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k-means clustering

I Partition data into k non-overlapping clusters

I Must specify k

I k-means algorithm creates k clusters with smallest total
within-cluster variance

I Thus Euclidean distance measures similarity

I This difficult combinatorial problem, but iterative algorithm
does pretty good



k-means algorithm



k-means algorithm



k-means starting values

Need to do k-means several times, pick best



k-means value of k



k-means value of k

I As k increases total within-cluster variance decreases

I Use domain-specific considerations

I Use the elbow rule if no outside info



Hierarchical clustering

I Generates a sequence of clusters

I Split or merging clusters at each step

I Does not require prespecification of k

I Has tree-based representation: dendrogram

I Top-down and bottom-up (agglomerative) versions

I Top-down: start with 1 big cluster, split until N clusters

I Bottom-up: start with N clusters, merge until 1 cluster

I Bottom-up most common



Hierarchical clustering: dendrogram

I Leaf at bottom is single observation

I Most similar observations merged to form cluster

I Most similar clusters merged to form new clusters

I Vertical axis is dissimilarity of merged clusters



Hierarchical clustering: dendrogram clusters

I Cut the dendrogram to make clusters

I Where you cut determines k

I Can apply elbow rule to dendrogram



Hierarchical clustering: dissimilarity and linkage

I Must define dissimilarity between observations

I Euclidean distance is common

I Must define dissimilarity or linkage between clusters:

I Complete - Maximum intercluster dissimilarity

I Single - Minimal intercluster dissimilarity

I Average - Mean intercluster dissimilarity

I Centroid - Dissimilarity between centroids

I Different dissimilarity and linkage results in different
dendrograms

I Can try a variety and see if patterns consistently emerge



Hierarchical clustering: linkage



Hierarchical clustering: linkage



Hierarchical clustering: bottom-up algorithm



Spectral clustering

I unsupervised learning

I useful for unusual clusters



Toy example



Spectral clustering

I k-means will fail

I normal mixtures might work

I hierarchical methods might work (linkage?)

I useful for unusual clusters



Spectral clustering

I main idea is to transform data, then cluster

I start with N ×N matrix of pairwise similarities sii′ ≥ 0

I organize observations into graph with N nodes connected by
edges with length 1/sii′

I clustering is then a graph-partition problem; partition graph
such that edges that exit clusters have long lengths (small
similarity), and edges within clusters have short lengths (large
similarity)



Graph partition problem



Spectral clustering

I consider xi ∈ Rp

I sii′ = exp(−||xi − xi′ ||2/c) (radial kernel)

I many ways to encode graph based on sii′

I e.g., fully connected

I e.g., K-nearest-neighbor graph

I define NK to be the set of nearby pairs of points

I obs (i, i′) is in NK if i is K-nn of i′ or vice versa

I only (i, i′) in NK are connected with weight wii′ = sii′ ,
otherwise no edge (wii′ = 0).

I the K-nn graph is a kind of pre-processing; hard thresholding
of similarities)



2-NN Graph



Spectral clustering

I adjacency matrix of weights (similarities; N ×N):
W = {wii′}

I degree of node i: gi =
∑

i′ wii′

I let G = diag(g1, . . . , gN )

I define graph Laplacian:

L = G−W

I spectral clustering:

1. find m eigenvectors Z (N ×m) corresponding to the m
smallest eigenvalues of L (ignoring trivial constant
eigenvector)

2. use standard clustering method to cluster rows of Z, which
serve as the transformed data
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Spectral Clustering

FIGURE 14.29. Toy example illustrating spectral
clustering. Data in top left are 450 points falling in
three concentric clusters of 150 points each. The points
are uniformly distributed in angle, with radius 1, 2.8
and 5 in the three groups, and Gaussian noise with
standard deviation 0.25 added to each point. Using a
k = 10 nearest-neighbor similarity graph, the eigen-
vector corresponding to the second and third smallest



Spectral clustering: Why it works.
I consider tranforming (N × p) data X into (N × 1) vector f

for the purpose of clustering
I for items that are similar (large sii′ and wii′), fi should have a

similar value to fi′ and vice versa
I if we consider the following quantity
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I finding fi similar to fi′ for large wii′ implies small fTLf
I now if restrict f to be an eigenvector of L, then fTLf is the

eigenvalue, and we should focus on those vectors with
smallest values

I constant vector (1T ) is eigenvector of L with eigenvalue zero


