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LDA and PCA

» no natural tuning parameter for LDA

» can use PCA dimension reduction on inputs

» number of PCs used is tuning parameter

» no information about the outcome used in PCA

» reduced rank LDA similar, but uses outcome information

» prerequisite: SVD and Eigen decomposition



Linear algebra review

» see LA_Examples link on wiki
» ‘“diagonal” matrix only diagonal elements are non-zero

> easy to invert
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Linear algebra review

v

“orthogonal” matrix columns have correlation zero

v

also called “linearly independent”

» easy to invert; transpose is inverse

» if V is an orthogonal matrix
vi=vT
Vv =1

» [ is the “identity” matrix
10 0 O
01 0 O

I= ,

0 0 :
0 0 1



Singular Value Decomposition

» say X is n X p matrix

» SVDis X =UDVT

» U - n X p - orthogonal - “left singular vectors”

» D -pxp-diagonal - di > --- > d, “singular values”
» V - p X p - orthogonal - “right singular vectors”

» SVD exists for all matrices

v

if any d; = 0, X is “singular”; cols of X are linearly dependent

v

svd () function in R will compute U, D and V



Eigen decomposition of X7 X

XTx = wpvhHTupv?
=vputupv™
= VDV’

» columns of V are eigenvectors (also right singular vectors)

» diagonal elements of D? are eigenvalues of X7 X



XTX is proportional to cov(X)

» if columns of X are centered (mean zero), then

1
cov(X) =X = —XTX
n

1
Y=-XTx
n
1
=-vp*vT
n

» can do PCA with X or 3, get the same V' and PCs



Principal components from SVD or Eigen

» the principal components of a matrix X are simply

Z =XV

v

eigenvectors (cols of V') are “principal component directions”

v

diagonal elements of D? are eigenvalues of X7 X

v

eigen values are related to variance of PCs



Sphereing

» consider cov(z) =X = VDV’
» sphered inputs are 2* = X "1/2 = gV D~1/2

» cov(z*) =1,
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LDA and Eigen-decomposition of X

» N1/2 VD71/2
> 271/2(271/2)T — -1

1
Ok () =logmi — o (z = )X~ (@ — )"
= log 7, — %(1‘ — ) ST (@ — )T
1
= logm, — 5[(x - ) X2 [(2 — )T

1 * * * *
= log 7y, — 5[33 — ppllz* = ]

» x* are “sphered” inputs

» u* are “sphered” centers

» why sphere inputs and centers?

» only distances from sphered centers are important

» for new z), classify to class with nearest pj
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LDA as a reduced dimension classifier

» consider a 2-classes (K = 2) and 2-dim input (p = 2)

» 2 sphered centers spanned by a 1-dim plane (i.e., a line)

» distances orthogonal to this line do not affect classification
» might as well project input onto line without loss

» projected variables are called “canonical” or “discriminant”
» original — sphered — canonical/discriminant

» when K << p, substantial dimension reduction of input
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Code example

sphered-and-canonical-inputs.R



LDA as a reduced dimension classifier

» consider a 3-classes (K = 3) and 3-dim input (p = 3)

» 3 sphered centers spanned by a 2-dim plane

» can project onto plane without loss

» can we project onto lower dimension (i.e., reduce the rank)
without much loss of discrimination?

» degree of dimension reduction is tuning parameter in reduced
rank LDA



LDA as a reduced dimension classifier

3-class problem (K = 3) and 3-dimensional sphered input (p = 3)



LDA as a reduced dimension classifier
3-class problem (K = 3) and 3-dimensional sphered input (p = 3)
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error: sphered data contours should not indicate correlation



How to compute reduced rank LDA

» do PCA on sphered centers u* = [u},..., pwi]T

> let B = cov(u*)

» compute B = UBDBVBT

» let1<I<K-1and Vé the first [ columns of Vg
» compute canonical variables and centers

» ol = x*Vé



How to compute reduced rank LDA

i x*Vé

> b= Vg

» use canonical variable and centers in discriminant

> Oi(x) = logmy, — 3lat — pp )" [2! — ]

> to classify , compute 2! = 2X71/2V}, then find closest j!,
» number of canonical variables [ is tuning parameter

» [ = K — 1 is same as regular LDA

» [ < K — 1 makes model less flexible

» select [ by minimizing estimate of EPE



Vowel data

v

well-known data for testing classifiers

» K =11 classes (vowels)

v

p = 10 inputs
0.40 is best attained EPE (using zero-one loss)

v
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Sphered vowel data
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Canonical vowel data
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Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 4

LDA and Dimension Reduction on the Vowel Data

Misclassification Rate

04

Dimension

FIGURE 4.10. Training and test error rates for the
vowel data, as a function of the dimension of the dis-
criminant subspace. In this case the best error rate is
for dimension 2. Figure 4.11 shows the decision bound-
aries in this space.
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Classification in Reduced Subspace

Canonical Coordinate 2

Canonical Coordinate 1

FIGURE 4.11. Decision boundaries for the vowel
training data, in the two-dimensional subspace spanned
by the first two canonical variates. Note that in any
higher-dimensional subspace, the decision boundaries
are higher-dimensional affine planes, and could not be
represented as lines.
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