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Boosting

I combines many “weak” learners → powerful “committee”

I iteratively add “weak” learners by targeting regions of the
input space where predictions were poor at previous iteration

I start with binary classification example: AdaBoost.M1



AdaBoost.M1

I AdaBoost.M1: popular boosted tree-based binary classifier

I binary output: Y ∈ {−1, 1}
I predictors: X

I classifier: G(X) (returns −1 or 1)

I using zero-one loss:

err =
1

N

N∑

i=1

I(yi 6= G(xi))

I err here is misclassificaiton rate



AdaBoost.M1

I a “weak” classifier has err not much better than random guess

I boosting is to sequentially apply a weak classifier to
repeatedly modified versions of the data, thereby producing a
sequence of weak classifiers Gm(x) for m = 1, 2, . . . ,M .



AdaBoost.M1

I the sequence of weak classifiers is combined using weighted
majority vote:

G(x) = sign

(
M∑

m=1

αmGm(x)

)

I G(x) returns −1 or 1

I weights αm are selected as part of boosting algorithm; they
upweight more accurate classifiers
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FIGURE 10.1. Schematic of AdaBoost. Classifiers
are trained on weighted versions of the dataset, and
then combined to produce a final prediction.



AdaBoost.M1

I at each iteration, training data are weighted

I initially weights w1, . . . , wN = 1/N

I weak learner is then applied to weighted training data

I at next iteration, misclassified observations get larger weights

I repeatedly misclassified obs get larger and larger weights













AdaBoost.M1

I αm is log odds of correct classification by Gm(x)

I errm always ≥ 0.5, thus am ≥ 0

I weight update:

wi ← wi exp[αmI(yi 6= Gm(xi))]

wi ←

{
wi

(
1−errm
errm

)
if yi misclassified

wi otherwise



AdaBoost.M1

I unlike bagging, boosting is adaptive

I easy to overfit as M grows
I tuning parameters:

I number of trees/iterations M
I inherits tuning parameters of weak learner (e.g., tree depth)



AdaBoost.M1 example

I let features X1, . . . , X10 be random normal variables

I let tartet Y be deterministic such that

y =

{
1 if

∑10
j=1X

2
j > 10

−1 otherwise

I model is not additive in inputs

I high order interactions of inputs

I difficult classification problem

I use “stump” as weak learner (tree w/ 1 split)
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FIGURE 10.2. Simulated data (10.2): test error rate
for boosting with stumps, as a function of the number
of iterations. Also shown are the test error rate for a
single stump, and a 244-node classification tree.



Code example

boosting-trees.R


