Linear methods for classification: Reduced Rank LDA

Matthew S. Shotwell, Ph.D.
Department of Biostatistics
Vanderbilt University School of Medicine
Nashville, TN, USA

February 5, 2020

LDA and PCA

- no natural tuning parameter for LDA
- can use PCA dimension reduction on inputs
- number of PCs used is tuning parameter
- no information about the outcome used in PCA
- reduced rank LDA similar, but uses outcome information
- prerequisite: SVD and Eigen decomposition

Linear algebra review

- see LA_Examples link on wiki
- "diagonal" matrix only diagonal elements are non-zero
- easy to invert

$$
\begin{aligned}
D & =\left[\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & d_{p}
\end{array}\right] \\
D^{-1} & =\left[\begin{array}{cccc}
\frac{1}{d_{1}} & 0 & 0 & 0 \\
0 & \frac{1}{d_{2}} & 0 & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{d_{p}}
\end{array}\right]
\end{aligned}
$$

Linear algebra review

- "orthogonal" matrix columns have correlation zero
- also called "linearly independent"
- easy to invert; transpose is inverse
- if V is an orthogonal matrix

$$
\begin{gathered}
V^{-1}=V^{T} \\
V^{T} V=I
\end{gathered}
$$

- I is the "identity" matrix

$$
I=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Singular Value Decomposition

- say X is $n \times p$ matrix
- SVD is $X=U D V^{T}$
- $U-n \times p$ - orthogonal - "left singular vectors"
- $D-p \times p$ - diagonal $-d_{1} \geq \cdots \geq d_{p}$ "singular values"
- $V-p \times p$ - orthogonal - "right singular vectors"
- SVD exists for all matrices
- if any $d_{j}=0, X$ is "singular"; cols of X are linearly dependent
- $\operatorname{svd}()$ function in R will compute U, D and V

Eigen decomposition of $X^{T} X$

$$
\begin{aligned}
X^{T} X & =\left(U D V^{T}\right)^{T} U D V^{T} \\
& =V D U^{T} U D V^{T} \\
& =V D^{2} V^{T}
\end{aligned}
$$

- columns of V are eigenvectors (also right singular vectors)
- diagonal elements of D^{2} are eigenvalues of $X^{T} X$

$X^{T} X$ is proportional to $\operatorname{cov}(X)$

- if columns of X are centered (mean zero), then

$$
\begin{aligned}
\operatorname{cov}(\mathrm{X}) & =\Sigma=\frac{1}{n} X^{T} X \\
\Sigma & =\frac{1}{n} X^{T} X \\
& =\frac{1}{n} V D^{2} V^{T}
\end{aligned}
$$

- can do PCA with X or Σ, get the same V and PCs

Principal components from SVD or Eigen

- the principal components of a matrix X are simply

$$
Z=X V
$$

- eigenvectors (cols of V) are "principal component directions"
- diagonal elements of D^{2} are eigenvalues of $X^{T} X$
- eigen values are related to variance of PCs

Sphereing

- consider $\operatorname{cov}(x)=\Sigma=V D V^{T}$
- sphered inputs are $x^{*}=x \Sigma^{-1 / 2}=x V D^{-1 / 2}$
- $\operatorname{cov}\left(x^{*}\right)=I_{p}$

Centered

Sphered

LDA and Eigen-decomposition of Σ

- $\Sigma^{-1 / 2}=V D^{-1 / 2}$
- $\Sigma^{-1 / 2}\left(\Sigma^{-1 / 2}\right)^{T}=\Sigma^{-1}$

$$
\begin{aligned}
\delta_{k}(x) & =\log \pi_{k}-\frac{1}{2}\left(x-\mu_{k}\right) \Sigma^{-1}\left(x-\mu_{k}\right)^{T} \\
& =\log \pi_{k}-\frac{1}{2}\left(x-\mu_{k}\right) \Sigma^{-1 / 2}\left(\Sigma^{-1 / 2}\right)^{T}\left(x-\mu_{k}\right)^{T} \\
& =\log \pi_{k}-\frac{1}{2}\left[\left(x-\mu_{k}\right) \Sigma^{-1 / 2}\right]\left[\left(x-\mu_{k}\right) \Sigma^{-1 / 2}\right]^{T} \\
& =\log \pi_{k}-\frac{1}{2}\left[x^{*}-\mu_{k}^{*}\right]\left[x^{*}-\mu_{k}^{*}\right]^{T}
\end{aligned}
$$

- x^{*} are "sphered" inputs
- μ^{*} are "sphered" centers
- why sphere inputs and centers?
- only distances from sphered centers are important
- for new x_{0}^{*}, classify to class with nearest μ_{k}^{*}

Sphered

LDA as a reduced dimension classifier

- consider a 2-classes $(K=2)$ and 2-dim input ($p=2$)
- 2 sphered centers spanned by a 1-dim plane (i.e., a line)
- distances orthogonal to this line do not affect classification
- might as well project input onto line without loss
- projected variables are called "canonical" or "discriminant"
- original \rightarrow sphered \rightarrow canonical/discriminant
- when $K \ll p$, substantial dimension reduction of input

Sphered

Sphered

Canonical

Code example

sphered-and-canonical-inputs.R

LDA as a reduced dimension classifier

- consider a 3-classes $(K=3)$ and 3 -dim input ($p=3$)
- 3 sphered centers spanned by a 2-dim plane
- can project onto plane without loss
- can we project onto lower dimension (i.e., reduce the rank) without much loss of discrimination?
- degree of dimension reduction is tuning parameter in reduced rank LDA

LDA as a reduced dimension classifier

3-class problem $(K=3)$ and 3-dimensional sphered input $(p=3)$

LDA as a reduced dimension classifier

3-class problem $(K=3)$ and 3-dimensional sphered input $(p=3)$

How to compute reduced rank LDA

- do PCA on sphered centers $\mu^{*}=\left[\mu_{1}^{*}, \ldots, \mu_{K}^{*}\right]^{T}$
- let $B=\operatorname{cov}\left(\mu^{*}\right)$
- compute $B=U_{B} D_{B} V_{B}^{T}$
- let $1 \leq l \leq K-1$ and V_{B}^{l} the first l columns of V_{B}
- compute canonical variables and centers
- $x^{l}=x^{*} V_{B}^{l}$
- $\mu^{l}=\mu^{*} V_{B}^{l}$

How to compute reduced rank LDA

- $x^{l}=x^{*} V_{B}^{l}$
- $\mu^{l}=\mu^{*} V_{B}^{l}$
- use canonical variable and centers in discriminant
- $\delta_{k}(x)=\log \pi_{k}-\frac{1}{2}\left[x^{l}-\mu_{k}^{l}\right]^{T}\left[x^{l}-\mu_{k}^{l}\right]$
- to classify x, compute $x^{l}=x \Sigma^{-1 / 2} V_{B}^{l}$ then find closest μ_{k}^{l}
- number of canonical variables l is tuning parameter
- $l=K-1$ is same as regular LDA
- $l<K-1$ makes model less flexible
- select l by minimizing estimate of $E P E$

Vowel data

- well-known data for testing classifiers
- $K=11$ classes (vowels)
- $p=10$ inputs
- 0.40 is best attained $E P E$ (using zero-one loss)

Original vowel data

Sphered vowel data

Canonical vowel data

LDA and Dimension Reduction on the Vowel Data

FIGURE 4.10. Training and test error rates for the vowel data, as a function of the dimension of the discriminant subspace. In this case the best error rate is for dimension 2. Figure 4.11 shows the decision boundaries in this space.

FIGURE 4.11. Decision boundaries for the vowel training data, in the two-dimensional subspace spanned by the first two canonical variates. Note that in any higher-dimensional subspace, the decision boundaries are higher-dimensional affine planes, and could not be represented as lines.

