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Introduction

I “Classification And Regression Trees”

I trees partition feature space into a set of rectangles

I fit simple model in each partition (e.g., constant)

I can handle quantitative/categorical inputs/outputs



I quantitative response Y and inputs
X1 and X2, all with support in
[0, 1]

I top-left partition is complex

I top-right partitions are recursive, can
be described by tree at bottom-left

I trees have (root, internal, and
terminal) nodes and branches

I trees with small number of terminal
nodes (e.g., 2) called “stump”

I terminal nodes also called leaf node
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FIGURE 9.2. Partitions and CART. Top right panel
shows a partition of a two-dimensional feature space by
recursive binary splitting, as used in CART, applied to
some fake data. Top left panel shows a general partition
that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.



Fitting recursive binary trees

I consider all ways to make a single split of a feature into two
regions (must consider each feature separately)

I simple prediction (e.g., mean of Y) in each region

I choose feature and split-point to achieve the best fit

I one or both resulting regions are split again

I repeat until some stopping rule is applied
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Fitting (growing) regression trees

Regression trees have this form:

f(x) =

M∑
m=1

cmI(x ∈ Rm)

Under squared-error loss, conditional on Rm, ĉm is the sample
mean of Y in region Rm. Finding partitions Rm is more difficult.
Recursive partitioning is “greedy algorithm” to find Rm: consider a
splitting variable j and split point s and define resulting regions as
follows:

R1(j, s) = {X : Xj ≤ s} and R2(j, s) = {X : Xj > s}

At each iteration, task is to find split; find j and s that minimize:

RSS(j, s) =
∑

xi∈R1(j,s)

(yi − ĉ1)2 +
∑

xi∈R2(j,s)

(yi − ĉ2)2



Fitting (growing) regression trees

The splitting task is then to find j and s that minimize:

RSS(j, s) =
∑

xi∈R1(j,s)

(yi − ĉ1)2 +
∑

xi∈R2(j,s)

(yi − ĉ2)2

I this may seem difficult at first, but

I for variabe j, only N − 1 distinct splits s in the training data

I for given j, RSS(j, s) is constant between Xj1 and Xj2

I for tractable N × p, can simply enumerate all RSS(j, s)

I split at optimal j and s, then repeat within each split

I proceed this way until stopping rule triggered



Stopping rules

I measure of tree complexity are tuning parameters
I maximum tree depth (number of splits)
I minimum number of training obs per region (i.e., “node size”)

I another approach: grow a large tree, stopping only when
minimum node size is reached, then “prune” tree back using a
“cost-complexity” criterion



Pruning
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recursive binary splitting, as used in CART, applied to
some fake data. Top left panel shows a general partition
that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.



Cost-complexity pruning

I let T ⊂ T0 be a sub-tree obtained by pruning T0
I let |T | be the number of terminal nodes

I let Nm be the node size
∑N

i=1 I(xi ∈ Rm)
I let ĉm = 1

Nm

∑
xi∈Rm

yi

I let Qm(T ) =
1
Nm

∑
xi∈Rm

(yi − ĉm)2 be lack of fit (LOF)

I the “cost-complexity” criterion is

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |



Cost-complexity pruning

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |

I pruning increases cost, lowers complexity

I for given α, find Tα that minimizes Cα(T )
I greedy algorithm (weakest-link pruning):

1. collapse internal node that produces smallest increase in Cα(T )
2. continue until just one node
3. select among sequence of trees; Tα must be part of this

sequence

I α is a tuning parameter; selected using, e.g., cross validation



Classification trees

I for k = 1, . . . ,K classes

I let p̂mk =
1
Nm

∑
xi∈Rm

I(yi = k)

I p̂mk is fraction of class k in node m

I apply loss function-specific classification rule to p̂mk
I to fit and prune tree, also need metric of node impurity and

LOF (for cost-complexity pruning):
I misclassification rate (depends on classification loss/rule)
I Gini index -

∑K
k=1 p̂mk(1− p̂mk)

I cross-entropy deviance -
∑K
k=1 p̂mk log p̂mk
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FIGURE 9.3. Node impurity measures for two-class
classification, as a function of the proportion p in
class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).



Why prefer misclassification vs. Gini vs. cross-entropy?

I say we have a two-class problem with 400 in each class,
denoted (400,400)

I consider two candidate splits, where the classes are distributed
among the two splits as follows:
I s1: (300,100) and (100,300)
I s2: (200,400) and (200,0)

I both splits have misclassification rate 0.25 (assuming zero-one
classificationloss), but second split produces a “pure” node,
which is preferable in many cases

I both Gini and cross-entropy give preference to split with pure
node; thus often used in growing trees

I often misclassification is used for pruning



Problems with trees

I instability; sample variability in tree structure

I lack of smoothness of prediction surface in feature space

I categorical features; 2q−1 − 1 partitions of categorical
predictor with q values into 2 parts; can be simplified for
binary outcomes using Gini or entropy loss, and quantitative
outcomes using squared-error loss

I many tuning parameters (max depth, min node size,
cost-complexity penalty)



R package rpart

I R package rpart implements recursive partitioning for
classification and regressoin trees

I great vignette written my Terry Therneau and others



Code example

mixture-data-rpart.R


