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Logistic regression

» models G| X directly

» K classes G = {G1,...,0K}
» when K > 2 called “multinomial logistic regression”

> Pk = Pk(l',ﬁ) = PT(G = gk|X = .’L‘,ﬁ)



Logistic regression

LR model:
» “logit" or log-odds

log[Pk] =x0, k=1,...,K—1
P

» “expit” or “sigmoid” or “logistic”

P - exp(zfk)
1+ exp(afy)

» expit converts K — 1 numbers to K probabilities that sum to 1

» “sigmoid” used in Keras as output activation



Estimating )

» given sample g1,..., gy, targets y1,...,Yn, inputs 1, ..

v

|et5={51,...,,8[(}

» minimize average loss in training data
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» using cross-entrpoy loss
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where
Pik = Pi(4, Br)
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Estimating )

» minimizing the average loss equivalent to maximizing the
likelihood” function, assuming that outcome has a
multinomial distribution:

» log likelihood:
K
1(B) =) D vir log pin

i=1k=1

ulog
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Estimating )

» to minimize expected loss, find %efr(ﬁ) = ert’(B)
» no closed-form expression for er1’(3)
» need an algorithm to solve

» use Newton-Raphson algorithm



Newton-Raphson algorithm

d/dp Training Error
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Newton-Raphson algorithm

Use first-order Taylor approximation to linearize ért’ at starting
point gy

» want to solve &t (f3) = 0

» Taylor approximation:

~

ett’(B) ~ ert’(Bo) + ert” (o) (Bo — B)
B~ By — ert” (o) terr’ (o)

» convert to iterative algorithm:

Bimy = Bon—1) — " (Bm—1)) " ' (Bim—1))



LR vs. LDA

» both express log[Py./Px] as linear in x (see HTF eq. 4.9)

» (3 estimated differently

» LR makes fewer distributional assumptions

» LR uses cond. prob. Pr(G|X) where Pr(X) ignored

» LDA uses joint prob. Pr(G,X)

» LDA smaller var(3) whem model true (see HTF eq. 4.38)

» LDA can use unclassified observations to help estimate Pr(X)
» LR parameters not defined when there is perfect separation

» neither LR nor LDA have natural tuning parameter



Uncertainty in model predictions

A~

» G(x) = argmaxg, Pr(G = G| X = z, 3)

» but 3 is a sample statistic and therfore has sampling
uncertainty given approximately by N (3, 1(5)~1)

» thus Pr(G = G| X = z, 3) also has sampling uncertainty

» if using Pr(G = G| X = 2, B) to make decisions, might like
to know something about this uncertainty



Sampling uncertainty

» statisticians have spent more than 100 years trying to identify
the sampling distributions of this and other statistics

» greatest discoveries in statistics were generic strategies for
this, e.g., approximate sampling distribution for MLEs, delta
method, bootstrap



Sampling distribution for B

» fis an MLE, thus 8 — N(8, Egx[-1"(8)]")

» approximate 3 ~ N(3,[-1"(8)] )
» Hessian of log likelihood
» Fisher information denoted I(83) = E¢x[—1"(5)]

» observed Fisher information at B denoted f(B) = —l”(B)



Sampling distribution for Pr(G = Gi|X = :z:,B)

Unfortunately Pr(G = Gi|X = , () is a nonlinear function of £,
so can't easily determine samPIing gistribution. But we can
linearize Pr(G = Gi|X = x,[3) in ( using a first-order Taylor
approximation:

s let 7(8) = Pr(G = Gp|X =z, )

> then r(B) ~ r(B) +7'(8)(6 - B)

» thus, since (8 — ) — N(0,I(8)1) it foIIows approximately

that (r(8) —r(B)) — N (0.7 (8)"1(8)~"+(5))
» approximate /()" 1(8) "'/ (B) using +(8)"1(3)~"+'(5)
» this is the “delta method”



