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Model assessment

» for supervised learning, assess model using test error

v

different types of test error for different purposes

v

different methods to estimate of test error
today: Mallow's Cp, AIC, BIC

v



Test error

> test error - average loss using test data
» 7 ={(z1,11),...,(zN,yn)} - training data
» 70 = {(zo1,%01); - - -5 (Tonys Yon, ) } - testing data

1 &
Err, = — > Lyoi, fr(z0i)
0=
» model f}. depends on training data 7

» synonyms - conditional test error, conditional prediction error

» conditional on training sample 7



Average test error

v

different 7 (training data) — different f,

> average test error - test error, averaged over training samples

v

{71,...,7B} - multiple training samples

70 = {(Z01,Y01); - - -, (ToNy, YoNy ) } - testing data
» average test error:

v

1 B
Err = 5 ; Err,,

1on 1 .
=35 > No > L(yoi, fr, (z0i)
=1 021

» synonyms - expected test error, expected prediction error



Conditional test error vs average test error

Train Validation Test

v

conditional test error: how will this model perform?

» average test error: how does modeling procedure perform?

v

which to use for model tuning?

» in practice, sometimes used interchangeably



How do we get a good estiamte of average/conditional test error?
Next few lectures devoted to this. Today we'll consider methods
that start with training error and add some quantity.

» training error too small (optimistic)

» add something to training error to approximate test error



How much to add to training error?
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Training error and In-sample error

» training error:

1 .
e =+ 3 L f(2)
=1

v

T ={(x1,91),...,(xN,yn)} - training data
Ty = {(21,%01),- .., (N, Yon)} - testing y at training x
in-sample error:

v

v

1 Y .
Erri, = N Z L(yoi, fr(x:))]
=1

v

Erry, is easy to work with

v

Err;, an estimate of Err; or Err?

v

What can we add to eIt to estimate Errj,



Optimism and expected optimism

> optimism:
op = Err;, —err
> average optimism: w = E, [op]
» E., denotes average conditional on training z;

» for squared-error loss and 0-1 loss:

g N
w = NZCOV(E,K)

=1

» estimate w, then approximate Errj, by adding to err



Effective degrees-of-freedom

Suppose var(Y|X) = o2. For some Y = f(X):

N
df(Y) = % > cov(¥;, V)
=1

v

what happens when § = y? Or when g =0

v

df(Y’) measures where we are on bias-variance spectrum

v

larger df(Y") means less bias, more variance

larger df(Y") means more flexible model

v



Effective degrees-of-freedom

» df(Y) is sometimes specified (smoothing splines)

» for linear smoothers: § = S\y where ¢ is a vector of
predictions at training inputs =, and y are the training
outputs:

df(Y) = trace(S))

» works for kernel methods



Optimism and expected optimism

> optimism:
op = Errj, —err

v

expected optimism: w = E, [op]

v

for squared-error loss and 0-1 loss:

9 N
v g 1 Cov(Y;,Y;)
P

v

w proportional to df(Y) = % Zf\il Cov(Yi, Y;)



Optimism for linear models

v

say Y = X3 + € where var(¢) = o

v

d is the number of inputs
> w= % Zi\il Cov(f (i), vi)
> w= 2df(8)o?

> W= %d(ﬂ



Estimates of Err;,: Mallow's C),

» Erry, = err 4+ w
» for linear models (squared error loss) -

» Mallow's C), = eIt + £ d6>



Estimates of Err;,: AlC

» consider “entropy loss” L(Y,0) = —2log Pr(Y|X,6)

> ot =~ 300 log Pr(yili, ) = — {10y, 2)

» Akaike showed that w — %d asymptotically, for entropy loss,
and where d is the number of parameters in

» AIC = eIt + %d
» for smoothers, substitute d for effective degrees of freedom



Estimates of Err;,: BIC

v

Bayesians select model M by maximizing posterior Pr(M|Y)
Schwarz (father of BIC) showed that:

v

log N
ogd

N
log Pr(M|Y) o NZ (0]Y;) —

» BIC = &t + %24

maximizing Pr(M|Y") approximately same as minimizing BIC

v



Mallow's C;,, AIC, BIC

Note that Mallow's C},, AIC, and BIC:
» approximate (conditional) test error
> training error + estimate of w (average optimism)
» uses only the training data
» not as good as data splitting (or cross-validation)
» quick and dirty



AIC vs BIC

v

AIC =@t + %d
» BIC = et + %24

select model that minimizes AIC or BIC

v

» which penalizes large models more?

what to do when d unknown?

v



