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Random Forests

I bootstrap aggregation (bagging)

I fit same model to resamples many times

I regression: average predictions

I classification: avarage probs. or “committee vote”

I reduces variance of estimated predictor

I works well for high-var. low-bias predictors (e.g., trees)

I random forests is modified bagging



Random Forests

I resamples are not independent samples

I bagged trees are correlated

I weakens the “wisdom of crowds”

I random forests generates de-correlated trees

I performance similar to boosting for many problems



Random Forests

I in bagging, trees are identically distributed (i.d.)

I → bias of bagged trees is same as individual tree

I → bagging improves variance

I can improve bias and variance using low-bias individual tree

I in boosting, trees are adaptive, not i.d.



Random Forests

I prediction from RF is average of B i.d. predictions

I variance of the average of B i.d. predictions with variance σ2

and pairwise correlation ρ:

ρσ2 +
1− ρ
B

σ2

I as B grows, second term vanishes

I can only reduce first term by reducing ρ

I random forests: reduce ρ without increasing σ2 too much



Random Forests

I random forests modifies the tree-growing procedure

I before each split, select m ≤ p input variables at random as
candidates for splitting

I this reduces correlation among the trees

I typically m = b√pc for regression

I typically m = bp/3c for classification

I random forest predictor after B trees grown is

f̂Brf (x) =
1

B

B∑
b=1

T (x; Θb)
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FIGURE 15.1. Bagging, random forest, and gradi-
ent boosting, applied to the spam data. For boosting,
5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each
“step” in the figure corresponds to a change in a single
misclassification (in a test set of 1536).



Out-of-bag samples

I random forests uses notion of out-of-bag (OOB) error

I for each zi = (xi, yi) construct its random forest predictor by
averaging only those trees corresponding to bootstrap samples
in which zi was not sampled

I OOB error like LOO bootstrap validation, or N-fold CV error

I trees are added until OOB error “stabilizes”
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FIGURE 15.4. oob error computed on the spam

training data, compared to the test error computed on
the test set.



Overfitting and tuning parameters

I random split-candidate selection increases chance that noise
variable will be used for splitting

I when many noise variables, random forest may overfit

I need to modify number of candidates m ≤ p
I unlike best-subset, boosting, number of trees B in random

forest (and other bagged predictors) not as sensitve to
overfitting
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FIGURE 15.7. A comparison of random forests and
gradient boosting on problems with increasing numbers
of noise variables. In each case the true decision bound-
ary depends on two variables, and an increasing num-
ber of noise variables are included. Random forests
uses its default value m =

√
p. At the top of each

pair is the probability that one of the relevant variables
is chosen at any split. The results are based on 50 sim-
ulations for each pair, with a training sample of 300,
and a test sample of 500.



Overfitting and tuning parameters

Random forest tuning parameters:

I B - number of trees in forest

I m - number of features considered at each split

I maximum tree depth

I minimum required data points in terminal node

Compute CV-error or OOB error on grid of tuning parameter
values, then select the values with smallest error



Variable importance: I2

I variable importance idea: for variable X, add up improvement
(reduced training error) associated with each split on a
variable X, within and across trees



Variable importance: I2
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Variable importance: I2

I for single tree T , “squared relevance” of variable l is

I2l (T ) =

J−1∑
t=1

î2t I(v(t) = l)

I t index the J − 1 internal nodes

I v(t) is split variable at node t

I î2t is squared improvement in trainin error by splitting

I for tree ensembles trees, average over all B trees

I2l =
1

B

B∑
b=1

I2l (Tb)
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FIGURE 15.5. Variable importance plots for a classi-
fication random forest grown on the spam data. The left
plot bases the importance on the Gini splitting index, as
in gradient boosting. The rankings compare well with
the rankings produced by gradient boosting (Figure 10.6
on page 316). The right plot uses oob randomization
to compute variable importances, and tends to spread
the importances more uniformly.



Variable importance: OOB randomization

I prediction accuracy of bth tree computed using OOB error

I values for jth input variable permuted (voids contribution of
variable)

I prediction accuracy recomputed after permutation

I decrease in accuracy averaged across all trees

I not same as model without permuted variable
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FIGURE 15.5. Variable importance plots for a classi-
fication random forest grown on the spam data. The left
plot bases the importance on the Gini splitting index, as
in gradient boosting. The rankings compare well with
the rankings produced by gradient boosting (Figure 10.6
on page 316). The right plot uses oob randomization
to compute variable importances, and tends to spread
the importances more uniformly.



Proximity plots

I for every pair of training points, proximity is the number of
trees in which the pair shares a terminal node (gives a
proximity/similarity matrix)

I multidimensional scaling (MDS) finds a q-dimensional
representation of the training data features (p-dimensional)
such that the euclidean distance between pairs is good
estimate of proximity between pairs

I MDS used to generate low-dimension representation of data
that preserves proximity (e.g., q=2)

I proximity plots generally have star shape, one arm per class

I “pure” regions tend to map to extremity of star

I “impure” regions tend to map to center of star
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FIGURE 15.6. (Left): Proximity plot for a random
forest classifier grown to the mixture data. (Right):
Decision boundary and training data for random forest
on mixture data. Six points have been identified in each
plot.



Random Forests

I R package randomForest


