medExtractR: medication extraction from electronic health records

HANNAH WEEKS

VANDERBILT UNIVERSITY

PK/PD studies

Critical information for PK/PD studies:

- ▶ Blood concentration measurements
- Dosing information
 - ▶ What dosage did the patient take?
 - ▶ How often was that dosage taken?
 - ▶ At what time was the most recent dose taken?

PK/PD studies

Critical information for PK/PD studies:

- ▶ Blood concentration measurements
- Dosing information
 - ▶ What dosage did the patient take?
 - ▶ How often was that dosage taken?
 - ▶ At what time was the most recent dose taken?

Often found as unstructured data in EHR (clinical notes)

"...Patient takes tacrolimus 1mg 2x/day..."

Information extraction

- ▶ How do we extract data?
- Natural language processing (NLP)
 - ▶ Using computers to understand human language
- ▶ Information extraction
 - ▶ NLP task that converts unstructured input to structured output

"...Patient takes tacrolimus 1mg 2x/day..."

Drug name	tacrolimus	
Dose	1 mg	
Frequency	2x/day	

medExtractR

- ► Targeted approach to medication extraction intended to be used on **a** drug within a dataset
- ▶ Customizable through function arguments or modification of source code
- Written in R
 - ▶ Widely used for data analysis
 - Available on CRAN

medExtractR example

"Patient is on tacrolimus 1mg (2) bid – took at 6:30 pm, cellcept 1000mg bid, prednisone 5mg daily."

Entity	Expression	Position
DrugName	tacrolimus	15:25
Strength	1mg	26:29
DoseAmt	2	31:32
Frequency	bid	34:37
LastDose	6:30 pm	48:55

Data From the Synthetic Derivative – Vanderbilt University de-identified EHR Development drugs Tacrolimus and lamotrigine 60 training notes, 50 test notes Test drug Allopurinol 110 test notes

Data: gold standards

- ▶ 1. Develop annotation guidelines
 - ▶ When to highlight information
 - ▶ What defines different drug entities
- ▶ 2. Double annotation
 - ▶ 2 independent reviewers, evaluate annotation concordance
- > 3. Revise guidelines if needed
- 4. Annotate training notes
- ▶ 5. Annotate test notes

Performance measures

 $Precision = \frac{true\ positives}{true\ positives + false\ positives}$

- Positive predictive value
- Fraction of extracted output in gold standard

 $Recall = \frac{true \ positives}{true \ positives + false \ negatives}$

🕶 🕩 /Tacrolimus-Attributes/training01

51 Cap (Prograf) 5 capsules by mouth twice a day (decr

DrugName Strength

50 MEDS: - Tacrolimus 1 mg

- Sensitivity (true positive rate)
- Fraction of annotations that were correctly extracted

Performance measures

$$F-measure (F1) = \frac{2*Precision*Recall}{Precision+Recall}$$

- Quantify uncertainty with 95% bootstrap confidence intervals
 - ▶ Bootstrap notes (within drug)
 - ▶ Use 2.5 and 97.5 percentiles as interval bounds

Selecting tuning parameters Tune two parameters: window length and maximum edit distance Create a grid of options for each parameter Compute F-measure Select parameters with best performance Maximize performance on training set

MIMIC-III Clinical Care Database

- ▶ De-identified records corresponding to over 60,000 ICU stays
- Over 2 million clinical notes
- ▶ Institution: Beth Israel Deaconess Medical Center, Boston, MA
- ▶ Dataset available by request through MIT: https://mimic.physionet.org

Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Scientific data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35

Note sampling procedure

3 drugs: tacrolimus, lamotrigine, oxcarbazepine

- ▶ Tuning set: 10 notes per drug
 - Randomly select notes one at a time
 - ▶ Manually review for presence of dosing information
 - ▶ If present, add to tuning set
- ▶ Validation set: 100 notes per drug
 - ▶ Randomly sample 50 discharge summaries
 - ▶ Randomly sample 50 from all other note categories

- Determine changes to annotation guidelines
- Annotate gold standards

- Annotate gold standards after tuning

MIMIC-III: Starting point

- ▶ Tuning set errors motivate next steps
- e.g. Tacrolimus 1 mg: One (1) capsule q daily

Position	medExtractR	Gold Standard	
1:11	Tacrolimus	Tacrolimus	
12:16	1 mg	1 mg	
18:21	<na></na>	One 🛑	False negativ
23:24	1	1	
34:41	<na></na>	q daily	

Evaluation method

Present performance for different quantities for each drug:

- ▶ 1. No modification "out of box" performance based on SD development
- ▶ 2. Tuning only
 - ▶ Smaller changes (dictionary updates, parameter selection)
- > 3. Tuning plus customization
 - ▶ Adding or changing rules in the source code
 - Requires more advanced coding ability

Evaluation method

Present performance for different quantities for each drug:

- ▶ 1. No modification "out of box" performance based on SD development
- ▶ 2. Tuning only
 - ▶ Add 'q daily' to frequency dictionary
 - Select parameter values for function arguments
- > 3. Tuning plus customization
 - ▶ Text number followed by (digit) is a dose amount

Takeaways

- ▶ Without tuning, medExtractR performance is likely to be less than ideal, especially if building datasets for medication studies.
- ▶ Recommend at least performing tuning steps when using medExtractR for a new study. Customization is ideal, when possible.
- medExtractR approach provides a compromise between relying on "outof-box" performance of existing medication extraction systems and having to manually create a validated dataset.

Contact

- ► Email: hannah.L.weeks@Vanderbilt.edu
- Weeks HL, Beck C, McNeer E, Williams ML, Bejan CA, Denny JC, Choi L. medExtractR: A targeted, customizable approach to medication extraction from electronic health records. J Am Med Inform Assoc. 2020; 27(3):407-18.