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Notation

»y-nx1
»T-nNXDp
» 5-px1

» linear model: y = z(



Least squares

» estimates B by minimizing

M:

err(8) = ), L(yi, :iB))

=1

where y; and x; are training examples and ;3 is in matrix
notation: x;08 = By + Z?:l 5jxij

n

orr = ) (yi — i)’

i=1
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FIGURE 3.1.

Linear least squares fitting with
X € IR%. We seek the linear function of X that mini-
mizes the sum of squared residuals from 'Y .
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FIGURE 1.1. Scatterplot matriz of the prostate can-
cer data. The first row shows the response against each
of the predictors in turn. Two of the predictors, svi
and gleason, are categorical.




TABLE 3.1. Correlations of predictors in the prostate cancer data.
lcavol lweight age 1bph svi lcp gleason
Teeight  0.300
age  0.286
1oph  0.063 0.287
svi 0593 0129 —0.139
lep  0.692 0173 —0.089 0.671
gleason 0426  0.024 0366  0.033 0.307 0476
pgeds 0483 0.074 0276 —0.030 0481 0.663  0.757

TABLE 8.2. Lincar model fit to the prostate cancer data. The Z score is the
cocfficient divided by its standard error (3.12). Roughly a Z score larger than two

in absolute value is significantly nonzero at the p = 0.05 level.

Term  Coefficient  Std. Error

Z Score

Intercept
lcavol
lveight
age

1bph

svi

cp
gleason
Pgg4s

2.46 0.09
0.68 0.13
0.26 0.10
-0.14 0.10
0.21 0.10
0.31 0.12
—0.29 0.15
—0.02 0.15
0.27 0.15

27.60
537
2.75

—1.40
2.06




Test error

Once we have a predictor Y = f(X), test error is defined:
Err = EX,Y [L(Y, Y)]

Estimate Err using testing examples:

n

— 1
Err = = L test ~test
T n; (Wi 3;°)

Average loss when fitted model applied to testing examples.



Example: Prostate Cancer

» data is randomly split: training (2/3), testing (1/3)
» test error: 0.521:

n

N 1
Err = E Z(ytest test/B)

i=1
» “base error” test error for intercept-only model : 1.057:

_ 1 & N
Erro = © (51 — f)?

=1

3



Example: Prostate Cancer

» some predictors not important (e.g., gleason)
» using unnecessary predictors may cause overfitting

» reduce Err by eliminating inputs or using penalty?



Sidebar on model selection

» modifying model after seeing data called model selection
» e.g., transforming inputs or outputs

» e.g., adding or eliminating inputs

» statistical inference is affected by model selection

» e.g., inflated type-I error

» model selection okay for prediction

» must use good estimate of Err



Best-subset selection

» suppose there are p predictors
» for each k€ {0,1,...,p}

1. fit all possible combinations of &k predictors among p total
2. select combination that gives smallest training error érr

» then choose k that minimizes test error Err



Best subset fitting
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FIGURE 3.5. All possible subset models for the
prostate cancer example. At each subset size is shown
the residual sum-of-squares for each model of that size.
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Best subset tuning
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FIGURE 3.7. Estimated prediction error curves and
their standard errors for the warious selection and
shmnkage methods. Earh curve is plnttsd as a func-
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Shrinkage: Ridge

» synonyms: Penalization, Regularization, Shrinkage

» minimize penalized training error:

n

p
err = Y (yi —wiB)> + A ). B

i=1 j=1

> B has a ‘“closed form” solution

» shrinkage applies to B, no subsetting of inputs X

» thus, number of §’s stays the same for all A

» can use concept of effective degrees of freedom df ()
» one-to-one relationship between df(\) and A

» df(A) = p when A =0

» df(\) > 0as A >



Shrinkage: Ridge

> B always unique, even when inputs perfectly correlated
» usually the intercept 3y is not penalized

» can do this by centering outcome and inputs: y; = y; — ¢ and
x;j = x;5 — ¥j; forces intercept to be zero; only remaining 3
estimated using ridge penalty

» )\ parameterizes the “path” of estimates i
» ridge and lasso are two of many such “path algorithms”

» graph of 3 as function of X\ called a “path diagram”
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FIGURE 3.8. Profiles of ridge coefficients for the
prostate cancer example, as the tuning parameter X is
varied. Coefficients are plotted versus df()), the ef-
fective degrees of freedom. A wertical line is drawn at
df = 5.0, the value chosen by cross-validation.




Shrinkage: Lasso

» minimize penalized training error:

n p
— 2
e = Y (yi —xiB)> + A ) 185
i=1 j=1
» no closed form solution for B
» making A large causes some B to be exactly zero

» thus, lasso has a predictor selection effect
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FIGURE 3.10. Profiles of lasso coefficients, as the
tuning parameter t is varied. Coefficients are plot-
ted versus s = t/ Y.} 1B5]. A wvertical line is drawn at
s = 0.36, the value chosen by cross-validation. Com-
pare Figure 3.8 on page 9; the lasso profiles hit zero,
while those for ridge do not. The profiles are piece-wise
linear, and so are computed only at the points displayed;




TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2477 2452 2.468 2.497 2.452
lcavol 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238  0.169 0.289 0.344
age —0.141 —0.046 —0.152 —0.026

1bph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lep —0.288 0.000 —0.051 0.079
gleason —0.021 0.040 0.232 0.011
pEE4s 0.267 0.133 —0.056 0.084
Test Error 0.521 0.492 0492  0.479 0.449 0.528
Std Error 0.179 0.143 0.165  0.164 0.105 0.152




Consider independent inputs

» columns of x are uncorrelated, “orthogonal”
> B are independent; can be estimated separately

» can think about effect of selection/shrinkage on each
coefficient separately



TABLE 3.4. Estimators of 35 in the case of orthonormal columns of X. M and X
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (£1), and x . denotes “positive part” of x. Below the table, estimators

are shown by broken red lines. The 45° line in gray shows the unrestricted estimate
Jor reference.

Estimator Formula

Best subset (size M) ﬁj - I(\[S’]\ > |B(M)‘)

Ridge B/ +X)
Lasso sign(5;)(14;] — A)y
Best Subset Ridge Lasso
. 2
o

1 (0.0)




Ridge and lasso penalties as constraints

» Ridge and lasso estimation criteria can be rewritten as
constrained estimation problems:

» minimize érr subject to constraint:

» ridge: B%+'~-+BIQ, < t?

» lasso: |B1] 4+ -+ |Bp| <t

» one-to-one relationship between ¢ and \
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |B1| + |B2| < t and 8% + B3 < t?,
respectively, while the red ellipses are the contours of
the least squares error function.
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FIGURE 3.12. Contours of constant value of Zj 1317 for given values of q.
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FIGURE 3.13. Contours of constant value of 3, |8;|* for ¢ = 1.2 (left plot),

and the elastic-net penalty 3~ (QB?-I—(I—(Y)‘,B] |) for ac = 0.2 (right plot). Although

visually very similar, the elastic-net has sharp (non-differentiable) corners, while
the ¢ = 1.2 penalty does not.



Code example

lasso-examples.R



