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Multidimensional scaling (MDS)

» unsupervised learning
» dimension reduction

» map points in high dimension to lower dimension



Multidimensional scaling (MDS)
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T1,...,2TN in p-dimensions

let d;; be distance between z; and x;

often d;; = ||x; — || - Euclidean distance
only d;; is needed for MDS
find z1,...,2xy € R¥, for k < p, to minimize “stress function”:
2
Su(z1s - oh2n) = Y (dig — |1z — z0]])
ii!

“Find a lower-dimensional representation (z1,...,zy) of the
orignal data (x1,...,zy) that preserves the pairwise distances

among the original data points as well as possible.”

use gradient descent to minimize Sy



Sammon mapping

» “Sammon mapping” is MDS with alternative stress function

dig = ||z = z0])?
Ss (e zn) = 30 |d” )
i i/

» Sg, puts emphasis on preserving smaller pairwise distances



Classical scaling

v

Alternative stress function

AT 112
So(z1,. . 2n) =Y (s — (20 — 2) (20 — 2))
ii!
where s;;/ is a similarity measure
called “Classical scaling”
explicit solution in terms of eigenvectors (ex. 14.11)

if s, = (2; — )T (x4 — T) then classical scaling equivalent to
PCA



Nonmetric scaling

» Alternative stress function

S izt (0(diir) — ||z — zur|])?
2 ik 25—z |2

Snm(z1,...,28) =

where @ is an increasing function
P iterative minimization algorithm

1. fix #, minimize over z; using gradient descent
2. fix z;, use monotonic regression to fit 6(d;;/) to ||z — zi||
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FIGURE 14.15. Simulated data in three classes, near
the surface of a half-sphere.
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FIGURE 14.21. The best rank-two linear approzima-
tion to the half-sphere data. The right panel shows the
projected points with coordinates given by UsDa, the
first two principal components of the data.
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FIGURE 14.28. Principal surface fit to half-sphere
data.  (Left panel:) fitted two-dimensional surface.
(Right panel:) projections of data points onto the sur-
face, resulting in coordinates )\1, Xa.
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FIGURE 14.43. First two coordinates for half-sphere
data, from classical multi-
dimensional scaling.
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Advandage of PCA /principal surfaces vs. MDS

» PCA/principal surfaces: easy to map new data into lower
dimension

» MDS: no clear mapping of new data into lower dimension



ISOMAP and Local MDS

» MDS can behave badly if distance metric not adequate to
characterize curvature

» ISOMAP or local MDS can help with this
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Classical MDS Local MDS
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FIGURE 14.44. The orange points show data ly-
ing on a parabola, while the blue points shows multi-
dimensional scaling representations in one dimension.
Classical multidimensional scaling (left panel) does not
preserve the ordering of the points along the curve, be-
cause it judges points on opposite ends of the curve to
be close together. In contrast, local multidimensional
scaling (right panel) does a good job of preserving the
ordering of the points along the curve.



Isometric feature mapping (ISOMAP)

» create k-NN graph
P calculate geodesic distance between all points

P use classical scaling on geodesic distances
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Local MDS

» let N be pairs of k-NNs
» (i,3') in Nif 2; is a k-NN of z;» or vice versa

» stress function

Sp(z,an) = Y (div—|lz—ze )+ Y w(D—||zi—z|])?

(i) eN (4,8 gN

where D is large constant and w is a weight
» pairs that are not neighbors considered very far apart

» w small so that non-neighbors don't dominate stress fun
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Classical MDS Local MDS

o ’a o
¢\ @
% ,

-

N,

& ™
8 8 1
51 51
74 L -
! T T T ! T
-5 0 5 -5 o 5
Ty z1

FIGURE 14.44. The orange points show data ly-
ing on a parabola, while the blue points shows multi-
dimensional scaling representations in one dimension.
Classical multidimensional scaling (left panel) does not
preserve the ordering of the points along the curve, be-
cause it judges points on opposite ends of the curve to
be close together. In contrast, local multidimensional
scaling (right panel) does a good job of preserving the
ordering of the points along the curve.



Local MDS example: faces

> 1965 20x28 grayscale images
» reduce dimension from 20x28=560 to 2 using Local MDS
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FIGURE 14.45. Images of faces mapped into the em-
bedding space described by the first two coordinates of
LLE. Next to the circled points, representative faces
are shown in different parts of the space. The images
at the bottom of the plot correspond to points along the
top right path (linked by solid line), and illustrate one
particular mode of variability in pose and ea:pTesilsion.



