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Cross-validation

I cross-validation is a method to estimate average test error:

I average test error - test error, averaged over training samples

I {τ1, . . . , τB} - multiple training samples

Err =
1

B

B∑
b=1

Errτb

I use to select tuning parameters

I mimics training/test sample pairs





K-fold cross-validation

1. randomly shuffle the data

2. split data into K equal parts

3. for k = 1 . . .K:

3.1 fit model to K − 1 parts not including part k
3.2 calculate prediction error using part k as test data





K-fold cross-validation

I let Ki ∈ {1 . . .K} be the split containing obs i

I let f̂−k(X) be the predictor fitted without part k

I the K-fold cross-validation estimate of Err is:

Êrr = CV(f̂) =
1

N

N∑
i=1

L(yi, f̂
−Ki(xi))



K-fold cross-validation

I can also write this way

Êrrk =
1

Nk

Nk∑
i∈part k

L(yi, f̂
−k(xi))

Êrr =
1

K

K∑
k=1

Êrrk



K-fold cross-validation

I if there is a tuning parameter α, then

Êrr(α) = CV(f̂α) =
1

N

N∑
i=1

L(yi, f̂
−Ki
α (xi))

I std. err. of Êrr(α) is sample std. dev. of Êrrk(α)

I use std. err. in “one std. err. rule”: “choose the smallest
model whose test error is no more than one std. err. above
the test error of the best model”



K-fold cross-validation

I in code, k-fold CV often computed as follows

Êrrk =
1

Nk

Nk∑
i∈part k

L(yi, f̂
−k(xi))

Êrr =
1

K

K∑
k=1

Êrrk

sd(Êrr) =

√√√√ 1

K

K∑
k=1

(Êrrk − Êrr)2
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FIGURE 7.9. Prediction error (orange) and tenfold
cross-validation curve (blue) estimated from a single
training set, from the scenario in the bottom right panel
of Figure 7.3.



K-fold cross-validation

I K should be selected so that each train/test split is
“representative” of the overall sample

I increasing K - increasing variance, decreasing bias

I typically K = 5 or 10 (performs well empirically)

I K = N is “leave-one-out CV”



If Êrr curve has big slope at training sample size, then CV
estimate will be biased upward; worse for smaller K



Leave-one-out-CV

I Leave-one-out-CV:

CVloo(f̂) =
1

N

N∑
i=1

L(yi, f̂
−i(xi))

I if ŷ = Sy and L(y, f̂(x)) = (y − f̂(x))2 then

CVloo(f̂) =
1

N

N∑
i=1

(yi − f̂−i(xi))2

=
1

N

N∑
i=1

(
yi − f̂(xi)

1− Sii

)2



Bootstrap

I denote training data z = {z1, . . . , zN} where zi = (xi, yi)

I purpose of bootstrap is to simulate the sampling process and
summarize its effects on statistical procedures

I Bootstrap:

1. randomly draw N items from z with replacement
2. implement a statistical procedure
3. repeat 1 and 2 B times
4. summarize sampling properties of statistical procedure



Bootstrap

I consider a sample statistic S(z)

I denote bth bootstrap sample z∗b

I by computing S(z∗b) for each of B bootstrap samples, we can
approximate the sampling distribution of the statistic S.
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Bootstrap

Bootstrap

replications

samples

sampleTrainingZ = (z1, z2, . . . , zN )

Z∗1 Z∗2 Z∗B

S(Z∗1) S(Z∗2) S(Z∗B)

FIGURE 7.12. Schematic of the bootstrap process.
We wish to assess the statistical accuracy of a quan-
tity S(Z) computed from our dataset. B training sets

Z∗b, b = 1, . . . , B each of size N are drawn with re-
placement from the original dataset. The quantity of
interest S(Z) is computed from each bootstrap training

set, and the values S(Z∗1), . . . , S(Z∗B) are used to as-
sess the statistical accuracy of S(Z).



Bootstrap

I bootstrap estimate of the sample variance of S(z) is

v̂ar[S(z)] ≈ 1

B − 1

B∑
b=1

[S(z∗b)− S̄∗]2



Bootstrap validation

I approx. avg. test error by simulating the train/test process

I training data z = {z1, . . . , zN} where zi = (xi, yi)

I resampled training data z∗ = {z∗1 , . . . , z∗N}
I A boostrap estimate of average test error:

Êrrboot =
1

B

1

N

B∑
b=1

N∑
i=1

L(yi, f̂
∗b(xi))

I f̂∗b is fitted using z∗b

I overlap in data used to fit f̂∗b and to compute Êrrboot
I can be too optimistic



Bootstrap validation

I A leave-one-out boostrap estimate of EPE:

Êrr
(1)

=
1

N

N∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
∗b(xi))

I C−i are the bootstrap replicates that do not contain obs i.

I can be a bit too conservative



Pros and Cons

I k-fold CV
I k=10 or k=5 gives good tradeoff of bias and variance in Êrr
I sensitive to how data are split into k-folds (can be fixed)
I less computationally intensive

I LOO CV
I low bias but high variance in Êrr
I not sensitive to how data are split
I computationally intensive

I Bootstrap validation
I good balance of bias and variance in Êrr
I not sensitive to how data are split
I computationally intensive



Code example

kNN-CV.R


