Intro to Neural Networks

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine
Nashville, TN, USA

April 8, 2020

Neural Networks

NN is a nonlinear model, often represented by network diagram:

Neural Networks

NN is a nonlinear model, often represented by network diagram:

Neural Networks

NN is a nonlinear model, often represented by network diagram:

Neural Networks

NN is a nonlinear model, often represented by network diagram:

Neural Networks

- NN in previous diagram is for a K class problem
- output layer has K nodes, one for each class
- NN for regression would have just one output node

Neural Networks

Model formula for NN in previous figure; K class problem:

- input layer: P features, $x_{1} \cdots, x_{P}$
- hidden layer: for each hidden node $m=1, \ldots, M$

$$
z_{m}=\sigma\left(\alpha_{0 m}+\alpha_{1 m} x_{1}+\cdots+\alpha_{P m} x_{P}\right)
$$

- output layer: for each output node $k=1, \ldots, K$

$$
t_{k}=s\left(\beta_{0 k}+\beta_{1 k} z_{1}+\cdots+\beta_{M k} z_{M}\right)
$$

- σ is an "activation" function
- s is a "link" function, e.g., logit, or softmax function

Neural Networks

Model formula for NN in previous figure; K class problem:

- input layer: P features, $x_{1} \cdots, x_{P}$
- hidden layer: for each hidden node $m=1, \ldots, M$

$$
z_{m}=\sigma\left(\alpha_{0 m}+\alpha_{1 m} x_{1}+\cdots+\alpha_{P m} x_{P}\right)
$$

- output layer: for each output node $k=1, \ldots, K$

$$
t_{k}=s\left(\beta_{0 k}+\beta_{1 k} z_{1}+\cdots+\beta_{M k} z_{M}\right)
$$

- layers are "fully connected" to lower layer
- all nodes in lower layer contribute to each node of layer above

Neural Networks

Model formula for NN in previous figure; K class problem:

- input layer: P features, $x_{1} \cdots, x_{P}$
- hidden layer: for each hidden node $m=1, \ldots, M$

$$
z_{m}=\sigma\left(\alpha_{0 m}+\alpha_{1 m} x_{1}+\cdots+\alpha_{P m} x_{P}\right)
$$

- output layer: for each output node $k=1, \ldots, K$

$$
t_{k}=s\left(\beta_{0 k}+\beta_{1 k} z_{1}+\cdots+\beta_{M k} z_{M}\right)
$$

- $\alpha_{0 m}$ and $\beta_{0 k}$ called "bias" parameters
- \# params: hidden $M \times(P+1)$; output $K \times(M+1)$

σ Activation function

σ is an "activation function" designed to mimic the behavior of neurons in propagating signals in the (human) brain. The activation function makes the model nonlinear (in the parameters)

- sigmoid $-\sigma(x)=\frac{1}{1+e^{-x}}$
- ReLU $-\sigma(x)=\max (0, x)$
- ReLU - "rectified linear unit"
- ReLU - faster training vs sigmoid, may perform better

s Link function

The link function transforms the output nodes so that they make sense for the type of probelm: classification or regression.

- regression - identity link $-s(t)=t$
- classification - softmax link -

$$
s\left(t_{k}\right)=\frac{e^{t_{k}}}{\sum_{l=1}^{K} e^{t_{l}}}
$$

- $s\left(t_{k}\right)$ is a value between 0 and 1
- $s\left(t_{k}\right)$ is $P\left(y_{k}=1 \mid x\right)$ where y_{k} is target code for class k

Training (fitting) neural networks

- NN's often have large number of parameters: θ
- fit NN's by minimizing average loss in training data!
- Regression: $\overline{\mathrm{err}}=\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}, \theta\right)\right)^{2}$
- Classificatin: $\overline{\text { err }}=-\sum_{i=1}^{N} \sum_{k=1}^{K} y_{i k} \log f_{k}\left(x_{i}, \theta\right)$, where $y_{i k}$ is the indicator for class k, and f_{k} gives the probability for class k. This is called the "cross-entropy" or "deviance"
- other loss functions can be used
- $\overline{\text { err }}$ minimized w.r.t. θ using a gradient descent algorithm called "back-propagation" or "backprop"

Training (fitting) neural networks

- backprop iterates two steps:
- forward step: fix θ and compute values of hidden and output nodes z_{m} and t_{k}, and apply link function to get predictions $f\left(x_{i}\right)$ (probabilities for classification, or numerical prediction for regression)
- backward step: fix $z_{m}, t_{k}, f\left(x_{i}\right)$ and update θ using a gradient descent step

Training (fitting) neural networks

- usually don't want global minimum of err due to overfitting
- \# of iters of backprop, learning rate (of gradient descent algorithm), and shrinkage penalties (weight decay, dropout) are tuning parameters

Training (fitting) neural networks

Shrinkage:

- weight decay: modified objective

$$
\overline{\operatorname{err}}(\theta)+\lambda J(\theta)
$$

where

$$
J(\theta)=\sum_{k} \theta_{k}^{2}
$$

like a ridge penalty, λ is tuning parameter

- dropout: at each round of training, some of the hidden or input nodes are Z_{m} or X_{m} are ignored (assigned a value zero); ignored inputs are selected at random at each round of backprop; number of ignored features is tuning parameter

Simple NN in R: nnet.R

Extending NN's

- The real power of NN's comes through various extensions:
- Additional hidden layers
- Modifying connectivity between layers
- Processing between layers

Additional layers

More than one hidden layer:

Modified connectivity

- local connectivity: hidden units only receive input from a subset of "local" units in the layer below; not "fully" connected
- say there are 3 hidden nodes and 9 features

$$
\begin{aligned}
& z_{1}=\sigma\left(\alpha_{01}+\alpha_{11} x_{1}+\alpha_{21} x_{2}+\alpha_{31} x_{3}\right) \\
& z_{2}=\sigma\left(\alpha_{02}+\alpha_{12} x_{4}+\alpha_{22} x_{5}+\alpha_{32} x_{6}\right) \\
& z_{3}=\sigma\left(\alpha_{03}+\alpha_{13} x_{7}+\alpha_{23} x_{8}+\alpha_{33} x_{9}\right)
\end{aligned}
$$

- each hidden node linked to just 3 of 9 features
- hidden layer just $3 \times 4=12$ parameters instead of 30
- output layer typically always fully connected

Modified connectivity

Local connectivity

Modified connectivity

- local connectivity: there can be some "overlap": some hidden nodes can take input from some of the same featuresw
- say there are 3 hidden nodes and 9 features

$$
\begin{aligned}
& z_{1}=\sigma\left(\alpha_{01}+\alpha_{11} x_{1}+\alpha_{21} x_{2}+\alpha_{31} x_{3}\right) \\
& z_{2}=\sigma\left(\alpha_{02}+\alpha_{12} x_{3}+\alpha_{22} x_{4}+\alpha_{32} x_{5}+\alpha_{42} x_{6}\right) \\
& z_{3}=\sigma\left(\alpha_{03}+\alpha_{13} x_{6}+\alpha_{23} x_{7}+\alpha_{33} x_{8}+\alpha_{43} x_{9}\right)
\end{aligned}
$$

Modified connectivity

Local connectivity

Modified connectivity

- weight sharing: some hidden units share weights
- only makes sense in combination with local connectivity
- say there are 3 hidden nodes and 9 features

$$
\begin{aligned}
& z_{1}=\sigma\left(\alpha_{01}+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}\right) \\
& z_{2}=\sigma\left(\alpha_{02}+\alpha_{1} x_{4}+\alpha_{2} x_{5}+\alpha_{3} x_{6}\right) \\
& z_{3}=\sigma\left(\alpha_{03}+\alpha_{1} x_{7}+\alpha_{2} x_{8}+\alpha_{3} x_{9}\right)
\end{aligned}
$$

- typically each hidden node retains a distinct bias $\left(\alpha_{0 m}\right)$
- hidden layer has just $3+3=6$ parameters
- number of links \neq number of parameters (more links)

Modified connectivity

Local connectivity + weight sharing

Example: zipcode data

- hand-written integers
- output: 10-class classification
- input: 16×16 B\&W image

$$
\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Example: zipcode data

- input: 16×16 B\&W image
- when input is an array (2D in this case), typically the hidden units in a hidden layer are represented as an array too
- figure below shows local connectivity with 5×5 "kernel"

Local connectivity

- 3×3 kernel
- stride 1
- edge handling

Local conn. w/weight sharing (convolution)

Convolution is type of shape detector or "feature map":
\(\left.$$
\begin{array}{l|l|l|l|l|}\hline 7 & 2 & 3 & 3 & 8 \\
\hline 4 & 5 & 3 & 8 & 4 \\
\hline 3 & 3 & 2 & 8 & 4 \\
\hline 2 & 8 & 7 & 2 & 7 \\
\hline 5 & 4 & 4 & 5 & 4 \\
\hline\end{array}
$$ * $$
\begin{array}{|l|l|l|}\hline 1 & 0 & -1 \\
\hline 1 & 0 & -1 \\
\hline 1 & 0 & -1 \\
\hline\end{array}
$$=$$
\begin{array}{|l|l|l|l|}\hline 6 & & \\
\hline\end{array}
$$=\begin{array}{ll}7 \times 1+4 \times 1+3 \times 1+

2 \times 0+5 \times 0+3 \times 0+

3 x-1+3 x-1+2 x-1

=6\end{array}\right) .\)	

$$
k \lll<\ggg>\rightarrow+\square
$$

Example: zipcode data

- Net 1: no hidden layer, same as multinomial logistic regression, $(256+1) 10=2570$ parameters
- Net 2: one hidden layer, 12 units, fully connected, $(256+1) 12$ $+(12+1) 10=3214$ parameters
- Net 3: two hidden layers, locally connected, 1226 parameters
- Net 4: two hidden layers, locally connected, weight sharing, 1132 parameters, 2266 links

Local connectivity

Local connectivity and shared weights

AKA: convolutional neural networks

Shared Weights

Net-5

- groups of hidden units form "shape detectors" or "feature maps"
- more complex shape detectors near output layer

Net 3

Net 4

Performance on zipcode data

FIGURE 11.11. Test performance curves, as a function of the number of training epochs, for the five networks of Table 11.1 applied to the ZIP code data. (Le Cun, 1989)

Processing between layers

- Pooling/subsampling: down-sample data from a layer by summarizing of a group of units
- Max-pooling: summarize using maximum:

Single depth slice

Deep learning and deep neural networks

- Deep learning uses deep NNs
- Deep NNs are simply NNs with many layers, complex connectivity, and processing steps between layers:

Complex NNs in R

- No (good) native R libraries for complex NNs
- R can interface to good libraries, e.g., Keras, TensorFlow
- See https://keras.rstudio.com/

