + c(-1, 1) * margin
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[1] 0.08314 0.25972

Thus, a 95% confidence interval is (0.0831, 0.2597).

We can use binconf function in Hmisc library to get the same answer.

library(Hmisc)
binconf(x = 12, n = 70, method = "all", include.x = TRUE, include.n = TRUE, alpha = 0.05)

X N PointEst Lower Upper
Exact 12 70 0.1714 0.09184 0.2803
Wilson 12 70 0.1714 0.10088 0.2762
Asymptotic 12 70 0.1714 0.08314 0.2597

Because the “Asymptotic” method only works well as n gets large, sometimes it does not give a

confidence interval with a specified confidence level (95% in this example). Wilson score interval

(1927) has an improved coverage probability and is often preferred.

8.2 Two proportions

Now we are concerned with the problem of comparing two proportions. Data are often tabulated

in a 2 by 2 table.

Let’s test if the probabilities of success are the same for treatment 1 and 2 given the following

data.
Success Failure

Treatment 1 7 13

Treatment 2 3 22

## Set up the data
trt <- rep(c("Trt.1", "Trt.2"), c(7 + 13, 3 + 22))
outcome <- rep(rep(c("Success", "Failure"), 2), c(7, 13, 3, 22))
outcome <- factor(outcome, levels = c("Success", "Failure"))
(dat <- data.frame(trt, outcome))

trt outcome
1 Trt.1 Success
2 Trt.1 Success
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3 Trt.1 Success
4 Trt.1 Success
5 Trt.1 Success
6 Trt.1 Success
7 Trt.1 Success
8 Trt.1 Failure
9 Trt.1 Failure
10 Trt.1 Failure
11 Trt.1 Failure
12 Trt.1 Failure
13 Trt.1 Failure
14 Trt.1 Failure
15 Trt.1 Failure
16 Trt.1 Failure
17 Trt.1 Failure
18 Trt.1 Failure
19 Trt.1 Failure
20 Trt.1 Failure
21 Trt.2 Success
22 Trt.2 Success
23 Trt.2 Success
24 Trt.2 Failure
25 Trt.2 Failure
26 Trt.2 Failure
27 Trt.2 Failure
28 Trt.2 Failure
29 Trt.2 Failure
30 Trt.2 Failure
31 Trt.2 Failure
32 Trt.2 Failure
33 Trt.2 Failure
34 Trt.2 Failure
35 Trt.2 Failure
36 Trt.2 Failure
37 Trt.2 Failure
38 Trt.2 Failure
39 Trt.2 Failure
40 Trt.2 Failure
41 Trt.2 Failure
42 Trt.2 Failure
43 Trt.2 Failure
44 Trt.2 Failure
45 Trt.2 Failure
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8.2.1 Fisher’s exact test

• First we fix both margins.

Success Failure Total

Treatment 1 20

Treatment 2 25

Total 10 35 45

• Then if we fix 1 of the 4 cells (Treatment 1, Success), we have a complete table.

• We can determine which of the tables are “more extreme” than observed for each table.

Below is an example of an “extreme” table under the null (no difference between treatments).

Success Failure Total

Treatment 1 10 10 20

Treatment 2 0 25 25

Total 10 35 45

• We know how to compute the probability of each table (using a hypergeometric distribution),

and we also have a way to order all the tables from “least extreme under null” to ”most

extreme”.

• Sum of the probabilities that correspond to “more extreme than observed” is the p-value.

• This is called “exact” because we don’t use large-sample approximation.

fisher.test(table(dat))

Fisher's Exact Test for Count Data

data: table(dat)
p-value = 0.08
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.7172 26.9850
sample estimates:
odds ratio

3.825



CHAPTER 8. PROPORTIONS 64

8.2.2 Odds ratio

• The summary statistic often used for a 2 by 2 table is an odds ratio.

• Odds of Success = # Success / # Failure

Contrast it with Probability of Success = # Success / (# Success + # Failure)

• Equivalent to p/(1− p) if p is the probability of success.

• Odds range from 0 to ∞.

• To compare two groups (treatments), we compute the odds for each group and compute the

ratio. (Odds ratio)

• Odds ratio (OR) = p1
1−p1

/ p2
1−p2

.

• Odds ratio ranges from 0 to ∞, and OR = 1 means p1 = p2.

For the current example, odds ratio is:

(7/13)/(3/22)

[1] 3.949

It’s slightly different from fisher.test output as it uses a slightly different method. We read the R

output as “Odds of success for Treatment 1 is 3.8 times (95% CI: 0.72 to 27.0) as big as the odds

for Treatment 2.”

8.2.3 χ2 test

We can use a χ2 test to test the same hypothesis p1 = p2.

Success Failure Total

Treatment 1 20

Treatment 2 25

Total 10 35 45
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• If we assume p1 = p2, then we’d expect 10/45 (22.2%) of 20 Treatment 1 data to be success.

• We can compute the expected cell count for each cell to get:

Success Failure Total

Treatment 1 4.4 15.6 20

Treatment 2 5.6 19.4 25

Total 10 35 45

• We use how far the actual data are from this expected cell counts to test the hypotheses.

• “∑(Observed−Expected)2/Expected” follows a χ2 distribution.

chisq.test(table(dat), correct = FALSE)

Warning in chisq.test(table(dat), correct = FALSE): Chi-squared approximation may be incorrect

Pearson's Chi-squared test

data: table(dat)
X-squared = 3.4, df = 1, p-value = 0.07

• χ2 test uses asymptotic theory and works when n is large.

• There is a popular belief that χ2 should be used only all the cell counts are 5 or larger. (and

Fisher’s test should be used for small data set.)

• χ2 test actually works fine with small cell counts.

• We don’t use Yates’ continuity correction because it is an overly conservative test.

8.2.4 Normal theory

• Recall that the null hypothesis is H0 : p1 = p2. This does not specify what value these two

population proportions are equal to.
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• Sample proportions are p̂1 and p̂2.

• The z value is

z =
p̂1− p̂2√

p̂(1− p̂)(1/n1 +1/n2)

• p̂ are from combined data. (x1 + x2)/(n1 +n2).

• We can combine the groups because p1 = p2 under the null.

• For a confidence interval, such an assumption is not applicable, and we use

p̂1− p̂2± z×

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2

z is 1.96 for a 95% confidence interval.

Back to example:

x1 <- 7
n1 <- 20
x2 <- 3
n2 <- 25
(p1 <- x1/n1)

[1] 0.35

(p2 <- x2/n2)

[1] 0.12

(p.hat <- (x1 + x2)/(n1 + n2))

[1] 0.2222

# Z-value
(z <- (p1 - p2)/sqrt(p.hat * (1 - p.hat) * (1/n1 + 1/n2)))

[1] 1.844

# P-value
pnorm(z, lower.tail = FALSE)
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[1] 0.03258

# Confidence interval for p1-p2
p1 - p2 + c(-1, 1) * qnorm(0.975) * sqrt(p1 * (1 - p1)/n1 + p2 * (1 - p2)/n2)

[1] -0.01479 0.47479

There is not enough evidence that the two treatments’ probabilities of success are different. Esti-

mate of the difference of the probabilities (Treatment 1 − Treatment 2) is 0.23 and its confidence

interval is (−0.015,0.47).

We can use the following function à la me to do the same test:

twoSamplePropTest <- function(x, n, confLimit = 0.95) {
# This will test if proportions are equal. x and n are vectors of length 2.
pObs <- x/n
phat0 <- sum(x)/sum(n)

zValue <- -diff(pObs)/sqrt(phat0 * (1 - phat0) * sum(1/n))
pValue <- pnorm(abs(zValue), lower.tail = FALSE)
ci <- -diff(pObs) + c(-1, 1) * qnorm(1 - (1 - confLimit)/2) * sqrt(sum(pObs * (1 - pObs)/n))

list(estimate = pObs, z = zValue, oneSided.p = pValue, conf.int = ci)
}

twoSamplePropTest(x = c(7, 3), n = c(20, 25), confLimit = 0.95)

$estimate
[1] 0.35 0.12

$z
[1] 1.844

$oneSided.p
[1] 0.03258

$conf.int
[1] -0.01479 0.47479
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Sample Size and Power

When we cannot reject H0 (or when our confidence interval contains the null value), we are left

with no conclusion. We can never say that we show that there is no difference. The only thing we

can say is that we didn’t plan our study well and the sample size was too small.

• Tacking on new samples after concluding “sample size was too small” is also problematic

because it inflates type I error rate.

• So it is critical that we start an experiment with the right sample size.

• In general, we compute the sample size so that the hypothesis test has enough power, which

is the probability of rejecting H0 under H1.

• Example: We want to say that the baseline QoL is higher for the surgery group.

H0 : µs = µr

H1 : µs > µr.

And we want to make sure that we reject H0 when the true difference is at least 10.

We say, we want power to be 90% when µs−µr = 10.

• Power is usually set at 90% or 80%.

What’s wrong with the sample size being too large?

68
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Factors that affect sample size and power.

Everything being equal...

• Sample size ↑ ... Power ↑

• Type I error rate (α) ↓ ... Power ↓

• Difference to detect ↑ ... Power ↑

• Standard deviation ↑ ... Power ↓

9.1 Continuous random variables

For continuous outcome (t test), we need to know the standard deviation to perform sample size

computation! Let’s compute the sample size needed to detect a difference of 10 in the baseline

QoL between two groups. We set α = 0.025. (equivalent to 5% two-sided test). Assume that

σ = 30.

power.t.test(n = NULL, delta = 10, sd = 30, sig.level = 0.025, power = 0.9, alternative = "one")

Two-sample t test power calculation

n = 190.1
delta = 10

sd = 30
sig.level = 0.025

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group

power.t.test(n = NULL, delta = 10, sd = 30, sig.level = 0.025, power = 0.8, alternative = "one")

Two-sample t test power calculation

n = 142.2
delta = 10

sd = 30
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sig.level = 0.025
power = 0.8

alternative = one.sided

NOTE: n is number in *each* group

If we assume that σ = 20.

power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.025, power = 0.9, alternative = "one")

Two-sample t test power calculation

n = 85.03
delta = 10

sd = 20
sig.level = 0.025

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group

power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.025, power = 0.8, alternative = "one")

Two-sample t test power calculation

n = 63.77
delta = 10

sd = 20
sig.level = 0.025

power = 0.8
alternative = one.sided

NOTE: n is number in *each* group

9.2 Binary random variables

To test p1 = p2 against p1 > p2 with a one-sided α = 0.025, power=90% when p1− p2 = 0.10.

• Even though the null and alternative hypotheses do not specify p1 and p2 separately, the

power calculation requires setting p1 and p2.
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require(Hmisc)
bsamsize(p1 = 0.1, p2 = 0.2, fraction = 0.5, alpha = 0.05, power = 0.8)

n1 n2
199 199

bsamsize(p1 = 0.2, p2 = 0.3, fraction = 0.5, alpha = 0.05, power = 0.8)

n1 n2
293.2 293.2

bsamsize(p1 = 0.3, p2 = 0.4, fraction = 0.5, alpha = 0.05, power = 0.8)

n1 n2
355.9 355.9

This example shows, even though the detectable difference is the same (10 percentage difference),

the sample sizes differ much depending on the location of p1 and p2. Larger sample size is required

near 0.5.

9.3 Additional topics on sample size and power

9.3.1 Continuous endpoint

• If σ is doubled, n is 4 times bigger.

power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.025, power = 0.9, alternative = "one")

Two-sample t test power calculation

n = 85.03
delta = 10

sd = 20
sig.level = 0.025

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group

power.t.test(n = NULL, delta = 10, sd = 40, sig.level = 0.025, power = 0.9, alternative = "one")
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Two-sample t test power calculation

n = 337.2
delta = 10

sd = 40
sig.level = 0.025

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group

• N for two-sided test with type I error = α is the same for N for one-sided test with α/2.

power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.05, power = 0.9, alternative = "two")

Two-sample t test power calculation

n = 85.03
delta = 10

sd = 20
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.025, power = 0.9, alternative = "one")

Two-sample t test power calculation

n = 85.03
delta = 10

sd = 20
sig.level = 0.025

power = 0.9
alternative = one.sided

NOTE: n is number in *each* group

• 2 sample tests require larger sample sizes than 2 times n for 1 sample test.
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power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.05, power = 0.9, alternative = "two",
type = "one")

One-sample t test power calculation

n = 44
delta = 10

sd = 20
sig.level = 0.05

power = 0.9
alternative = two.sided

power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.05, power = 0.9, alternative = "two",
type = "two")

Two-sample t test power calculation

n = 85.03
delta = 10

sd = 20
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number in *each* group

• The sample size given above is for each group.

• Variance of difference is large when the data are uncorrelated.

Var(X−Y ) =Var(X)+Var(Y )

• For paired test, we need the standard deviation of differences.

## sd for difference is not 20 if sd for X and for Y are 20.
power.t.test(n = NULL, delta = 10, sd = 20, sig.level = 0.05, power = 0.9, alternative = "two",

type = "paired")
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Paired t test power calculation

n = 44
delta = 10

sd = 20
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

• We need an additional assumption about ρ, correlation of X and Y . Then we can compute

Var(X−Y ) =Var(X)+Var(Y )−2ρ
√

Var(X)Var(Y )

(sdd <- sqrt(20^2 + 20^2 - 2 * 0.8 * 20 * 20))

[1] 12.65

power.t.test(n = NULL, delta = 10, sd = sdd, sig.level = 0.05, power = 0.9, alternative = "two",
type = "paired")

Paired t test power calculation

n = 18.84
delta = 10

sd = 12.65
sig.level = 0.05

power = 0.9
alternative = two.sided

NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

• Sample size computation for odds ratio uses the same formula for difference of proportions.

• Given p1 and an odds ratio (to detect) ψ, we can compute p2.
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ψ =
p1/(1− p1)

p2/(1− p2)

p2 =
ψ p2

ψ p2 +1− p2

find.p2 <- function(p1, odds.ratio) {
odds.ratio * p1/(odds.ratio * p1 + 1 - p1)

}

(p2x <- find.p2(0.3, 1.8))

[1] 0.4355

bpower(p1 = 0.3, p2 = p2x, n1 = 200, n2 = 200, alpha = 0.05)

Power
0.8046

(p2y <- find.p2(0.1, 1.8))

[1] 0.1667

bpower(p1 = 0.1, p2 = p2y, n1 = 200, n2 = 200, alpha = 0.05)

Power
0.5005



Chapter 10

Regression Analysis

10.1 Correlation

• Correlation is the measure of linear association between two (continuous) random variables.

The most popular statistic is Pearson’s correlation (ρ). It is a parametric statistic, and all the

cautions as before apply, i.e., it doesn’t work well with outliers and skewness.

• ρ ranges from −1 to 1. ρ = 0 means that the two random variables are uncorrelated . ρ near

1 is strong positive correlation, and near −1 is strong negative correlation.

76
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• A simple linear regression would make sense in B and C.

• We can test for significant association by testing if the population correlation is 0.

t =
r
√

n−2
1− r2

has t distribution with df = n−2 under the null (ρ = 0).

• Confidence interval is a little complex...

cor.test(x, y0, alternative = "two.sided", method = "pearson", conf.level = 0.95)

Pearson's product-moment correlation

data: x and y0
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t = -0.19, df = 38, p-value = 0.9
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3385 0.2840

sample estimates:
cor

-0.03021

• A popular nonparametric correlation measure is Spearman’s correlation (ρ). This is Pear-

son’s correlation on ranks.

cor(x4, y4) # Default is Pearson.

[1] 0.8258

cor(x4, y4, method = "spearman")

[1] 0.07711

cor(rank(x4), rank(y4), method = "pearson")

[1] 0.07711

• Spearman’s correlation is also a measure of linear association. It does not work with a

non-linear association.

cor(x, y3, method = "pearson")

[1] -0.008873

cor(x, y3, method = "spearman")

[1] -0.001689

10.2 Simple regression

A regression analysis fits a line that describes the relationship between two continuous variables.

Let’s see the CEASAR example: The following scatter plot shows QoL0 (baseline) on the x-axis

and QoL6 (6 months) on the y-axis for the radiation group.
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library(rms)
## To use regression functions in rms package.
ddist <- datadist(d)
options(datadist = "ddist")
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This line is fit with the Ordinary Least Squares (OLS) method, and it is the best in the sense that

sum of (vertical distance to the line)2 is minimized.
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• The vertical distance is |ŷi−yi|, where ŷi is the fitted value (predicted value) for the ith obser-

vation.

• The vertical distances are called residuals.

• This line is written as

yi = β0 +β1xi + εi,

where yi is follow-up QoL, xi is baseline QoL, β0 is the intercept, β1 is the slope, and εi is

the residuals. Because we estimate the slope and intercept using the observed sample, we

write:

yi = β̂0 + β̂1xi + εi.
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For the current example, we have:

ŷ =−4.835+1.008x.

• What do these regression coefficients mean?

– β0 is the intercept, which is the value of y when x = 0. Sometimes, it does not have a

good interpretation; e.g., when x is BMI, height, or weight. In this example, because

nobody had QoL = 0, β̂0 =−4.835 is probably meaningless. It is outside of range!

– β1 is the slope, which is increment in y corresponding to a unit increment in x. QoL6

increases by 1.008 when QoL0 is increased by 1.

Let’s look at the R output.

(mod.rad <- ols(QoL6 ~ QoL0, data = radiation))

Linear Regression Model

ols(formula = QoL6 ~ QoL0, data = radiation)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 70 LR chi2 55.93 R2 0.550
sigma20.2780 d.f. 1 R2 adj 0.544
d.f. 68 Pr(> chi2) 0.0000 g 25.750

Residuals

Min 1Q Median 3Q Max
-39.171 -13.228 1.046 11.262 73.590

Coef S.E. t Pr(>|t|)
Intercept -4.8350 6.1817 -0.78 0.4368
QoL0 1.0082 0.1105 9.12 <0.0001

• Coefficients, standard errors, t values, and p-values.
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• R2 (in this example, 0.550)

55.0% of variation in Y is explained by X . R2 is square of r (Pearson’s correlation of X and Y )

cor(radiation$QoL0, radiation$QoL6)

[1] 0.7418

cor(radiation$QoL0, radiation$QoL6)^2

[1] 0.5502

10.2.1 Model diagnostics

Not all regression models are good.
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mod.bad1

Linear Regression Model

ols(formula = yb1 ~ xb1)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 20 LR chi2 56.92 R2 0.942
sigma90.0104 d.f. 1 R2 adj 0.939
d.f. 18 Pr(> chi2) 0.0000 g 413.140

Residuals

Min 1Q Median 3Q Max
-82.87 -64.41 -28.85 56.31 208.35

Coef S.E. t Pr(>|t|)
Intercept -261.0750 42.9050 -6.08 <0.0001
xb1 37.3278 2.1846 17.09 <0.0001
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mod.bad2

Linear Regression Model

ols(formula = yb2 ~ xb2)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 50 LR chi2 81.54 R2 0.804
sigma4.2336 d.f. 1 R2 adj 0.800
d.f. 48 Pr(> chi2) 0.0000 g 9.815

Residuals

Min 1Q Median 3Q Max
-13.7445 -2.3158 -0.4114 2.7599 12.8026

Coef S.E. t Pr(>|t|)
Intercept 1.3329 1.2339 1.08 0.2855
xb2 0.8610 0.0613 14.04 <0.0001
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Assumptions for regression analysis

• Observations are independent. (Single observation from an individual)

• Residuals (ε) are Normal(0,σ2).

Mean 0 with a constant variance for all values of X .

– Note that y does not have to be normally distributed. (only y− ŷ)

– Heteroskedasticity refers to the situation where variance increases as x increases.

– We use a residual plot to examine this assumption.

A plot of residuals against x or ŷ.

• When these assumptions are not met, inference (on coefficients and predicted values) will

be wrong.
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10.2.2 CEASAR example

QoL model for CEASAR radiation group.

(mod1 <- ols(QoL6 ~ QoL0, data = radiation, x = TRUE))

Linear Regression Model

ols(formula = QoL6 ~ QoL0, data = radiation, x = TRUE)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 70 LR chi2 55.93 R2 0.550
sigma20.2780 d.f. 1 R2 adj 0.544
d.f. 68 Pr(> chi2) 0.0000 g 25.750

Residuals

Min 1Q Median 3Q Max
-39.171 -13.228 1.046 11.262 73.590

Coef S.E. t Pr(>|t|)
Intercept -4.8350 6.1817 -0.78 0.4368
QoL0 1.0082 0.1105 9.12 <0.0001

Model diagnosis

par(mfrow = c(2, 2), las = 1, family = "serif", bty = "L", tcl = -0.2)
plot(radiation$QoL0, radiation$QoL6, xlim = c(0, 100), ylim = c(0, 100), xlab = "Baseline QoL",

ylab = "Follow-up QoL", main = "QoL Radiation Group")

abline(mod1, col = "red", lwd = 2)

plot(mod1$fitted, mod1$residuals, xlab = "Fitted values", ylab = "Residuals", main = "Radiation group")
abline(h = 0, col = 8)

qqnorm(mod1$fitted)
qqline(mod1$fitted)
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Prediction intervals

newX <- seq(10, 90)
pred1 <- predict(mod1, newdata = data.frame(QoL0 = newX), conf.int = 0.95, conf.type = "mean")
pred2 <- predict(mod1, newdata = data.frame(QoL0 = newX), conf.int = 0.95, conf.type = "individual")

par(mfrow = c(1, 1), las = 1, family = "serif", bty = "L", tcl = -0.2)

plot(radiation$QoL0, radiation$QoL6, xlim = c(0, 100), ylim = c(0, 100), col = "grey", xlab = "Baseline QoL",
ylab = "Follow-up QoL", main = "QoL Radiation Group")

abline(mod1, col = "blue", lwd = 2)

lines(newX, pred1$lower, col = "royalblue")
lines(newX, pred1$upper, col = "royalblue")

par(mfrow = c(1, 1), las = 1, family = "serif", bty = "L", tcl = -0.2)

plot(radiation$QoL0, radiation$QoL6, xlim = c(0, 100), ylim = c(0, 100), col = "grey", xlab = "Baseline QoL",
ylab = "Follow-up QoL", main = "QoL Radiation Group")

abline(mod1, col = "blue", lwd = 2)
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lines(newX, pred2$lower, col = "royalblue")
lines(newX, pred2$upper, col = "royalblue")
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10.3 ANOVA as a regression analysis

• To compare 3 or more groups on a continuous variable, analysis of variance (ANOVA) is

used.

• A regression model with indicator variables (dummy variables) can accomplish the same

goal.

• Indicator variable takes either 1 or 0.

Example: Is the baseline PSA different across different risk groups?

table(d$Risk)

High Risk Intermediate Risk Low Risk
35 81 84

mean(d$PSA[d$Risk == "High Risk"])

[1] 9.697

mean(d$PSA[d$Risk == "Intermediate Risk"])

[1] 7.58

mean(d$PSA[d$Risk == "Low Risk"])

[1] 5.552

source("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/TatsukiRcode/RFunctions0.R")

par(las = 1, family = "serif", bty = "L", tcl = -0.2)
tplot(PSA ~ Risk, data = d, type = "b", jit = 0.01)
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(anv <- ols(PSA ~ Risk, data = d))

Linear Regression Model

ols(formula = PSA ~ Risk, data = d)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 200 LR chi2 19.67 R2 0.094
sigma4.7322 d.f. 2 R2 adj 0.084
d.f. 197 Pr(> chi2) 0.0001 g 1.607

Residuals

Min 1Q Median 3Q Max
-8.1971 -2.2802 -0.8163 0.9517 38.5029

Coef S.E. t Pr(>|t|)
Intercept 9.6971 0.7999 12.12 <0.0001
Risk=Intermediate Risk -2.1169 0.9572 -2.21 0.0282
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Risk=Low Risk -4.1448 0.9521 -4.35 <0.0001

E[y] = β0 +βIntXInt +βLowXLow,

where

XInt = 1 if Risk=Intermediate Risk, 0 otherwise.

XLow = 1 if Risk=Low Risk, 0 otherwise.

so that

E[y] = β0 if Risk=High.

E[y] = β0 +βInt if Risk=Intermediate.

E[y] = β0 +βLow if Risk=Low.

The High risk group’s mean is β̂0 = 9.70. The Intermediate group’s mean is β̂0 + β̂1 = 7.58. The

Low risk group’s mean is β̂0 + β̂2 = 5.55. Confidence intervals are:

confint(anv)

2.5 % 97.5 %
Intercept 8.120 11.2746
Risk=Intermediate Risk -4.005 -0.2292
Risk=Low Risk -6.022 -2.2672

• Both βInt and βLow are significantly different from 0, which means that the respective group

averages are different from High-Risk group’s average.

• How about Intermediate vs. Low?

H0 : βInt = βLow

Another way of testing group differences are:
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summary(anv, Risk = "High Risk") ## only works with 'rms' functions. (ols)

Effects Response : PSA

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
Risk - Intermediate Risk:High Risk 1 2 NA -2.117 0.9572 -4.005 -0.2292
Risk - Low Risk:High Risk 1 3 NA -4.145 0.9520 -6.022 -2.2672

summary(anv, Risk = "Low Risk") ## Now reference group = 'Low Risk'

Effects Response : PSA

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
Risk - High Risk:Low Risk 3 1 NA 4.145 0.9520 2.2672 6.022
Risk - Intermediate Risk:Low Risk 3 2 NA 2.028 0.7369 0.5746 3.481

• How about the model assumptions, i.e., residuals are Normal(0,σ).

In ANOVA, this is equivalent to the data are normal with constant variance.

For these data, the assumptions are probably not met.

To alleviate some problems with data distribution, a simple transformation (e.g., log(·) and
√
·)

sometimes works.

par(las = 1, family = "serif", tcl = -0.2, bty = "L")
tplot(log(PSA) ~ Risk, data = d, type = "b")
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(anv2 <- ols(log(PSA) ~ Risk, data = d))

Linear Regression Model

ols(formula = log(PSA) ~ Risk, data = d)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 200 LR chi2 20.96 R2 0.099
sigma0.5038 d.f. 2 R2 adj 0.090
d.f. 197 Pr(> chi2) 0.0000 g 0.172

Residuals

Min 1Q Median 3Q Max
-1.72588 -0.27281 -0.04169 0.27133 1.87864

Coef S.E. t Pr(>|t|)
Intercept 1.9967 0.0852 23.45 <0.0001
Risk=Intermediate Risk -0.0604 0.1019 -0.59 0.5538



CHAPTER 10. REGRESSION ANALYSIS 95

Risk=Low Risk -0.3762 0.1014 -3.71 0.0003

confint(anv2)

2.5 % 97.5 %
Intercept 1.8288 2.1647
Risk=Intermediate Risk -0.2614 0.1405
Risk=Low Risk -0.5761 -0.1763

10.4 Multivariable regression models

10.4.1 Confounding

• Recall that a confounder is a variable that is not of major interest but may be associated with

response and/or independent variables.

• When there are confounders, the true association between X (Explanatory variable) and Y

(Response) may not be analyzed properly without accounting for the confounders.

• A multivariable (multiple) regression model is a very effective method to account for con-

founders.

• We will be able to say, “effect of X on Y is this adjusting for this, that, and that.”

CEASAR Example: Comparing the follow-up QoL between the treatments.

• We would like to compare the follow-up QoL score between Surgery and Radiation group.

• We think (know by now) that many baseline characteristics are different between groups, so

not adjusting for them will lead to biased conclusions.

par(mfrow = c(2, 2), las = 1, family = "serif", bty = "l", tcl = -0.2)
tplot(QoL6 ~ Treatment, data = d, type = "bd", jit = 0.01, main = "Follow-up QoL")
tplot(QoL0 ~ Treatment, data = d, type = "bd", jit = 0.01, main = "Baseline QoL")
tplot(I(QoL6 - QoL0) ~ Treatment, data = d, type = "bd", jit = 0.01, main = "QoL change")
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QoL change

(q6 <- aggregate(d$QoL6, by = list(d$Treatment), FUN = summary))

Group.1 x.Min. x.1st Qu. x.Median x.Mean x.3rd Qu. x.Max.
1 Radiation 0.80 19.62 47.95 47.03 73.90 98.90
2 Surgery 0.70 10.80 24.70 36.30 59.20 96.30

(q0 <- aggregate(d$QoL0, by = list(d$Treatment), FUN = summary))

Group.1 x.Min. x.1st Qu. x.Median x.Mean x.3rd Qu. x.Max.
1 Radiation 11.90 32.60 51.90 51.44 68.20 90.90
2 Surgery 15.50 41.47 64.25 61.35 81.77 94.90

(qd <- aggregate(d$QoL6 - d$QoL0, by = list(d$Treatment), FUN = summary))

Group.1 x.Min. x.1st Qu. x.Median x.Mean x.3rd Qu. x.Max.
1 Radiation -43.500 -17.700 -3.250 -4.416 7.050 68.900
2 Surgery -81.600 -39.250 -26.750 -25.050 -6.775 49.300



CHAPTER 10. REGRESSION ANALYSIS 97

10.4.2 Multivariable linear regression

aka Multiple linear regression.

Don’t say “multivariate”.

• p independent variables, x1, x2, · · · , xp.

• Model: y = β0 +β1x1 +β2x2 + · · ·βpxp + ε

• Estimated equation: ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · β̂pxp

• Assume that the difference variables act in an additive fashion (later interaction).

• Each β represents an effect of increasing a variable by one unit, holding all others constant.

Example:

Y = β0 +β1Xage +β2Xsex + ε,

where Xsex = 0 if male, 1 if female.

• β1 represents the change in the mean of Y for males when ages increases by 1 year. It is

also the change in the mean of Y for females.

• β2 is the “female effect”. The difference in the means of Y for two subjects of the same age.

(Any age).

E[Y |x1,x2] = β0 +β1x1 for male.

E[Y |x1,x2] = β0 +β2 +β1x1 for female.

CEASAR example:

• We will analyze association between QoL6 (Y) and Treatment (X).
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• We will adjust for the following baseline variables.

QoL0, Age, PSA, Race, HeartDisease, Hypertension, Diabetes.

Variables to include

• The number of variables that can be included in a multivariable regression model depends

on sample size.

• The rule of thumb is n = 15 is required for 1 degree of freedom.

– A continuous variable uses 1 degree of freedom.

– A categorical variable uses C−1 degree of freedom, where C is number of categories.

– Flexible form (spline) and interactions need additional df.

• Important: We need to specify which variables to include in the model a priori.

– We cannot look at a “Table 1” to decide which variables to account for. (univariate

screening)

– Doing so will inflate type I error rate and will result in overstating the association between

X and Y .

latex(summary(Treatment ~ Age + Race + MaritalStatus + Education + Income + PSA + Gleason +

HeartDisease + Hypertension + Diabetes + QoL0 + QoL6, method = "reverse", overall = !TRUE,

test = !FALSE, data = d), file = "")

Warning in chisq.test(tab, correct = FALSE): Chi-squared approximation may be incorrect

(qolM <- ols(QoL6 ~ Treatment + QoL0 + Age + Race + PSA + HeartDisease + Hypertension + Diabetes,
data = d))

Linear Regression Model

ols(formula = QoL6 ~ Treatment + QoL0 + Age + Race + PSA + HeartDisease +
Hypertension + Diabetes, data = d)
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Table 10.1: Descriptive Statistics by Treatment

N Radiation Surgery Test Statistic
N = 70 N = 130

Age 200 63.0 67.0 73.0 56.0 63.5 68.0 F1,198=11.81, P<0.0011

Race : White 200 69% (48) 75% (97) χ2
2 =1.18, P=0.5552

Black 10% ( 7) 10% (13)

Other 21% (15) 15% (20)

MaritalStatus : Not married 200 27% ( 19) 10% ( 13) χ2
1 =9.95, P=0.0022

Education : High school 200 47% (33) 25% (33) χ2
3 =11.62, P=0.0092

Some college 21% (15) 23% (30)

College graduate 20% (14) 26% (34)

Graduate school 11% ( 8) 25% (33)

Income : - 30K 195 34% (23) 15% (19) χ2
3 =13.22, P=0.0042

30K - 50K 24% (16) 20% (26)

50K - 100K 25% (17) 31% (40)

100K - 16% (11) 34% (43)

PSA 200 5.00 6.30 9.05 4.70 5.80 7.45 F1,198=2.69, P=0.1031

Gleason : 6 or less 200 46% (32) 47% (61) χ2
3 =3.84, P=0.2792

3 + 4 44% (31) 34% (44)

4 + 3 4% ( 3) 7% ( 9)

8,9,10 6% ( 4) 12% (16)

HeartDisease : Yes 200 9% ( 6) 15% ( 19) χ2
1 =1.52, P=0.2182

Hypertension : Yes 200 67% (47) 52% (68) χ2
1 =4.1, P=0.0432

Diabetes : Yes 200 17% ( 12) 18% ( 24) χ2
1 =0.05, P=0.8172

QoL0 200 32.60 51.90 68.20 41.47 64.25 81.77 F1,198=8.98, P=0.0031

QoL6 200 19.62 47.95 73.90 10.80 24.70 59.20 F1,198=5.82, P=0.0171

a b c represent the lower quartile a, the median b, and the upper quartile c for continuous variables.
N is the number of non–missing values. Numbers after percents are frequencies. Tests used:
1Wilcoxon test; 2Pearson test
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Model Likelihood Discrimination
Ratio Test Indexes

Obs 200 LR chi2 101.45 R2 0.398
sigma23.7485 d.f. 9 R2 adj 0.369
d.f. 190 Pr(> chi2) 0.0000 g 21.676

Residuals

Min 1Q Median 3Q Max
-51.839 -15.005 -3.115 17.023 73.087

Coef S.E. t Pr(>|t|)
Intercept 32.1713 17.0368 1.89 0.0605
Treatment=Surgery -18.2629 3.7140 -4.92 <0.0001
QoL0 0.7244 0.0794 9.13 <0.0001
Age -0.3901 0.2215 -1.76 0.0798
Race=Black 9.4428 5.7491 1.64 0.1021
Race=Other -2.7699 4.5562 -0.61 0.5440
PSA 0.5166 0.3516 1.47 0.1434
HeartDisease=Yes -7.3865 5.1523 -1.43 0.1533
Hypertension=Yes 1.2876 3.5585 0.36 0.7179
Diabetes=Yes -6.5694 4.4583 -1.47 0.1423

• Overall significance?

• R2

• Significant Treatment effect?

• Other significant covariates?

• On average, QoL6 is higher for Radiation group by ...?

• Compared to a white person, a black person’s QoL6 is higher by ....?

• Compared to a 75 years old, an 85 years old’s QoL6 is ...?

confint(qolM)
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2.5 % 97.5 %
Intercept -1.4343 65.77687
Treatment=Surgery -25.5890 -10.93689
QoL0 0.5679 0.88098
Age -0.8271 0.04682
Race=Black -1.8975 20.78313
Race=Other -11.7572 6.21740
PSA -0.1769 1.21021
HeartDisease=Yes -17.5495 2.77652
Hypertension=Yes -5.7317 8.30690
Diabetes=Yes -15.3635 2.22469

“QoL6 for Surgery group is, on average, 18.3 points lower (95% CI: 10.9 to 25.6) compared to

Radiation group.”
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Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
QoL0 36.62 78.22 41.6 30.136 3.302 23.6230 36.6490
Age 58.00 70.00 12.0 -4.681 2.658 -9.9249 0.5619
PSA 4.80 8.10 3.3 1.705 1.160 -0.5839 3.9937
Treatment - Radiation:Surgery 2.00 1.00 NA 18.263 3.714 10.9370 25.5890
Race - Black:White 1.00 2.00 NA 9.443 5.749 -1.8975 20.7830
Race - Other:White 1.00 3.00 NA -2.770 4.556 -11.7570 6.2174
HeartDisease - Yes:No 1.00 2.00 NA -7.386 5.152 -17.5500 2.7765
Hypertension - No:Yes 2.00 1.00 NA -1.288 3.558 -8.3069 5.7317
Diabetes - Yes:No 1.00 2.00 NA -6.569 4.458 -15.3640 2.2247

summary(qolM, est.all = FALSE, QoL0 = c(30, 60, 80), Age = c(60, 65, 70), Treatment = "Radiation",
Race = "White", HeartDisease = "No", Hypertension = "No", Diabetes = "No")

Effects Response : QoL6

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
QoL0 30 80 50 36.221 3.969 28.393 44.0490
Age 60 70 10 -3.901 2.215 -8.271 0.4682
Treatment - Surgery:Radiation 1 2 NA -18.263 3.714 -25.589 -10.9370
Race - Black:White 1 2 NA 9.443 5.749 -1.897 20.7830
Race - Other:White 1 3 NA -2.770 4.556 -11.757 6.2174
HeartDisease - Yes:No 1 2 NA -7.386 5.152 -17.550 2.7765
Hypertension - Yes:No 1 2 NA 1.288 3.558 -5.732 8.3069
Diabetes - Yes:No 1 2 NA -6.569 4.458 -15.364 2.2247

“QoL6 is 36.2 (28.4,44.0) points higher for someone with QoL0 = 80 than someone with QoL0 = 30.

qolM$coefficients["QoL0"]

QoL0
0.7244

qolM$coefficients["QoL0"] * 50

QoL0
36.22

10.4.3 Interactions

• In the last model, we assumed that the effect of Treatment is the same for everybody regard-

less of their baseline characteristics.
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• A model with an interaction allows an effect of one X vary depending the value of another X .

• Subgroup analysis can be conducted using interactions.

A simple example.

Y = β0 +β1Xage +β2Xsex +β12XageXsex + ε,

where Xsex = 0 if male, 1 if female.

• For male (Xsex = 0), we have Y = β0 +β1Xage + ε.

• For female (Xsex = 1), we have Y = β0 +β2 +(β1 +β12)Xage + ε.

• Thus, β1 is the age effect for male.

• β12 is the additional age effect for female.

• β0 is average Y when Xage = 0 for male.

• β2 is difference of average Y ’s when Xage = 0 between male and female.

• We can test whether the age effect is the same for male and female by testing β12 = 0.

A new CEASAR model.

Now we consider the interactions between Treatment and the following variables: QoL0, Age,

Race.

The reasons for including these interactions is:

• We think that the Treatment effect on QoL6 is different according to the values of QoL0, Age,

and Race.

• We would like to analyze (investigate) the Treatment effect for, e.g., blacks and whites sepa-

rately.
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Do we have enough data to include all these interactions? Degrees of freedoms spent:

Treatment (1), QoL0 (1), Age (1), Race (2), PSA (1), HeartDisease (1), Hypertension (1), Diabetes

(1)

Treatment - QoL0 (1), Treatment - Age (1), Treatment -Race (2) So the total df is 13. We probably

need about n = 13×15 = 195.

(qolM.int <- ols(QoL6 ~ Treatment * (QoL0 + Age + Race) + PSA + HeartDisease + Hypertension +
Diabetes, data = d))

Linear Regression Model

ols(formula = QoL6 ~ Treatment * (QoL0 + Age + Race) + PSA +
HeartDisease + Hypertension + Diabetes, data = d)

Model Likelihood Discrimination
Ratio Test Indexes

Obs 200 LR chi2 112.84 R2 0.431
sigma23.3286 d.f. 13 R2 adj 0.391
d.f. 186 Pr(> chi2) 0.0000 g 22.464

Residuals

Min 1Q Median 3Q Max
-52.253 -14.464 -3.292 15.222 72.142

Coef S.E. t Pr(>|t|)
Intercept -5.0609 24.9680 -0.20 0.8396
Treatment=Surgery 56.4236 32.4887 1.74 0.0841
QoL0 1.0042 0.1334 7.53 <0.0001
Age -0.0031 0.3478 -0.01 0.9929
Race=Black 4.8575 9.7740 0.50 0.6198
Race=Other -1.7489 7.0026 -0.25 0.8031
PSA 0.4048 0.3489 1.16 0.2474
HeartDisease=Yes -8.7150 5.1224 -1.70 0.0905
Hypertension=Yes -1.6532 3.6611 -0.45 0.6521
Diabetes=Yes -4.6510 4.4403 -1.05 0.2963
Treatment=Surgery * QoL0 -0.4977 0.1716 -2.90 0.0042
Treatment=Surgery * Age -0.7457 0.4439 -1.68 0.0946
Treatment=Surgery * Race=Black 9.5978 12.1310 0.79 0.4298
Treatment=Surgery * Race=Other -1.1382 9.1542 -0.12 0.9012

• With an interaction, interpreting the coefficients gets complicated.
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• Even though changing models based on the results of model fit is not recommended (it would

increase type I error rate in inference.), we can check if the interaction terms were necessary.

anova(qolM.int)

Analysis of Variance Response: QoL6

Factor d.f. Partial SS MS F P
Treatment (Factor+Higher Order Factors) 5 19569.7 3913.9 7.19 <.0001
All Interactions 4 5932.6 1483.2 2.73 0.0308

QoL0 (Factor+Higher Order Factors) 2 45435.6 22717.8 41.74 <.0001
All Interactions 1 4579.7 4579.7 8.42 0.0042

Age (Factor+Higher Order Factors) 2 3842.2 1921.1 3.53 0.0313
All Interactions 1 1535.9 1535.9 2.82 0.0946

Race (Factor+Higher Order Factors) 4 2807.0 701.8 1.29 0.2757
All Interactions 2 375.1 187.6 0.34 0.7089

PSA 1 732.7 732.7 1.35 0.2474
HeartDisease 1 1575.3 1575.3 2.89 0.0905
Hypertension 1 111.0 111.0 0.20 0.6521
Diabetes 1 597.1 597.1 1.10 0.2963
Treatment * QoL0 (Factor+Higher Order Factors) 1 4579.7 4579.7 8.42 0.0042
Treatment * Age (Factor+Higher Order Factors) 1 1535.9 1535.9 2.82 0.0946
Treatment * Race (Factor+Higher Order Factors) 2 375.1 187.6 0.34 0.7089
TOTAL INTERACTION 4 5932.6 1483.2 2.73 0.0308
REGRESSION 13 76736.7 5902.8 10.85 <.0001
ERROR 186 101225.4 544.2

Also a likelihood ratio test can be used to see if a bigger model is better than a smaller (nested)

model significantly.

lrtest(qolM, qolM.int)

Model 1: QoL6 ~ Treatment + QoL0 + Age + Race + PSA + HeartDisease + Hypertension +
Diabetes

Model 2: QoL6 ~ Treatment * (QoL0 + Age + Race) + PSA + HeartDisease +
Hypertension + Diabetes

L.R. Chisq d.f. P
11.3909 4.0000 0.0225

It looks like including these interactions are not a bad idea.
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resid <- qolM.int$residuals
fitted <- qolM.int$fitted
par(mfrow = c(2, 2), las = 1, family = "serif", bty = "L", tcl = -0.2)
plot(fitted, resid, main = "", xlab = "Fitted values", ylab = "Residuals")
abline(h = 0, col = 8)

qqnorm(qolM.int$residuals)
qqline(qolM.int$residuals)
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How to read / report this model.

• The variables not involved in any interactions can be interpreted in the same way as before:

e.g.,

– “On average, QoL6 increases by 0.4048 with unit increment in PSA.”

– “On average, QoL6 is lower by 8.72 for a patient with HeartDisease at baseline com-

pared with a patient without.
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• Use summary()

For Surgery group:

summary(qolM.int, Treatment = "Surgery", QoL0 = c(30, 60, 80), Age = c(60, 65, 70))

Effects Response : QoL6

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
QoL0 30.0 80.0 50.0 25.322 5.162 15.1370 35.506
Age 60.0 70.0 10.0 -7.488 2.818 -13.0480 -1.928
PSA 4.8 8.1 3.3 1.336 1.151 -0.9354 3.607
Treatment - Radiation:Surgery 2.0 1.0 NA 21.908 4.326 13.3740 30.442
Race - Black:White 1.0 2.0 NA 14.455 7.112 0.4240 28.487
Race - Other:White 1.0 3.0 NA -2.887 5.862 -14.4520 8.678
HeartDisease - Yes:No 1.0 2.0 NA -8.715 5.122 -18.8200 1.390
Hypertension - No:Yes 2.0 1.0 NA 1.653 3.661 -5.5693 8.876
Diabetes - Yes:No 1.0 2.0 NA -4.651 4.440 -13.4110 4.109

Adjusted to: Treatment=Surgery QoL0=60 Age=65 Race=White

For Radiation group:

summary(qolM.int, Treatment = "Radiation", QoL0 = c(30, 60, 80), Age = c(60, 65, 70))

Effects Response : QoL6

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
QoL0 30.0 80.0 50.0 50.20800 6.669 37.0510 63.366
Age 60.0 70.0 10.0 -0.03119 3.478 -6.8920 6.830
PSA 4.8 8.1 3.3 1.33580 1.151 -0.9354 3.607
Treatment - Surgery:Radiation 1.0 2.0 NA -21.90800 4.326 -30.4420 -13.374
Race - Black:White 1.0 2.0 NA 4.85750 9.774 -14.4250 24.140
Race - Other:White 1.0 3.0 NA -1.74890 7.003 -15.5640 12.066
HeartDisease - Yes:No 1.0 2.0 NA -8.71500 5.122 -18.8200 1.390
Hypertension - No:Yes 2.0 1.0 NA 1.65320 3.661 -5.5693 8.876
Diabetes - Yes:No 1.0 2.0 NA -4.65100 4.440 -13.4110 4.109

Adjusted to: Treatment=Radiation QoL0=60 Age=65 Race=White

The Surgery effect is −21.9(−30.4,−13.4) for a 65-year old white patient with QoL0 = 60.

summary(qolM.int, Treatment = "Radiation", QoL0 = c(30, 40, 80), Age = c(60, 75, 80), est.all = FALSE)
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Effects Response : QoL6

Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
QoL0 30 80 50 50.20800 6.669 37.05 63.366
Age 60 80 20 -0.06238 6.955 -13.78 13.659
Treatment - Surgery:Radiation 1 2 NA -19.41000 6.113 -31.47 -7.351

Adjusted to: Treatment=Radiation QoL0=40 Age=75

The Surgery effect is−19.4(−31.5,−7.4) for a 75-year old white patient with QoL0= 40. And finally,

we can estimate the treatment effects for different values of age / baseline QoL / Race and show

them in a plot.

extract.effect<- function(qol0, age, race='White', m=qolM.int){
s <- summary(m, QoL0=qol0, Age=age, Race=race, Treatment='Radiation')
out <- s[ grep('Treatment', row.names(s)), c(4,6,7)]
}

Qol0 <- seq(20,90) ; L <- length(Qol0)
Age <- 65

out <- matrix(0, ncol=3, nrow=L)
for(i in 1:L){

out[i,] <- extract.effect(qol0=Qol0[i], age=Age)
}

par(las=1, family='serif', bty='L', tcl=-0.2)
plot(0,0, type='n', xlim=c(0,100), ylim=range(out), xlab='Baseline QoL',

ylab='Difference in follow-up QoL', main='')
title(main='Surgery - Radiation', adj=0)
abline(h=0, col=8)

lines(Qol0, out[,1], col='blue')
lines(Qol0, out[,2], col='royalblue')
lines(Qol0, out[,3], col='royalblue')
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