Boosting and Additive Models (part 2)

Matthew S. Shotwell, Ph.D.

Department of Biostatistics Vanderbilt University School of Medicine Nashville, TN, USA

March 30, 2020

Boosting fits an additive model

► additive model:

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$$
 where $G(x) = \text{sign}[f(x)]$

▶ for AdaBoost.M1, the notation was

$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x; R_m)\right]$$

ightharpoonup for each m

$$(\hat{\beta}_m, \hat{\gamma}_m)_1^M = \arg\min_{(\beta_m, \gamma_m)_1^M} \sum_{i=1}^N L(y_i, f(x_i))$$

 solving this is hard; use an algorithm to find approx solution (i.e., boosting)

Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize $f_0(x) = 0$.
- 2. For m=1 to M:
 - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

for trees:

- ▶ $b(x, \gamma_m)$ is binary classification tree $(G(x) \in \{-1, 1\})$
- $ightharpoonup \gamma_m$ is split information (R_m)
- \blacktriangleright β_m is the tree weight (α_m)

FSAM with squared-error loss

using squared-error loss:

$$L(y_i, f_{m-1}(x_i) + \beta b(x, \gamma)) = (y - f_{m-1}(x_i) - \beta b(x_i, \gamma))^2$$

= $(r_{im} - \beta b(x_i, \gamma))^2$

- $ightharpoonup r_{im}$ is the residual for observation i using model f_{m-1}
- ▶ step 2 of FSAM algorithm is a least-squares problem (easy!)

FSAM using exponential loss

exponential loss:

$$L(y, f(x)) = \exp(-yf(x))$$

- \blacktriangleright if y and f(x) have same sign, then $\exp(-yf(x)) \leq 1$ and vice versa
- lacktriangledown yf(x) is called the 'margin' in this context $\big(Y\in\{-1,1\}\big)$
- the margin acts like a residual

FSAM using exponential loss

Consider binary classification $(Y \in \{-1, 1\})$ with exponential loss

▶ step 2.a. from FSAM algorithm:

$$(\beta_m, G_m) = \arg\min_{(\beta, G)} \sum_{i=1}^N \exp[-y_i [f_{m-1}(x_i) + \beta G(x_i)]]$$

= $\arg\min_{(\beta, G)} w_{i(m-1)} \exp[-y_i \beta G(x_i)]$

where

$$w_{i(m-1)} = \exp[-y_i f_{m-1}(x_i)]$$

FSAM using exponential loss

▶ given G_m (see HTF Ex. 10.1):

$$\beta_m = \frac{1}{2} \log \left[\frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \right]$$

- ▶ note: $w_{i(m-1)} = \exp[-y_i f_{m-1}(x_i)]$
- weight at next iteration is

$$w_{i(m)} = \exp[-y_i(f_m(x_i))]$$

$$= \exp[-y_i(f_{m-1}(x_i) + \beta_m G_m(x_i))]$$

$$= w_{i(m-1)} \exp[-y_i \beta_m G_m(x_i)]$$

$$\propto w_{i(m-1)} \exp[\alpha_m I(y_i \neq G_m(x_i))]$$

► AdaBoost.M1 is equivalent to FSAM using exponential loss!

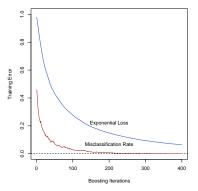


FIGURE 10.3. Simulated data, boosting with stumps: misclassification error rate on the training set, and average exponential loss: $(1/N)\sum_{i=1}^{N} \exp(-y_i f(x_i))$. After about 250 iterations, the misclassification error is zero, while the exponential loss continues to decrease.

Why exponential loss?

- ► AdaBoost.M1 and FSAM connection coincidental
- ▶ in binary classification problem $(Y \in \{-1,1\})$, what estimator does exponential loss give (see Ex. 10.2)?

$$\hat{f}(x) = \arg \min_{f(x)} E_{Y|X}[\exp(-Yf(X))]$$

= $\frac{1}{2} \log \frac{P(Y=1|X)}{P(Y=-1|X)}$

- \blacktriangleright sign of $\hat{f}(x)$ makes sense as classification rule
- exponential loss is like a smooth version of the zero-one loss
- ightharpoonup when margin yf(x) positive, small loss

Binomial deviance loss

▶ binomial log-likelihood where $Y' = (Y+1)/2 \in \{0,1\}$:

$$l(Y, p(x)) = Y' \log p(x) + (1 - Y') \log(1 - p(x))$$

$$l(Y, f(x)) = -\log(1 + \exp(-2Yf(x)))$$

where f(x) is one-half the log odds

► the binomial deviance loss:

$$L(Y, f(x)) = -l(Y, f(x)) = \log(1 + \exp(-2Yf(x)))$$

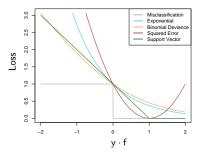


FIGURE 10.4. Loss functions for two-class classification. The response is $y = \pm 1$; the prediction is f, with class prediction $\operatorname{sign}(f)$. The losses are misclassification: $I(\operatorname{sign}(f) \neq y)$; exponential: $\exp(-yf)$; binomial deviance: $\log(1 + \exp(-2yf))$; squared error: $(y - f)^2$; and support vector: $(1 - yf)_+$ (see Section 12.3). Each function has been scaled so that it passes through the point (0,1).

Robustness: exponential vs. deviance

- ▶ deviance loss is less "severe" version of exponential loss
- for yf(x) < 0 exponential loss is... exponential, but deviance loss becomes linear:

$$\log(1 + \exp(-2Yf(x))) \approx \log(\exp(-2Yf(x))) = -2Yf(x)$$

- exponential loss allows big influence of observations with big negative margin, whereas deviance is less sensitive (i.e., robust)
- ► AdaBoost.M1 performance degrades when there are big outliers (i.e., with big margins)
- ► absolute error loss is robust (versus squared error loss) in regression problems for similar reason

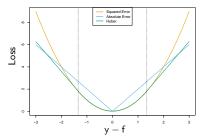


FIGURE 10.5. A comparison of three loss functions for regression, plotted as a function of the margin y-f. The Huber loss function combines the good properties of squared-error loss near zero and absolute error loss when |y-f| is large.