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Linear methods for classification

v

G has K classes in G = {Gy1,...,Go}
e.g., G = {blue, orange}

v

v

Y is a target varible:

Y:D/l""aYK]T

|1 G=G;
Y’“‘{o G # G

v

sample of y and z:

y=1[y- )" (nxK)

z=[ry,..., 2,7 (n X p)



Linear regression of indicator variables

v

this is not LDA; this method doesn’t work very well
Ui = fk(x) = Bok + B where B is p vectork

> fi(z) is kind of like Pr(G = Gr|X = z)

» G(z) = Gi, with largest fi,(x)

> fu(z) = 0x(x) is “discriminant function”

v
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Linear Regression Linear Discriminant Analysis
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FIGURE 4.2. The data come from three classes in
R? and are easily separated by linear decision bound-
aries. The right plot shows the boundaries found by
linear discriminant analysts. The left plot shows the
boundaries found by linear regression of the indica-
tor response variables. The middle class is completely
masked (never dominates).




Think PCA would help?
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Linear Regression Linear Discriminant Analysis
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FIGURE 4.2. The data come from three classes in
R? and are easily separated by linear decision bound-
aries. The right plot shows the boundaries found by
linear discriminant analysis. The left plot shows the
boundaries found by linear regression of the indica-
tor response variables. The middle class is completely
masked (never dominates).




Linear

regression of indicator variables

suppose we did PCA and only use first PC in regression
ik = ful(x) = o, + 2101

now suppose we added a quadratic term in z;

ik = fu(@) = Oor, + 2101 + 2302,

again, fi(z) = 6(x) is “discriminant function”

again, G(z) = G, with largest 0 (z)
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Degree = 1; Error = 0.33 Degree = 2; Error = 0.04

FIGURE 4.3. The effects of masking on linear regres-
sion in R for a three-class problem. The rug plot at
the base indicates the positions and class membership
of each observation. The three curves in each panel are
the fitted regressions to the three-class indicator vari-
ables; for example, for the blue class, Ypiue is 1 for the
blue observations, and 0 for the green and orange. The
fits are linear and quadratic polynomials. Above each
plot is the training error rate. The Bayes error rate is
0.025 for this problem, as is the LDA error rate.




Linear discriminant functions

» if there exists a monotome transformation of a descriminant
function i () that is linear in g, then 0y (x0) is a linear
discriminant function and decision boundary is a hyperplane

> eg., (5k(x0) = PT(G = gk|:L‘ = xo) = logit(xoﬁ)

» inverse logit is monotone transformation



Linear discriminant analysis (LDA)

v

model X given G rather than G given X
hi(x) = Pr(X = z|G = Gy)

7 = Pr(G = Gy) “prior”

apply Bayes rule:

v

v

v

_ Pr(X =2|G =Gy Pr(G = Gi)

Pr(X =x)
_ hk(.fC)ﬂ'k
fil hi(x)m



Linear discriminant analysis (LDA)

v

LDA assumes that X given GG is multivariate normal
LDA assumes that hy(z) = ¢(z, ug, X2)
different mean py, for each class

v

v

» same variance-covariance X1 = -+ = Y = X



Linear discriminant analysis (LDA)

find linear discriminant function
fr(x) is no linear in z

log is a monotone transformation
log fx(x) is linear in

vV vV.v vy

linear discriminant function for LDA is:
or(z) = log fr(x)
= log Pr(G = Gi|X = z)
= log 7y + log hy(x) + ¢
= log T + IOg (Z)(:Cv His Z) tc
1
= logm, — 5 (z — ) ST @ - ) e

1 1
= logmy + T Sy — i,LLfZ,uk + imTZx

» ¢ because that part doesn't involve k (doesn't help us
discriminate between classes)



LDA decision boundary

» each Jx(x) defines a plane

» decision boundary between any two clases k£ and j occurs
where the planes intersect, at dx(z) = §;(x):

5k($):6l($)
T 1 Ts—1 Ty -1
OZIOgE—Q(Mk—M) 7 (e — ) 27 X7 (e — )

» place where they intersect is a line



LDA Estimation

v

Tk = ng/n
fie =1/n Zgi:gk Li

Y= /(n—K)>, Zgi:gk(fﬁi - ﬂk)T($z — fk)
» plug-in estimates to compute Jx(x)

v

v

again, G(z) = G, with largest 0 ()

v
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FIGURE 4.5. The left panel shows three Gaussian
distributions, with the same covariance and different
means. Included are the contours of constant density
enclosing 95% of the probability in each case. The
Bayes decision boundaries between each pair of classes
are shown (broken straight lines), and the Bayes de-
ciston boundaries separating all three classes are the
thicker solid lines (a subset of the former). On the
right we see a sample of 30 drawn from each Gaussian
distribution, and the fitted LDA decision boundaries.




Code example

simple-LDA-3D.R



LDA tuning parameters?

v

LDA is a bit like linear regression

» no natural tuning parameters

v

how do we make model more/less flexible?
how do we tune LDA?

v



LDA tuning parameters?

How to allow more/less flexibility in LDA
» use basis functions (e.g., interactions or splines)
» use subset selection on the inputs

» use regularization (work a little differently from ridge/lasso)



Quadratic discriminant analysis (QDA)

v

relax assumption: ¥ =--- = X
Ok(x) = logmy — %log |2k — %(x — ,uk)TEEI(x — )
discriminant function is not linear, but quadratic in z

v

v

v

decision boundary is also quadratic in x
Se=1/(ng — 1) > gi—a,, (@i — i) (i — fir)

v
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FIGURE 4.6. Two methods for fitting quadratic
boundaries. The left plot shows the quadratic de-
cision boundaries for the data in Figure 4.1 (ob-
tained wusing LDA in the five-dimensional space
X1, X2, X1X2,X?,X3).  The right plot shows the
quadratic decision boundaries found by QDA. The dif-
ferences are small, as is usually the case.



Regularized Descriminant Analysis (RDA)

mix of LDA and QDA
32 =a¥; + (1 - )%
» « makes model more/less flexible (bias/variance)

v

v

v

« chosen by to minimize good estimate of test error
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Regularized Discriminant Analysis on the Vowel Data
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FIGURE 4.7. Test and training errors for the vowel
data, using regularized discriminant analysis with a se-
ries of values of a € [0,1]. The optimum for the test
data occurs around a = 0.9, close to quadratic discrim-
inant analysis.
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Where do LDA and QDA not work well?

LDA and QDA don't work well when the assumptions are violated:
» neither works well when X given GG is not multivariate normal

» LDA doesn’t work well when variance-covariance is different
across the classes (although QDA might work well)



LDA and Eigen-decomposition of X

» consider ¥ = VDVT
» V is p X p orthonormal

» D is p x p diagonal, then
Si(e) = logme — 5 (2 — )5 (& — pu)
= logmi — 3 (& — ) (VDD ) @ — )
= log e — 5[0V (@ — )] [DVV (2 — )]
= togmi — 5la” — il "o — ]

» 2" is “sphered” since cov(z*) = I,
» if 1y = --- = 7 then classify by minimizing Euclidean
distance from z* to uj
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