
Intro to Neural Networks

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine

Nashville, TN, USA

April 8, 2020



Neural Networks

NN is a nonlinear model, often represented by network diagram:



Neural Networks

NN is a nonlinear model, often represented by network diagram:



Neural Networks

NN is a nonlinear model, often represented by network diagram:



Neural Networks

NN is a nonlinear model, often represented by network diagram:



Neural Networks

I NN in previous diagram is for a K class problem

I output layer has K nodes, one for each class

I NN for regression would have just one output node



Neural Networks

Model formula for NN in previous figure; K class problem:

I input layer: P features, x1 · · · , xP
I hidden layer: for each hidden node m = 1, . . . ,M

zm = σ(α0m + α1mx1 + · · ·+ αPmxP )

I output layer: for each output node k = 1, . . . ,K

tk = s(β0k + β1kz1 + · · ·+ βMkzM )

I σ is an “activation” function

I s is a “link” function, e.g., logit, or softmax function



Neural Networks

Model formula for NN in previous figure; K class problem:

I input layer: P features, x1 · · · , xP
I hidden layer: for each hidden node m = 1, . . . ,M

zm = σ(α0m + α1mx1 + · · ·+ αPmxP )

I output layer: for each output node k = 1, . . . ,K

tk = s(β0k + β1kz1 + · · ·+ βMkzM )

I layers are “fully connected” to lower layer

I all nodes in lower layer contribute to each node of layer above



Neural Networks

Model formula for NN in previous figure; K class problem:

I input layer: P features, x1 · · · , xP
I hidden layer: for each hidden node m = 1, . . . ,M

zm = σ(α0m + α1mx1 + · · ·+ αPmxP )

I output layer: for each output node k = 1, . . . ,K

tk = s(β0k + β1kz1 + · · ·+ βMkzM )

I α0m and β0k called “bias” parameters

I # params: hidden M × (P + 1); output K × (M + 1)



σ Activation function

σ is an “activation function” designed to mimic the behavior of
neurons in propagating signals in the (human) brain. The
activation function makes the model nonlinear (in the parameters)

I sigmoid - σ(x) = 1
1+e−x

I ReLU - σ(x) = max(0, x)

I ReLU - “rectified linear unit”

I ReLU - faster training vs sigmoid, may perform better



s Link function

The link function transforms the output nodes so that they make
sense for the type of probelm: classification or regression.

I regression - identity link - s(t) = t

I classification - softmax link -

s(tk) =
etk∑K
l=1 e

tl

I s(tk) is a value between 0 and 1

I s(tk) is P (yk = 1|x) where yk is target code for class k



Training (fitting) neural networks

I NN’s often have large number of parameters: θ

I fit NN’s by minimizing average loss in training data!

I Regression: err =
∑N

i=1(yi − f(xi, θ))2

I Classificatin: err = −
∑N

i=1

∑K
k=1 yik log fk(xi, θ), where yik

is the indicator for class k, and fk gives the probability for
class k. This is called the “cross-entropy” or “deviance”

I other loss functions can be used

I err minimized w.r.t. θ using a gradient descent algorithm
called “back-propagation” or “backprop”



Training (fitting) neural networks

I backprop iterates two steps:

I forward step: fix θ and compute values of hidden and output
nodes zm and tk, and apply link function to get predictions
f(xi) (probabilities for classification, or numerical prediction
for regression)

I backward step: fix zm, tk, f(xi) and update θ using a
gradient descent step



Training (fitting) neural networks

I usually don’t want global minimum of err due to overfitting

I # of iters of backprop, learning rate (of gradient descent
algorithm), and shrinkage penalties (weight decay, dropout)
are tuning parameters



Training (fitting) neural networks

Shrinkage:

I weight decay: modified objective

err(θ) + λJ(θ)

where
J(θ) =

∑
k

θ2k

like a ridge penalty, λ is tuning parameter

I dropout: at each round of training, some of the hidden or
input nodes are Zm or Xm are ignored (assigned a value
zero); ignored inputs are selected at random at each round of
backprop; number of ignored features is tuning parameter



Simple NN in R: nnet.R



Extending NN’s

I The real power of NN’s comes through various extensions:

I Additional hidden layers

I Modifying connectivity between layers

I Processing between layers



Additional layers

More than one hidden layer:



Modified connectivity

I local connectivity: hidden units only receive input from a
subset of “local” units in the layer below; not “fully”
connected

I say there are 3 hidden nodes and 9 features

z1 = σ(α01 + α11x1 + α21x2 + α31x3)

z2 = σ(α02 + α12x4 + α22x5 + α32x6)

z3 = σ(α03 + α13x7 + α23x8 + α33x9)

I each hidden node linked to just 3 of 9 features

I hidden layer just 3× 4 = 12 parameters instead of 30

I output layer typically always fully connected



Modified connectivity

Local connectivity



Modified connectivity

I local connectivity: there can be some “overlap”: some hidden
nodes can take input from some of the same featuresw

I say there are 3 hidden nodes and 9 features

z1 = σ(α01 + α11x1 + α21x2 + α31x3)

z2 = σ(α02 + α12x3 + α22x4 + α32x5 + α42x6)

z3 = σ(α03 + α13x6 + α23x7 + α33x8 + α43x9)



Modified connectivity

Local connectivity



Modified connectivity

I weight sharing: some hidden units share weights

I only makes sense in combination with local connectivity

I say there are 3 hidden nodes and 9 features

z1 = σ(α01 + α1x1 + α2x2 + α3x3)

z2 = σ(α02 + α1x4 + α2x5 + α3x6)

z3 = σ(α03 + α1x7 + α2x8 + α3x9)

I typically each hidden node retains a distinct bias (α0m)

I hidden layer has just 3 + 3 = 6 parameters

I number of links 6= number of parameters (more links)



Modified connectivity

Local connectivity + weight sharing



Example: zipcode data

I hand-written integers

I output: 10-class classification

I input: 16x16 B&W image



Example: zipcode data

I input: 16x16 B&W image

I when input is an array (2D in this case), typically the hidden
units in a hidden layer are represented as an array too

I figure below shows local connectivity with 5× 5 “kernel”



Local connectivity
I 3× 3 kernel
I stride 1
I edge handling



Local conn. w/weight sharing (convolution)

Convolution is type of shape detector or “feature map”:



Example: zipcode data

I Net 1: no hidden layer, same as multinomial logistic
regression, (256+1)10 = 2570 parameters

I Net 2: one hidden layer, 12 units, fully connected, (256+1)12
+ (12+1)10 = 3214 parameters

I Net 3: two hidden layers, locally connected, 1226 parameters

I Net 4: two hidden layers, locally connected, weight sharing,
1132 parameters, 2266 links



Local connectivity



Local connectivity and shared weights

AKA: convolutional neural networks

I groups of hidden units form “shape detectors” or “feature
maps”

I more complex shape detectors near output layer



Net 3



Net 4



Performance on zipcode data



Processing between layers

I Pooling/subsampling: down-sample data from a layer by
summarizing of a group of units

I Max-pooling: summarize using maximum:



Deep learning and deep neural networks

I Deep learning uses deep NNs

I Deep NNs are simply NNs with many layers, complex
connectivity, and processing steps between layers:



Complex NNs in R

I No (good) native R libraries for complex NNs

I R can interface to good libraries, e.g., Keras, TensorFlow

I See https://keras.rstudio.com/

https://keras.rstudio.com/

	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


