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Overview

▶ Principle components regression involves creating new
variables from existing ones (i.e. feature extraction)

▶ It is an unsupervised process – outcome data are not used
▶ The process consists of rotating the axes of X to better

describe variability and minimize correlation between inputs
▶ If correlation was present, it may be possible to find a lower

dimensional set of inputs that retain most of the information
in the data

▶ Projecting points onto the eigenvectors of the estimated
covariance matrix
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Principal Components Analysis

▶ to understand principal components regression, first need
principal components analysis (PCA)

▶ suppose we have an n × p input matrix X
▶ all inputs must be numeric or dummy coded
▶ PCA transforms X into a new matrix Z with the same number

of rows and columns
▶ columns of Z are called principal components (PCs)
▶ the new, transformed inputs (columns Z1, Z2, etc) are no

longer correlated (they’re “independent”)
▶ variance of Z1 is largest, then Z2, and so on
▶ variance of some Z may be very small or zero
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▶ two inputs substantially correlated

X1

X2
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▶ PCA creates new inputs Z1 and Z2 by rotating the axes

X1

X2

Z1

Z2
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▶ such that new inputs Z1 and Z2 are not correlated

X1

X2

Z 1
Z 2
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▶ rotate entire figure 45 degrees to view Z1 and Z2

X
1

X
2

Z1

Z2
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▶ drop the original axes

Z1

Z2
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▶ no correlation between Z1 and Z2

Z1

Z2
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▶ variance of Z1 greater than variance of Z2

Z1

Z2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Principal components analysis

▶ transforming X to get Z is PCA
▶ if X has p columns, then Z will have p columns
▶ what we can do with Z makes PCA useful
▶ dimension reduction
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▶ most information in Z is captured by Z1
▶ maybe we can simply ignore Z2
▶ if so, the dimension of (transformed) input is reduced by 1

Z1

Z2
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Principal components analysis

▶ ignoring some PCs generally causes loss of information
▶ exceptions:

▶ if n ≤ p, can drop p − n + 1 PCs without loss of info
▶ if some inputs perfectly correlated, can drop some PCs without

loss of info
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▶ ignoring Z2 would cause loss of (a little) information

Z1

Z2
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▶ when n = p, only p − 1 PCs needed; no info loss

X1

X2



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

▶ when X1 and X2 perfectly correlated, only 1 PC needed; no
info loss

X1

X2
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Principal components regression

▶ say X is a matrix of training inputs
▶ dimension reduction reduces the information in X
▶ less information means less flexible predictor based on X
▶ degree of dimension reduction (i.e., how many PCs ignored)

affects bias-variance tradeoff
▶ principal components regression is simply linear regression

using PCs as inputs, and after applying some dimension
reduction

▶ number of PCs used is the tuning parameter



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Principal components regression

▶ for some 0 ≤ M ≤ p, use only first M PCs in regression
▶ y = zMβM

▶ where zM is matrix of first M PCs
▶ fit βM by minimizing training error
▶ tune M using testing error
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Code example

pca-regression-example.R


