Boosting and Additive Models (part 2)

Matthew S. Shotwell, Ph.D.

Department of Biostatistics
Vanderbilt University School of Medicine
Nashville, TN, USA

March 30, 2020

Boosting fits an additive model

» additive model:
M

@)= Bublaim) where Glx) = sign[f(x)]
m=1

» for AdaBoost.M1, the notation was

M
G(z) = sign [Z amGm(x; Ry)
m=1

» for each m

N

Buns)Y = arg mings e S Ly, f(27))
=1

» solving this is hard; use an algorithm to find approx solution
(i.e., boosting)

Algorithm 10.2 Forward Stagewise Additive Modeling.
1. Initialize fo(z) = 0.

2, Form=1to M:

(a) Compute

N
(BrmsYm) = arg Iﬁ‘ig; L(yi, fm—1(@i) + Bb(a;

(b) Set fin(z) = frn—1(x) + Binb(z;vm).

for trees:

)

» b(z,7y) is binary classification tree (G(x) € {—1,1})
» ., is split information (R,,)
» (., is the tree weight (av,)

FSAM with squared-error loss

» using squared-error loss:
L(yi, fm—1(xs) + Bb(x,7)) = (Y = fm—1(z:) — Bb(:,7))
= (rim — Bb(zi,7))”

» i is the residual for observation ¢ using model f,,,—1

» step 2 of FSAM algorithm is a least-squares problem (easy!)

FSAM using exponential loss

P exponential loss:

L(y, f(x)) = exp(~yf(z))

» if y and f(z) have same sign, then exp(—yf(z)) <1 and vice
versa

» yf(x) is called the ‘margin’ in this context (Y € {—1,1})

» the margin acts like a residual

FSAM using exponential loss

Consider binary classification (Y € {—1,1}) with exponential loss
» step 2.a. from FSAM algorithm:

N
(Bm, Gm) = arg ming) Zexp[—yi[fm_l(mi) + BG(x;)]]

i=1
= arg min g ;) Wi(m—1) exp|—yi BG(x;)]

where
Wi(m—1) = exp[—yi frm—1(;)]

FSAM using exponential loss

» given Gy, (see HTF Ex. 10.1):

1 1-—
6m = *log [errm]

2 err,,

> note: wj(m—1) = exp[—yifm—1(z:)]
P> weight at next iteration is

W) = exp[—Yi(fm(zi)]
= exp[—¥i(fm—1(2i) + BnGm(;))]
= Wi(m—1) XP[—Yi B Gm ()]
X Wi(m—1) explam I (yi # Gm(z:))]

» AdaBoost.M1 is equivalent to FSAM using exponential loss!

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 10

08
I

Training Error
06
|

04

Exponential Loss

0.2

Misclassification Rate

0.0

0 100 200 300 400

Boosting lterations

FIGURE 10.3. Simulated data, boosting with stumps:
misclassification error rate on the training set, and av-
erage exponential loss: (1/N) Eivzl exp(—yif(zi)). Af-
ter about 250 iterations, the misclassification error is
zero, while the exponential loss continues to decrease.

[} = =

Why exponential loss?

v

AdaBoost.M1 and FSAM connection coincidental

in binary classification problem (Y € {—1,1}), what estimator
does exponential loss give (see Ex. 10.2)?

f(z) = arg min () By x[exp(=Y f(X))]
PY = 1/X)

1
— Zlog = — o)
2 B P = _1X)

sign of f(z) makes sense as classification rule
exponential loss is like a smooth version of the zero-one loss

when margin yf(x) positive, small loss

Binomial deviance loss

» binomial log-likelihood where Y’ = (Y +1)/2 € {0,1}:

I(Y,p(z)) = Y'logp(x) + (1 = Y')log(1 — p(x))
(Y, f(x)) = —log(1 + exp(—2Y f(x)))

where f(z) is one-half the log odds

» the binomial deviance loss:

LY, f(z)) = =I(Y, f(x)) = log(1 + exp(=2Y f(x)))

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 10

2 Misclassification
Exponential
- Binomial Deviance
N —— Squared Error
—— Support Vector
o |
w o
3
0
o
o |
<
w |
S
o
S

o
y-f

FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = +1; the prediction is
f, with class prediction sign(f). The losses are mis-
classification: I(sign(f) # y); exponential: exp(—yf);
binomial deviance: log(l + exp(—2yf)); squared er-
ror: (y — f)?; and support vector: (1 —yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0,1).

[} = =

Robustness: exponential vs. deviance

» deviance loss is less “severe” version of exponential loss

» for yf(x) < 0 exponential loss is... exponential, but deviance
loss becomes linear:

log(1 4 exp(—2Y f(x))) ~ log(exp(—2Y f(x))) = —2Y f(z)

» exponential loss allows big influence of observations with big
negative margin, whereas deviance is less sensitive (i.e.,
robust)

» AdaBoost.M1 performance degrades when there are big
outliers (i.e., with big margins)

» absolute error loss is robust (versus squared error loss) in
regression problems for similar reason

Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 10

‘Squared Error
Absolute Error

Loss

FIGURE 10.5. A comparison of three loss functions
for regression, plotted as a function of the margin y— f.
The Huber loss function combines the good properties
of squared-error loss near zero and absolute error loss
when |y — f| is large.

