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Neural Networks

NN is a nonlinear model, often represented by network diagram:

Output layer

All NN's have one input
and one output layer, but
may have many hidden
layers. Deep NN's are
"deep" because they have
many hidden layers.
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Neural Networks

» NN in previous diagram is for a K class problem
» output layer has K nodes, one for each class
» NN for regression would have just one output node



Neural Networks

Model formula for NN in previous figure; K class problem:
» input layer: P features, z1--- ,xp
» hidden layer: for each hidden node m =1,..., M

Zm = U(QOm +oipmr + -+ OémeP)
» output layer: for each output node k =1,..., K
tk = s(Bok + Bikz1 + - + Bukzm)

» o is an “activation” function

» sis a “link” function, e.g., logit, or softmax function



Neural Networks

Model formula for NN in previous figure; K class problem:
» input layer: P features, z1--- ,xp
» hidden layer: for each hidden node m =1,..., M

Zm = U(QOm +oipmr + -+ OZmeP)
» output layer: for each output node k =1,..., K
tk = s(Bok + Bikz1 + - + Bukzm)

» layers are “fully connected” to lower layer

» all nodes in lower layer contribute to each node of layer above



Neural Networks

Model formula for NN in previous figure; K class problem:
» input layer: P features, z1---,xp
» hidden layer: for each hidden node m =1,..., M

Zm = U(QOm +oimr + -+ OémeP)
» output layer: for each output node k =1,..., K
tk = s(Bok + Bikz1 + - + Bukzm)

» g, and B, called “bias” parameters
» -+ params: hidden M x (P + 1); output K x (M + 1)



o Activation function

o is an “activation function” designed to mimic the behavior of
neurons in propagating signals in the (human) brain. The
activation function makes the model nonlinear (in the parameters)
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» RelU - o(z) = max(0, z)
» RelU - “rectified linear unit”

» sigmoid - o(z) =

» RelU - faster training vs sigmoid, may perform better



s Link function

The link function transforms the output nodes so that they make
sense for the type of probelm: classification or regression.

» regression - identity link - s(t) =t
» classification - softmax link -

etk

leil et

» s(tx) is a value between 0 and 1

s(ty) =

» s(ty) is P(yr = 1|x) where yy is target code for class k



Training (fitting) neural networks

NN's often have large number of parameters: ¢
fit NN's by minimizing average loss in training data!
Regression: eIt = Zfil(yz — f(x,0))?

Classificatin: err = — ZZ]\LI Zle Yir log fr(x;,0), where y;1
is the indicator for class k, and f;, gives the probability for
class k. This is called the “cross-entropy” or “deviance”

vV vyyvyy

v

other loss functions can be used

» &rT minimized w.r.t. 6 using a gradient descent algorithm
called “back-propagation” or “backprop”



Training (fitting) neural networks

» backprop iterates two steps:

» forward step: fix & and compute values of hidden and output
nodes z,,, and t;, and apply link function to get predictions
f(x;) (probabilities for classification, or numerical prediction
for regression)

» backward step: fix z,,, tg, f(z;) and update 6 using a
gradient descent step



Training (fitting) neural networks

» usually don't want global minimum of erT due to overfitting

» # of iters of backprop, learning rate (of gradient descent
algorithm), and shrinkage penalties (weight decay, dropout)
are tuning parameters



Training (fitting) neural networks

Shrinkage:
» weight decay: modified objective

et () + AJ(0)

where
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like a ridge penalty, A is tuning parameter

» dropout: at each round of training, some of the hidden or
input nodes are Z,, or X,, are ignored (assigned a value
zero); ignored inputs are selected at random at each round of
backprop; number of ignored features is tuning parameter



Simple NN in R: nnet.R



Extending NN's

» The real power of NN's comes through various extensions:
» Additional hidden layers
» Modifying connectivity between layers

» Processing between layers



Additional layers

More than one hidden layer:
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Modified connectivity

» local connectivity: hidden units only receive input from a
subset of “local” units in the layer below; not “fully”
connected

» say there are 3 hidden nodes and 9 features

z1 = o(Qo1 + 01171 + Q2172 + a3173)
29 = U(ozgg + 1224 + Q225 + 0632556)

zg3 = o(ao3 + a13T7 + a3Ts + (33%9)

» each hidden node linked to just 3 of 9 features

v

hidden layer just 3 x 4 = 12 parameters instead of 30
» output layer typically always fully connected



Modified connectivity

Local connectivity




Modified connectivity

» local connectivity: there can be some “overlap”: some hidden
nodes can take input from some of the same featuresw

» say there are 3 hidden nodes and 9 features

z1 = o(ap1 + a1171 + @122 + az123)
2o = o(o2 + @1223 + a22T4 + 325 + g2x6)

z3 = o3 + 13Te + 37 + (3378 + U3TY)



Modified connectivity

Local connectivity




Modified connectivity

v

v

weight sharing: some hidden units share weights
only makes sense in combination with local connectivity

say there are 3 hidden nodes and 9 features

z1 = o(ap1 + oz + apxs + azxs)
29 = o(ap2 + a1x4 + a5 + a3ze)

z3 = o3 + 7 + aprg + azxg)

typically each hidden node retains a distinct bias (com,)
hidden layer has just 3 + 3 = 6 parameters

number of links # number of parameters (more links)



Modified connectivity

Local connectivity + weight sharing




Example: zipcode data

» hand-written integers
» output: 10-class classification
» input: 16x16 B&W image
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Example: zipcode data

» input: 16x16 B&W image

» when input is an array (2D in this case), typically the hidden
units in a hidden layer are represented as an array too

» figure below shows local connectivity with 5 x 5 “kernel”
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Local connectivity

» 3 x 3 kernel
> stride 1

» edge handling
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Local conn. w/weight sharing (convolution)

Convolution is type of shape detector or “feature map”:

4 (5 (3 |8 |4 1|0 |- 6

g 2 |2 R * |1 ][0 |- =

2 |8 |7 |2 |7 i

5 |4 |4 5 |4 Tx1+4x1+3x1+
2x0+5x0+3x0+

3x-1+3x-142x%-1
=6

(=)bM+]



Example: zipcode data

» Net 1: no hidden layer, same as multinomial logistic
regression, (256+1)10 = 2570 parameters

» Net 2: one hidden layer, 12 units, fully connected, (256+1)12
+ (1241)10 = 3214 parameters

» Net 3: two hidden layers, locally connected, 1226 parameters

» Net 4: two hidden layers, locally connected, weight sharing,
1132 parameters, 2266 links



Local connectivity
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Local connectivity and shared weights
AKA: convolutional neural networks
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Net-5

» groups of hidden units form “shape detectors” or “feature
maps”

» more complex shape detectors near output layer



Net 3

Net3:

s
m';"" Qe

Gomb

w0 ovipyt \ayer
P 1 x 102170
fﬂ

$H Widden loyer
H WREXE 4o
Pm

9xs hiddew layer
§ 10xix3 2680
pors

Joxio inpot

bl lnks = 170 +Hb +bf0 =136
A R“"““'(‘““!‘U‘W \inks



Net 4
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Performance on zipcode data
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FIGURE 11.11. Test performance curves, as o function of the number of train-
ing epochs, for the five networks of Table 11.1 applied to the ZIP code data.

(Le Cun, 1959)
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Processing between layers

» Pooling/subsampling: down-sample data from a layer by
summarizing of a group of units

» Max-pooling: summarize using maximum:
Single depth slice
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Deep learning and deep neural networks

» Deep learning uses deep NNs

» Deep NNs are simply NNs with many layers, complex
connectivity, and processing steps between layers:

Convolutions Pooling  Convolutions  Pooling  Full-connection
Full-connection

A N\ Output
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Intervention
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Probability

L~ B
~Tp=. Y
Input TR F6 layer
C1 feature maps “ F5layer
S2 feature maps S4 feature maps

C3 feature maps



Complex NNs in R

» No (good) native R libraries for complex NNs
» R can interface to good libraries, e.g., Keras, TensorFlow
» See https://keras.rstudio.com/


https://keras.rstudio.com/
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