
Boosting and Addative Modeling (part 3)

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine

Nashville, TN, USA

April 1, 2020



Boosting trees

I denote a tress as follows

f(x) = T (x; Θ) =

J∑
j=1

γjI(x ∈ Rj)

where Θ = {Rj , γj}J1 define the feature partition (i.e., the
tree, Rj) and predictions within each region (γj)

I estimate Θ by minimizing average (or sum of) loss

Θ̂ = arg minΘ

J∑
j=1

∑
xi∈Rj

L(yi, γj)

I γ̂j |R̂j is easy (often γ̂j = ȳj)

I R̂j is hard (combinatorial; use recursive partitioning)



Boosting trees

I boosted tree model, using FSAM

fM (x) =

M∑
m=1

T (x; Θm)

I at each stage, must solve

Θ̂m = arg minΘm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm))

where Θm = {Rjm, γjm}Jm1



Boosting trees

I given regions Rjm, finding optimal γjm is usually easy

γ̂jm = arg minγjm

∑
xi∈Rjm

L(yi, fm−1(xi) + γjm)

I again, finding regions is difficult

I for squared-error loss, no more difficult than unboosted tree

I for two-class problem and exponential loss → AdaBoost.M1

I for most other problems, no simplification possible



Gradient boosting

I need to solve this:

Θ̂m = arg minΘm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm))

I if L is differentiable, can think about solving using numerical
optimization

I rewrite the average loss as follows

L(f) =

N∑
i=1

L(yi, f(xi))

I minimize L(f) w.r.t. f , where f(x) is constrained to be sum
of trees

fM (x) =

M∑
m=1

T (x; Θm)



Gradient boosting

I ignoring the tree structure for the moment, can think about
numerically optimizing

f̂ = arg minfL(f)

where the “parameters” f ∈ RN are the values of the
approximating function f(xi) at each of the N training points
xi

f = {f(x1), . . . , f(xN )}T

I can find fM sequentially by adding committee members hm:

fM =

M∑
m=0

hm, hm ∈ RN

where h0 is an initial guess

I how to find hm ?



Gradient boosting

I find hm using steepest descent

I choose hm = −ρmrm for scalar ρm and rm ∈ RN is gradient
of L(f) evaluated at f = fm−1

rim =

[
δL(yi, f(xi))

δf(xi)

]
f(xi)=fm−1(xi)

I step length ρm is either fixed or optimized:

ρm = argminρL(fm−1 − ρrm)

I the model/committee is updated as

fm = fm−1 − ρmrm

I this is a greedy strategy



Gradient boosting

I back to boosted trees; at each step, find new committee tree:

Θ̂m = arg minΘm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm))

I difficult to solve directly

I gradient boosting finds an approximate solution by
finding a tree T (x; Θm) that moves fm−1 in direction of
negative gradient of L evaluated at fm−1, denoted rm

I fit a tree T (xi; Θm) to the negative gradient values:

Θ̃m = argminΘ

N∑
i=1

(−rim − T (xi; Θ))2

I note: squared error loss function

I Θ̃m not identical to Θ̂m close enough!





Spam Data

I 4601 email messages

I all classified as ‘email’ or ‘spam’ (junk email)

I 57 features; relative frequencies of common words and
punctuation

I problem: classify new emails as ‘email’ or ‘spam’

I classification loss probably not symmetric (why?)





Tree size affects performance

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

Number of Terms

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4 Stumps

10 Node
100 Node
Adaboost

FIGURE 10.9. Boosting with different sized trees,
applied to the example (10.2) used in Figure 10.2. Since
the generative model is additive, stumps perform the
best. The boosting algorithm used the binomial deviance
loss in Algorithm 10.3; shown for comparison is the
AdaBoost Algorithm 10.1.



Gradient boosting implementation

I R package gbm (for “gradient boosted models”)



Gradient boosting of SPAM data

method test error

gradient boosting 4.5%
add. logis. reg. 5.5%

CART 8.7%
MARS 5.5%



Relative importance of 57 spam features



Partial dependence

I let xs be a subset of predictors and xc it’s complement

I usually xs has just one or two dimensions, so we can plot them

I a predictor f depends on both f(xs, xc)

I partial dependence is the prediction at a value of xs, averaged
over the values that xc could take:

fs(xs) =
1

N

N∑
i=1

f(xs, xic)

where xic are from the trainind data



Partial dependence of log-odds of spam

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

!

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

remove

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

edu

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.6

-0
.2

0.
0

0.
2

hp

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.6

-0
.2

0.
0

0.
2

FIGURE 10.7. Partial dependence of log-odds of
spam on four important predictors. The red ticks at
the base of the plots are deciles of the input variable.



Partial dependence of log-odds of spam

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

0.51.01.52.02.53.0

0.2

0.4

0.6

0.8

1.0

-1.0

-0.5

 0.0

 0.5

 1.0

hp

!

FIGURE 10.8. Partial dependence of the log-odds of
spam vs. email as a function of joint frequencies of hp
and the character !.


