Intro to Neural Networks

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine
Nashville, TN, USA

April 8, 2020

Neural Networks

ed by network diagram:

nlinear model, often represent

NN is a no

Neural Networks

NN is a nonlinear model, often represented by network diagram:

Neural Networks

NN is a nonlinear model, often represented by network diagram:

Output layer

All NN's have one input
and one output layer, but
may have many hidden
layers. Deep NN's are
"deep" because they have
many hidden layers.

i

Neural Networks

» NN in previous diagram is for a K class problem
» output layer has K nodes, one for each class
» NN for regression would have just one output node

Neural Networks

Model formula for NN in previous figure; K class problem:
» input layer: P features, z1--- ,xp
» hidden layer: for each hidden node m =1,..., M

Zm = U(QOm +oipmr + -+ OémeP)
» output layer: for each output node k =1,..., K
tk = s(Bok + Bikz1 + - + Bukzm)

» o is an “activation” function

» sis a “link” function, e.g., logit, or softmax function

Neural Networks

Model formula for NN in previous figure; K class problem:
» input layer: P features, z1--- ,xp
» hidden layer: for each hidden node m =1,..., M

Zm = U(QOm +oipmr + -+ OZmeP)
» output layer: for each output node k =1,..., K
tk = s(Bok + Bikz1 + - + Bukzm)

» layers are “fully connected” to lower layer

» all nodes in lower layer contribute to each node of layer above

Neural Networks

Model formula for NN in previous figure; K class problem:
» input layer: P features, z1---,xp
» hidden layer: for each hidden node m =1,..., M

Zm = U(QOm +oimr + -+ OémeP)
» output layer: for each output node k =1,..., K
tk = s(Bok + Bikz1 + - + Bukzm)

» g, and B, called “bias” parameters
» -+ params: hidden M x (P + 1); output K x (M + 1)

o Activation function

o is an “activation function” designed to mimic the behavior of
neurons in propagating signals in the (human) brain. The
activation function makes the model nonlinear (in the parameters)

o

/(1+e7)
05

0.0

_1
14+e—2

» RelU - o(z) = max(0, z)
» RelU - “rectified linear unit”

» sigmoid - o(z) =

» RelU - faster training vs sigmoid, may perform better

s Link function

The link function transforms the output nodes so that they make
sense for the type of probelm: classification or regression.

» regression - identity link - s(t) =t
» classification - softmax link -

etk

leil et

» s(tx) is a value between 0 and 1

s(ty) =

» s(ty) is P(yr = 1|x) where yy is target code for class k

Training (fitting) neural networks

NN's often have large number of parameters: ¢
fit NN's by minimizing average loss in training data!
Regression: eIt = Zfil(yz — f(x,0))?

Classificatin: err = — ZZ]\LI Zle Yir log fr(x;,0), where y;1
is the indicator for class k, and f;, gives the probability for
class k. This is called the “cross-entropy” or “deviance”

vV vyyvyy

v

other loss functions can be used

» &rT minimized w.r.t. 6 using a gradient descent algorithm
called “back-propagation” or “backprop”

Training (fitting) neural networks

» backprop iterates two steps:

» forward step: fix & and compute values of hidden and output
nodes z,,, and t;, and apply link function to get predictions
f(x;) (probabilities for classification, or numerical prediction
for regression)

» backward step: fix z,,, tg, f(z;) and update 6 using a
gradient descent step

Training (fitting) neural networks

» usually don't want global minimum of erT due to overfitting

» # of iters of backprop, learning rate (of gradient descent
algorithm), and shrinkage penalties (weight decay, dropout)
are tuning parameters

Training (fitting) neural networks

Shrinkage:
» weight decay: modified objective

et () + AJ(0)

where

NMOESI
k

like a ridge penalty, A is tuning parameter

» dropout: at each round of training, some of the hidden or
input nodes are Z,, or X,, are ignored (assigned a value
zero); ignored inputs are selected at random at each round of
backprop; number of ignored features is tuning parameter

Simple NN in R: nnet.R

Extending NN's

» The real power of NN's comes through various extensions:
» Additional hidden layers
» Modifying connectivity between layers

» Processing between layers

Additional layers

More than one hidden layer:

x1 .. “ / ‘\\ ‘v \ .
x2 .‘, 4\' “" i N/

y1
il e :“‘. “‘s“ ¢I¢ G
ii
. m 'v‘\
= O O g O "« Na
y

/\)“ *”*‘\\)
x4 .
e

Modified connectivity

» local connectivity: hidden units only receive input from a
subset of “local” units in the layer below; not “fully”
connected

» say there are 3 hidden nodes and 9 features

z1 = o(Qo1 + 01171 + Q2172 + a3173)
29 = U(ozgg + 1224 + Q225 + 0632556)

zg3 = o(ao3 + a13T7 + a3Ts + (33%9)

» each hidden node linked to just 3 of 9 features

v

hidden layer just 3 x 4 = 12 parameters instead of 30
» output layer typically always fully connected

Modified connectivity

Local connectivity

Modified connectivity

» local connectivity: there can be some “overlap”: some hidden
nodes can take input from some of the same featuresw

» say there are 3 hidden nodes and 9 features

z1 = o(ap1 + a1171 + @122 + az123)
2o = o(o2 + @1223 + a22T4 + 325 + g2x6)

z3 = o3 + 13Te + 37 + (3378 + U3TY)

Modified connectivity

Local connectivity

Modified connectivity

v

v

weight sharing: some hidden units share weights
only makes sense in combination with local connectivity

say there are 3 hidden nodes and 9 features

z1 = o(ap1 + oz + apxs + azxs)
29 = o(ap2 + a1x4 + a5 + a3ze)

z3 = o3 + 7 + aprg + azxg)

typically each hidden node retains a distinct bias (com,)
hidden layer has just 3 + 3 = 6 parameters

number of links # number of parameters (more links)

Modified connectivity

Local connectivity + weight sharing

Example: zipcode data

» hand-written integers
» output: 10-class classification
» input: 16x16 B&W image

Ol}] =] 3 4 |5
o[22 43
o[[1/3 4[5
o) 3715
o133 7 |3

(NSNS
SN RSN
00/ [@] (o] (P [00
EEEVENEY

Example: zipcode data

» input: 16x16 B&W image

» when input is an array (2D in this case), typically the hidden
units in a hidden layer are represented as an array too

» figure below shows local connectivity with 5 x 5 “kernel”

28

24

28
24

hidden layer

Input layer

Local connectivity

» 3 x 3 kernel
> stride 1

» edge handling

RN Ge

Local conn. w/weight sharing (convolution)

Convolution is type of shape detector or “feature map”:

4 (5 (3 |8 |4 1|0 |- 6

g 2 |2 R * |1][0 |- =

2 |8 |7 |2 |7 i

5 |4 |4 5 |4 Tx1+4x1+3x1+
2x0+5x0+3x0+

3x-1+3x-142x%-1
=6

(=)bM+]

Example: zipcode data

» Net 1: no hidden layer, same as multinomial logistic
regression, (256+1)10 = 2570 parameters

» Net 2: one hidden layer, 12 units, fully connected, (256+1)12
+ (1241)10 = 3214 parameters

» Net 3: two hidden layers, locally connected, 1226 parameters

» Net 4: two hidden layers, locally connected, weight sharing,
1132 parameters, 2266 links

Local connectivity

10

16x16

Net-1

12

16x16

Net-2

8x8

i

H

16x16

Net-3

Local Connectivity

Local connectivity and shared weights
AKA: convolutional neural networks

10 10

Axdyd
e J IE' R

VP~ K-
W [H].

Net-4 Shared Weights

Net-5

» groups of hidden units form “shape detectors” or “feature
maps”

» more complex shape detectors near output layer

Net 3

Net3:

s
m';"" Qe

Gomb

w0 ovipyt \ayer
P 1 x 102170
fﬂ

$H Widden loyer
H WREXE 4o
Pm

9xs hiddew layer
§ 10xix3 2680
pors

Joxio inpot

bl lnks = 170 +Hb +bf0 =136
A R“"““'(‘““!‘U‘W \inks

Net 4

Wy commated |

@

IX1o ovipvk layer

1Po 2% pors.¢ links
w/cowvelutvn

¥t Wddew loye

e 2 yxg xS 7 Hlines

x§

3% 4 X3 Widdew \ayer 9 couvilibn
1z (b¥+1)XR pors oy
1280 = G#x0%3 links

- (3303

1704 %16 + 186 = UBR pos
170 + 316 + 1250 & R%UG inks

Performance on zipcode data

100+

904

804

% Correct on Test Data

704

60

5 10 15 20 25 30

Training Epochs

FIGURE 11.11. Test performance curves, as o function of the number of train-
ing epochs, for the five networks of Table 11.1 applied to the ZIP code data.

(Le Cun, 1959)

N

Processing between layers

» Pooling/subsampling: down-sample data from a layer by
summarizing of a group of units

» Max-pooling: summarize using maximum:
Single depth slice
1 0

X

2 3

4 6 6
31
REERE

8 8
0 4
4

—
3

Deep learning and deep neural networks

» Deep learning uses deep NNs

» Deep NNs are simply NNs with many layers, complex
connectivity, and processing steps between layers:

Convolutions Pooling Convolutions Pooling Full-connection
Full-connection

A N\ Output
e ¥

Ny
Intervention
— IZYLDES
Probability

L~ B
~Tp=. Y
Input TR F6 layer
C1 feature maps “ F5layer
S2 feature maps S4 feature maps

C3 feature maps

Complex NNs in R

» No (good) native R libraries for complex NNs
» R can interface to good libraries, e.g., Keras, TensorFlow
» See https://keras.rstudio.com/

https://keras.rstudio.com/

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

