Classification and Regression Trees

Matthew S. Shotwell, Ph.D.

Department of Biostatistics Vanderbilt University School of Medicine Nashville, TN, USA

March 20, 2020

Introduction

- "Classification And Regression Trees"
- ▶ trees partition feature space into a set of rectangles
- ▶ fit simple model in each partition (e.g., constant)
- ► can handle quantitative/categorical inputs/outputs

- $\begin{array}{c} \blacktriangleright \quad \text{quantitative response } Y \text{ and inputs} \\ X_1 \text{ and } X_2, \text{ all with support in} \\ [0,1] \end{array}$
- ► top-left partition is complex
- top-right partitions are recursive, can be described by tree at bottom-left
- trees have (root, internal, and terminal) nodes and branches
- trees with small number of terminal nodes (e.g., 2) called "stump"
- terminal nodes also called leaf node

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data. Top left panel shows a general partition that cannot be obtained from recursive binary splitting. Bottom left panel shows the tree corresponding to the partition in the top right panel, and a perspective plot of the prediction surface appears in the bottom right panel.

Fitting recursive binary trees

- consider all ways to make a single split of a feature into two regions (must consider each feature separately)
- ▶ simple prediction (e.g., mean of Y) in each region
- ► choose feature and split-point to achieve the best fit
- ▶ one or both resulting regions are split again
- repeat until some stopping rule is applied

Fitting (growing) regression trees

Regression trees have this form:

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

Under squared-error loss, conditional on R_m , \hat{c}_m is the sample mean of Y in region R_m . Finding partitions R_m is more difficult. Recursive partitioning is "greedy algorithm" to find R_m : consider a splitting variable j and split point s and define resulting regions as follows:

$$R_1(j,s) = \{X : X_j \le s\}$$
 and $R_2(j,s) = \{X : X_j > s\}$

At each iteration, task is to find split; find j and s that minimize:

$$RSS(j,s) = \sum_{x_i \in R_1(j,s)} (y_i - \hat{c}_1)^2 + \sum_{x_i \in R_2(j,s)} (y_i - \hat{c}_2)^2$$

Fitting (growing) regression trees

The splitting task is then to find j and s that minimize:

$$RSS(j,s) = \sum_{x_i \in R_1(j,s)} (y_i - \hat{c}_1)^2 + \sum_{x_i \in R_2(j,s)} (y_i - \hat{c}_2)^2$$

- ▶ this may seem difficult at first, but
- ▶ for variabe j, only N-1 distinct splits s in the training data

- ▶ for given j, RSS(j,s) is constant between X_{j1} and X_{j2}
- lacktriangledown for tractable $N \times p$, can simply enumerate all RSS(j,s)
- split at optimal j and s, then repeat within each split
- proceed this way until stopping rule triggered

Stopping rules

- measure of tree complexity are tuning parameters
 - maximum tree depth (number of splits)
 - ▶ minimum number of training obs per region (i.e., "node size")
- ► another approach: grow a large tree, stopping only when minimum node size is reached, then "prune" tree back using a "cost-complexity" criterion

Pruning

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 9

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a two-dimensional feature space by recursive binary splitting, as used in CART, applied to some fake data. Top left panel shows a general partition that cannot be obtained from recursive binary splitting. Bottom left panel shows the tree corresponding to the partition in the top right panel, and a perspective plot of the prediction surface appears in the bottom right panel.

Cost-complexity pruning

- ▶ let $T \subset T_0$ be a sub-tree obtained by pruning T_0
- ▶ let |T| be the number of terminal nodes
- ▶ let N_m be the node size $\sum_{i=1}^N I(x_i \in R_m)$
- $\blacktriangleright \text{ let } \hat{c}_m = \frac{1}{N_m} \sum_{x_i \in R_m} y_i$
- let $Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i \hat{c}_m)^2$ be lack of fit (LOF)
- ► the "cost-complexity" criterion is

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

Cost-complexity pruning

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

- pruning increases cost, lowers complexity
- ▶ for given α , find T_{α} that minimizes $C_{\alpha}(T)$
- ► greedy algorithm (weakest-link pruning):
 - 1. collapse internal node that produces smallest increase in $C_{\alpha}(T)$
 - 2. continue until just one node
 - 3. select among sequence of trees; T_{α} must be part of this sequence
- lacktriangledown is a tuning parameter; selected using, e.g., cross validation

Classification trees

- ▶ for k = 1, ..., K classes
- ▶ let $\hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$
- $ightharpoonup \hat{p}_{mk}$ is fraction of class k in node m
- lacktriangle apply loss function-specific classification rule to \hat{p}_{mk}
- to fit and prune tree, also need metric of node impurity and LOF (for cost-complexity pruning):
 - ▶ misclassification rate (depends on classification loss/rule)
 - ► Gini index $\sum_{k=1}^{K} \hat{p}_{mk} (1 \hat{p}_{mk})$
 - lacktriangle cross-entropy deviance $\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$

FIGURE 9.3. Node impurity measures for two-class classification, as a function of the proportion p in class 2. Cross-entropy has been scaled to pass through (0.5, 0.5).

Why prefer misclassification vs. Gini vs. cross-entropy?

- ➤ say we have a two-class problem with 400 in each class, denoted (400,400)
- consider two candidate splits, where the classes are distributed among the two splits as follows:
 - $ightharpoonup s_1$: (300,100) and (100,300)
 - $ightharpoonup s_2$: (200,400) and (200,0)
- ▶ both splits have misclassification rate 0.25 (assuming zero-one classificationloss), but second split produces a "pure" node, which is preferable in many cases
- ▶ both Gini and cross-entropy give preference to split with pure node; thus often used in growing trees
- ▶ often misclassification is used for pruning

Problems with trees

- ▶ instability; sample variability in tree structure
- ▶ lack of smoothness of prediction surface in feature space
- ▶ categorical features; $2^{q-1}-1$ partitions of categorical predictor with q values into 2 parts; can be simplified for binary outcomes using Gini or entropy loss, and quantitative outcomes using squared-error loss
- many tuning parameters (max depth, min node size, cost-complexity penalty)

R package rpart

- ► R package rpart implements recursive partitioning for classification and regressoin trees
- ▶ great vignette written my Terry Therneau and others

Code example

mixture-data-rpart.R