Decision Theory

Matthew S. Shotwell, Ph.D.

Department of Biostatistics Vanderbilt University School of Medicine Nashville, TN, USA

January 18, 2024

Introduction

- ▶ need mechanism to quantify "goodness" of predictions
- need to use context: what is the purpose of making predictions

Loss function

- \blacktriangleright seek a model that predicts Y from X, denote f(X)
- ▶ how do we find f(X)?
- first need to specify what 'good' and 'bad' predictions look like
- \blacktriangleright encode this in a function that compares Y and f(X)
- ▶ a 'loss function' L(Y, f(X))

Minimizing loss

- ▶ f(X) can be selected by minimizing the average loss, or 'expected loss' or 'expected prediction error': EPE(f) = E[L(Y, f(X))]
- ▶ the average, or 'expectation' is taken over the joint distribution of X and Y: Pr(X,Y)

Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression. The line is the decision boundary defined by $x^T \hat{\beta} = 0.5$. The orange shaded region denotes that part of input space classified as ORANGE, while the blue region is classified as BLUE.

Purposes of EPE

The EPE has two purposes:

- 1. To identify what f(X) should look like: "decision theory" (today's focus)
- 2. To evaluate the predictive quality of a fitted model: The EPE can be approximated using testing data:

$$EPE(f) = E[L(Y, f(X))] \approx \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$$

Types of loss for predicting quantitative outputs

• squared-error (a.k.a L_2) loss:

$$L(Y, f(X)) = (Y - f(X))^2$$

▶ absolute-error loss (a.k.a. L_1) loss:

$$L(Y, f(X)) = |Y - f(X)|$$

Squared-error loss

► loss:

$$L(Y, f(X)) = (Y - f(X))^2$$

expected loss:

$$EPE(f) = E_{X,Y}[(Y - f(X))^2]$$

= $E_X[E_{Y|X}[(Y - f(X))^2]]$

predictor:

$$f(X) = \underset{C}{\operatorname{arg \,min}} E_{Y|X}[(Y - C)^{2}|X]$$
$$= \mu_{Y|X}$$

• $\hat{Y} = f(X) = \mu_{Y|X} = \hat{E}_{Y|X}[Y] = \text{mean of } Y \text{ given } X$

Squared-error loss

- ▶ If we specify squared error loss, the best predictor is always $\hat{Y} = f(X) = \text{mean of } Y \text{ given } X.$
- ► This is based on decision theory, which helps us determine what our predictor should look like, given the loss function we specify.
- ▶ We don't need data for this.

LS and NN predictors minimize squared error loss

► LS:

$$\hat{Y} = \hat{f}(X) = \hat{E}_{Y|X}[Y] = X\hat{\beta}$$

► NN:

$$\hat{Y} = \hat{f}(X) = \hat{E}_{Y|X}[Y] = \frac{1}{K} \sum_{x_i \in N_K(X)} y_i$$

Absolute error loss

► loss:

$$L(Y, f(X)) = |Y - f(X)|$$

expected loss:

$$EPE(f) = E_{X,Y}[|Y - f(X)|]$$

= $E_X[E_{Y|X}[|Y - f(X)|]]$

predictor:

$$f(X) = \underset{C}{\operatorname{arg \, min}} E_{Y|X}[|Y - C|]$$
$$= \operatorname{median}(Y|X)$$

• $\hat{Y} = f(X) = \text{median}(Y|X) = \text{median of } Y \text{ given } X$

Symmetric vs. Asymmetric loss

- ▶ Both L_1 and L_2 loss are symmetric: if y=0 the loss is same whether f(x)=1 or f(x)=-1
- ► Are certain types of bad predictions worse than others?

Symmetric vs. Asymmetric loss

► Example: Suppose my Tesla is using video to predict the distance between the car an a road barrier. If my prediction is too big, I may hit the barrier, but if my prediction is too small it may not matter much. May need an asymmetric loss function for making predictions.

Tilted absolute loss

$$L(Y, f(X), \tau) = \begin{cases} \tau(Y - f(X)) & (Y - f(X)) > 0\\ (\tau - 1)(Y - f(X)) & (Y - f(X)) \le 0 \end{cases}$$

Tilted absolute loss

- f(X) is median (50th percentile) of Y given X for absolute loss
- $\blacktriangleright f(X)$ is $\tau \times$ 100 percentile of Y given X for tilted absolute loss

Discrete loss

- what if we are predicting a qualitative outcome?
- ▶ need different kind of loss function
- ▶ "discrete loss"

Discrete loss

► loss:

$$L(G, \hat{G}(X)) = \begin{bmatrix} 0 & l_{12} & \dots & l_{1K} \\ l_{21} & 0 & \dots & l_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ l_{K1} & l_{K2} & \dots & 0 \end{bmatrix}$$

expected loss:

$$\begin{split} EPE(\hat{G}) &= E_{X,G}[L(G,\hat{G}(X))] \\ &= E_{X}[E_{G|X}[L(G,\hat{G}(X))]] \\ &= E_{X}[\sum_{k=1}^{K} L(G_{k},\hat{G}(X))Pr(G=G_{k}|X)] \end{split}$$

Discrete loss

► loss:

$$L(G, \hat{G}(X)) = \begin{bmatrix} 0 & l_{12} & \dots & l_{1K} \\ l_{21} & 0 & \dots & l_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ l_{K1} & l_{K2} & \dots & 0 \end{bmatrix}$$

expected loss:

$$\begin{split} EPE(\hat{G}) &= E_{X,G}[L(G,\hat{G}(X))] \\ &= E_{X}[E_{G|X}[L(G,\hat{G}(X))]] \\ &= E_{X}[\sum_{k=1}^{K} L(G_{k},\hat{G}(X))Pr(G=G_{k}|X)] \end{split}$$

Zero-one loss

- ▶ loss: $l_{ij} = 1$ for $i \neq j$ and $l_{ij} = 0$ if i = j
- predictor:

$$\hat{G}(X) = \underset{C}{\operatorname{arg \,min}} \sum_{k=1}^{K} L(G_k, C) Pr(G = G_k | X)$$

$$= \underset{C}{\operatorname{arg \,min}} [1 - Pr(G = C | X)]$$

$$= \underset{C}{\operatorname{arg \,max}} [Pr(G = C | X)]$$

- $\hat{G}(X)$ is the class with highest probability given X
- $\hat{G}(X)$ is called the 'Bayes classifier'
- misclassification rate estimates EPE for zero-one loss

Other discrete loss

Several types of loss are based on target coding of categories; they provide different types of penalties for discrepancies between targets Y and $\hat{Y} = f(X) = Pr(Y=1|X)$. Can also used regression loss (e.g., L_1 and L_2) on the target coded categories (that's what we did with the least-squares classifier).

- ► Cross-entropy loss; based on multinomial likelihood function
- ► Hinge loss; SVM classifier uses this
- ► Exponential loss; AdaBoost uses this