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Boosting trees

» denote a tress as follows
J
flz) =T(x;0) => yI(z € R))
j=1

where © = {R;,~;}{ define the feature partition (i.e., the
tree, R;) and predictions within each region (v;)

» estimate © by minimizing average (or sum of) loss

= arg ming Z Z (yi,7j)

j=1z;,€R;

> ;| R; is easy (often 4; = ;)

» R; is hard (combinatorial; use recursive partitioning)



Boosting trees

» boosted tree model, using FSAM

M
fur(@) =) T(x;0,)
m=1

P at each stage, must solve

N
O, = arg ming ZL(%, Jm—1(x;) + T(x;; Op))
i=1

where ©,, = {ij77jm}{m



Boosting trees

» given regions R;,,, finding optimal v, is usually easy

&Jm = arg minyjm Z L(yza fm,1($i) + r}/jm)
J)iéij
again, finding regions is difficult
for squared-error loss, no more difficult than unboosted tree
for two-class problem and exponential loss — AdaBoost.M1

for most other problems, no simplification possible



Gradient boosting

P> need to solve this:

N

Oy, = arg ming ZL(% Jm—1(zi) + T (245 Om))
i1

» if L is differentiable, can think about solving using numerical
optimization

» rewrite the average loss as follows

N
L(f) = Z L(ys, f(xi))

» minimize L(f) w.r.t. f, where f(x) is constrained to be sum
of trees

M
fu(x) =) T(w;0,)

m=1



Gradient boosting

» ignoring the tree structure for the moment, can think about
numerically optimizing

[ =arg min,L(f)

where the “parameters” f € R" are the values of the
approximating function f(x;) at each of the N training points
T

[= {f(xl)v"'vf(-rN)}T

» can find fy; sequentially by adding committee members h,,;:

M
fur=> P, hmeRY

m=0

where hg is an initial guess
» how to find h,, ?



Gradient boosting

» find h,, using steepest descent

» choose h,, = —pmTm for scalar p,, and 7, € RV is gradient
of L(f) evaluated at f = f,—1

v O f (i) f(@i)=fm—1(zi)

» step length p,, is either fixed or optimized:
pm = argmin, L(fp—1 — prm)
» the model/committee is updated as
Jm = fm—1— pmTm

P this is a greedy strategy



Gradient boosting

» back to boosted trees; at each step, find new committee tree:

N
Oy, = arg ming ZL(% Jfm—1(xi) + T(xi; Om))
i=1
» difficult to solve directly

» gradient boosting finds an approximate solution by
finding a tree T'(z;0,,) that moves f,,_; in direction of
negative gradient of L evaluated at f,,_1, denoted r,,

> fit a tree T(z;;0,,) to the negative gradient values:

N
©,, = argming Z(—rim — T(z;;0))?
i=1

» note: squared error loss function

> (:)m not identical to (:)m close enough!



Algorithm 10.3 Gradient Tree Boosting Algorithm

1. Initialize fo(x) = arg min,, 21\;1 L(yi, )
2. Form =1to M:

(a) Fori=1,2,...,N compute

i = - [ 2 )
" Of(x:) f:fnz—l.
Rjm, j=1.2,....Jn

(b) Fit a regression tree to the targets ri;, giving terminal regions
(c) For j =1.2,...,.J,, compute

fgm

i € Rjm

(d) Update fu(z) = fin—1(z)+ >

=argmin Y Ly, froa(m) +7)
3. Output f(z) = far(x).

T
j=1"Tjm

I(!T € ij).




Spam Data

> 4601 email messages

v

all classified as ‘email’ or ‘spam’ (junk email)

» 57 features; relative frequencies of common words and
punctuation

» problem: classify new emails as ‘email’ or ‘spam’

» classification loss probably not symmetric (why?)



TABLE 1.1. Average percentage of words or characters in an email message

equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl !

our re edu remove
spam 0.00 226 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 090 0.07 043 0.11 018 042 0.29 0.01
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Tree size affects performance

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.9. Boosting with different sized trees,
applied to the ezample (10.2) used in Figure 10.2. Since
the generative model is additive, stumps perform the
best. The boosting algorithm used the binomial deviance
loss in Algorithm 10.3; shown for comparison is the
AdaBoost Algorithm 10.1.
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Gradient boosting implementation

» R package gbm (for “gradient boosted models”)



Gradient boosting of SPAM data

method test error
gradient boosting  4.5%
add. logis. reg. 5.5%

CART 8.7%

MARS 5.5%




Relative importance of 57 spam features
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Partial dependence

vvyyy

let x5 be a subset of predictors and z. it's complement
usually x4 has just one or two dimensions, so we can plot them
a predictor f depends on both f(xs,x.)

partial dependence is the prediction at a value of x,, averaged
over the values that x. could take:

1 N
fs(zs) = N Zf(xswric)
=1

where x;. are from the trainind data



Partial dependence of log-odds of spam

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.7. Partial dependence of log-odds of
spam on four important predictors. The red ticks at
the base of the plots are deciles of the input variable.



Partial dependence of log-odds of spam

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 10

and the character !

FIGURE 10.8. Partial dependence of the log-odds of
spam vs. email as a function of joint frequencies of hp




