Principal components regression

Matthew S. Shotwell, Ph.D.

Department of Biostatistics Vanderbilt University School of Medicine Nashville, TN, USA

January 27, 2020

Overview

- ► Principle components regression involves creating new variables from existing ones (i.e. feature extraction)
- ▶ It is an unsupervised process outcome data are not used
- ► The process consists of rotating the axes of *X* to better describe variability and minimize correlation between inputs
- ► If correlation was present, it may be possible to find a lower dimensional set of inputs that retain most of the information in the data
- Projecting points onto the eigenvectors of the estimated covariance matrix

Principal Components Analysis

- to understand principal components regression, first need principal components analysis (PCA)
- lacktriangle suppose we have an $n \times p$ input matrix X
- all inputs must be numeric or dummy coded
- ▶ PCA transforms X into a new matrix Z with the same number of rows and columns
- ightharpoonup columns of Z are called principal components (PCs)
- ▶ the new, transformed inputs (columns Z_1 , Z_2 , etc) are no longer correlated (they're "independent")
- ightharpoonup variance of Z_1 is largest, then Z_2 , and so on
- ▶ variance of some Z may be very small or zero

► two inputs substantially correlated

ightharpoonup PCA creates new inputs Z_1 and Z_2 by rotating the axes

ightharpoonup such that new inputs Z_1 and Z_2 are not correlated

lacktriangle rotate entire figure 45 degrees to view Z_1 and Z_2

► drop the original axes

ightharpoonup no correlation between Z_1 and Z_2

ightharpoonup variance of Z_1 greater than variance of Z_2

Principal components analysis

- ightharpoonup transforming X to get Z is PCA
- ightharpoonup if X has p columns, then Z will have p columns
- ▶ what we can do with Z makes PCA useful
- **▶** dimension reduction

- lacktriangle most information in Z is captured by Z_1
- ightharpoonup maybe we can simply ignore Z_2
- ▶ if so, the dimension of (transformed) input is reduced by 1

Principal components analysis

- ▶ ignoring some PCs generally causes loss of information
- exceptions:
 - ▶ if $n \le p$, can drop p n + 1 PCs without loss of info
 - if some inputs perfectly correlated, can drop some PCs without loss of info

ightharpoonup ignoring Z_2 would cause loss of (a little) information

 \blacktriangleright when n=p, only p-1 PCs needed; no info loss

lacktriangle when X_1 and X_2 perfectly correlated, only 1 PC needed; no info loss

Principal components regression

- ightharpoonup say X is a matrix of training inputs
- ▶ dimension reduction reduces the information in *X*
- ▶ less information means less flexible predictor based on *X*
- degree of dimension reduction (i.e., how many PCs ignored)
 affects bias-variance tradeoff
- principal components regression is simply linear regression using PCs as inputs, and after applying some dimension reduction
- ▶ number of PCs used is the tuning parameter

Principal components regression

- ▶ for some $0 \le M \le p$, use only first M PCs in regression
- $ightharpoonup y = z_{\mathsf{M}} \beta_{\mathsf{M}}$
- \blacktriangleright where $z_{\rm M}$ is matrix of first M PCs
- fit $\beta_{\rm M}$ by minimizing training error
- ightharpoonup tune M using testing error

Code example

pca-regression-example.R