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Model assessment

I for supervised learning, assess model using test error

I different types of test error for different purposes

I different methods to estimate of test error

I today: Mallow’s Cp, AIC, BIC



Test error

I test error - average loss using test data

I τ = {(x1, y1), . . . , (xN , yN )} - training data

I τ0 = {(x01, y01), . . . , (x0N0 , y0N0)} - testing data

Errτ =
1

N0

N0∑
i=1

L(y0i, f̂τ (x0i))

I model f̂τ depends on training data τ

I synonyms - conditional test error, conditional prediction error

I conditional on training sample τ



Average test error

I different τ (training data) → different f̂τ
I average test error - test error, averaged over training samples

I {τ1, . . . , τB} - multiple training samples

I τ0 = {(x01, y01), . . . , (x0N0 , y0N0)} - testing data

I average test error:

Err =
1

B

B∑
b=1

Errτb

=
1

B

B∑
b=1

1

N0

N0∑
i=1

L(y0i, f̂τb(x0i))

I synonyms - expected test error, expected prediction error



Conditional test error vs average test error

I conditional test error: how will this model perform?

I average test error: how does modeling procedure perform?

I which to use for model tuning?

I in practice, sometimes used interchangeably



How do we get a good estiamte of average/conditional test error?
Next few lectures devoted to this. Today we’ll consider methods
that start with training error and add some quantity.

I training error too small (optimistic)

I add something to training error to approximate test error



How much to add to training error?



Training error and In-sample error

I training error:

err =
1

N

N∑
i=1

L(yi, f̂(xi))

I τ = {(x1, y1), . . . , (xN , yN )} - training data

I τy = {(x1, y01), . . . , (xN , y0N )} - testing y at training x

I in-sample error:

Errin =
1

N

N∑
i=1

L(y0i, f̂τ (xi))]

I Errin is easy to work with

I Errin an estimate of Errτ or Err?

I What can we add to err to estimate Errin



Optimism and expected optimism

I optimism:
op = Errin − err

I average optimism: ω = Eτy [op]

I Eτy denotes average conditional on training xi
I for squared-error loss and 0-1 loss:

ω =
2

N

N∑
i=1

Cov(Ŷi, Yi)

I estimate ω, then approximate Errin by adding to err



Effective degrees-of-freedom

Suppose var(Y |X) = σ2. For some Ŷ = f̂(X):

df(Ŷ ) =
1

σ2

N∑
i=1

cov(Ŷi, Yi)

I what happens when ŷ = y? Or when ŷ = 0

I df(Ŷ ) measures where we are on bias-variance spectrum

I larger df(Ŷ ) means less bias, more variance

I larger df(Ŷ ) means more flexible model



Effective degrees-of-freedom

I df(Ŷ ) is sometimes specified (smoothing splines)

I for linear smoothers: ŷ = Sλy where ŷ is a vector of
predictions at training inputs x, and y are the training
outputs:

df(Ŷ ) = trace(Sλ)

I works for kernel methods



Optimism and expected optimism

I optimism:
op = Errin − err

I expected optimism: ω = Eτy [op]

I for squared-error loss and 0-1 loss:

ω =
2

N

N∑
i=1

Cov(Ŷi, Yi)

I ω proportional to df(Ŷ ) = 1
σ2

∑N
i=1Cov(Ŷi, Yi)



Optimism for linear models

I say Y = Xβ + ε where var(ε) = σ2

I d is the number of inputs

I ω = 2
N

∑N
i=1Cov(f̂(xi), yi)

I ω = 2
N df(β)σ2

I ω = 2
N dσ

2



Estimates of Errin: Mallow’s Cp

I Êrrin = err + ω̂

I for linear models (squared error loss) - ω̂ = 2
N dσ̂

2

I Mallow’s Cp = err + 2
N dσ̂

2



Estimates of Errin: AIC

I consider “entropy loss” L(Y, θ) = −2 logPr(Y |X, θ)
I err = − 2

N

∑N
i=1 logPr(yi|xi, θ̂) = −

2
N l(θ̂|y, x)

I Akaike showed that ω → 2
N d asymptotically, for entropy loss,

and where d is the number of parameters in θ

I AIC = err + 2
N d

I for smoothers, substitute d for effective degrees of freedom



Estimates of Errin: BIC

I Bayesians select model M by maximizing posterior Pr(M |Y )

I Schwarz (father of BIC) showed that:

logPr(M |Y ) ∝ 2

N

N∑
i=1

l(θ̂|Yi)−
logN

N
d

= −err− logN

N
d

I BIC = err + logN
N d

I maximizing Pr(M |Y ) approximately same as minimizing BIC



Mallow’s Cp, AIC, BIC

Note that Mallow’s Cp, AIC, and BIC:

I approximate (conditional) test error

I training error + estimate of ω (average optimism)

I uses only the training data

I not as good as data splitting (or cross-validation)

I quick and dirty



AIC vs BIC

I AIC = err + 2
N d

I BIC = err + logN
N d

I select model that minimizes AIC or BIC

I which penalizes large models more?

I what to do when d unknown?


