
Boosting and Additive Models (part 2)

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine

Nashville, TN, USA

March 30, 2020

Boosting fits an additive model

I additive model:

f(x) =

M∑
m=1

βmb(x; γm) where G(x) = sign[f(x)]

I for AdaBoost.M1, the notation was

G(x) = sign

[
M∑
m=1

αmGm(x;Rm)

]

I for each m

(β̂m, γ̂m)
M
1 = arg min(βm,γm)M1

N∑
i=1

L(yi, f(xi))

I solving this is hard; use an algorithm to find approx solution
(i.e., boosting)

for trees:

I b(x, γm) is binary classification tree (G(x) ∈ {−1, 1})
I γm is split information (Rm)

I βm is the tree weight (αm)

FSAM with squared-error loss

I using squared-error loss:

L(yi, fm−1(xi) + βb(x, γ)) = (y − fm−1(xi)− βb(xi, γ))2

= (rim − βb(xi, γ))2

I rim is the residual for observation i using model fm−1
I step 2 of FSAM algorithm is a least-squares problem (easy!)

FSAM using exponential loss

I exponential loss:

L(y, f(x)) = exp(−yf(x))

I if y and f(x) have same sign, then exp(−yf(x)) ≤ 1 and vice
versa

I yf(x) is called the ‘margin’ in this context (Y ∈ {−1, 1})
I the margin acts like a residual

FSAM using exponential loss

Consider binary classification (Y ∈ {−1, 1}) with exponential loss

I step 2.a. from FSAM algorithm:

(βm, Gm) = arg min(β,G)

N∑
i=1

exp[−yi[fm−1(xi) + βG(xi)]]

= arg min(β,G)wi(m−1) exp[−yiβG(xi)]

where
wi(m−1) = exp[−yifm−1(xi)]

FSAM using exponential loss

I given Gm (see HTF Ex. 10.1):

βm =
1

2
log

[
1− errm
errm

]
I note: wi(m−1) = exp[−yifm−1(xi)]
I weight at next iteration is

wi(m) = exp[−yi(fm(xi)]
= exp[−yi(fm−1(xi) + βmGm(xi))]

= wi(m−1) exp[−yiβmGm(xi)]
∝ wi(m−1) exp[αmI(yi 6= Gm(xi))]

I AdaBoost.M1 is equivalent to FSAM using exponential loss!

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boosting Iterations

T
ra

in
in

g
E

rr
or

Misclassification Rate

Exponential Loss

FIGURE 10.3. Simulated data, boosting with stumps:
misclassification error rate on the training set, and av-

erage exponential loss: (1/N)
PN

i=1 exp(−yif(xi)). Af-
ter about 250 iterations, the misclassification error is
zero, while the exponential loss continues to decrease.

Why exponential loss?

I AdaBoost.M1 and FSAM connection coincidental

I in binary classification problem (Y ∈ {−1, 1}), what estimator
does exponential loss give (see Ex. 10.2)?

f̂(x) = arg minf(x)EY |X [exp(−Y f(X))]

=
1

2
log

P (Y = 1|X)

P (Y = −1|X)

I sign of f̂(x) makes sense as classification rule

I exponential loss is like a smooth version of the zero-one loss

I when margin yf(x) positive, small loss

Binomial deviance loss

I binomial log-likelihood where Y ′ = (Y + 1)/2 ∈ {0, 1}:

l(Y, p(x)) = Y ′ log p(x) + (1− Y ′) log(1− p(x))
l(Y, f(x)) = − log(1 + exp(−2Y f(x)))

where f(x) is one-half the log odds

I the binomial deviance loss:

L(Y, f(x)) = −l(Y, f(x)) = log(1 + exp(−2Y f(x)))

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 Misclassification

Exponential
Binomial Deviance
Squared Error
Support Vector

L
o
ss

y · f

FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = ±1; the prediction is
f , with class prediction sign(f). The losses are mis-
classification: I(sign(f) �= y); exponential: exp(−yf);
binomial deviance: log(1 + exp(−2yf)); squared er-
ror: (y − f)2; and support vector: (1 − yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0, 1).

Robustness: exponential vs. deviance

I deviance loss is less “severe” version of exponential loss

I for yf(x) < 0 exponential loss is... exponential, but deviance
loss becomes linear:

log(1 + exp(−2Y f(x))) ≈ log(exp(−2Y f(x))) = −2Y f(x)

I exponential loss allows big influence of observations with big
negative margin, whereas deviance is less sensitive (i.e.,
robust)

I AdaBoost.M1 performance degrades when there are big
outliers (i.e., with big margins)

I absolute error loss is robust (versus squared error loss) in
regression problems for similar reason

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

−3 −2 −1 0 1 2 3

0
2

4
6

8

Squared Error
Absolute Error
Huber

L
o
ss

y − f

FIGURE 10.5. A comparison of three loss functions
for regression, plotted as a function of the margin y−f .
The Huber loss function combines the good properties
of squared-error loss near zero and absolute error loss
when |y − f | is large.

