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Kernel methods

Kernel methods are a broad class, including:
» k-nearest-neighbors
» support vector maching (SVM)
*» local regression

» kernel density estimation



Kernel methods

All kernel methods used for supervised learning:
» fit a different but simple model f(z() at each z
» only use data in a local neighborhood about zg
» localize using weighting or 'kernel’ function: K)(zo, )
» )\ is smoothing parameter; determines size of neighborhood

» requires little or no training until the time of prediction; most
computation occurs at time of prediction



Nadaraya-Watson estimator

N
f(xO) _ Zizl K)\(x()v xl)yl
27{\;1 K)\(‘TO; xl)
We want to make a prediction at xg. NW-estimator is a weighted

average of training y;'s. Weights are bigger x;'s near xgy. Kernel
function determines how near z; is to zg.




Kernel functions

» Epanechnikov quadratic kernel

Kx(zo,2) = D (W)

(340 -t |t <1
D(t) = { 0 otherwise

» as )\ increaes, neighborhood gets bigger
» as ) increaes, model of Y vs X less flexible
» as )\ increaes, higher bias, lower variance

» )\ is a tuning parameter
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FIGURE 6.2. A comparison of three popular kernels
for local smoothing. FEach has been calibrated to inte-
grate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support,
while the Epanechnikov kernel has none. The Gaus-
sian kernel is continuously differentiable, but has infi-
nite support.
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Kernel functions

» Epanechnikov quadratic kernel

Ky(zg,z) =D <||$_)\mo|)

(340 -t |t <1
D(t) = { 0 otherwise

» note that K\ (xo, ) equal to zero for ||z — zg|| > A

» why prefer a kernel that becomes exactly zero?



Kernel functions

» K-nearest neighbors kernel
Ky (o, ) = I(||z — zo|| < [|lzpk) — ol[)

>z is the k'th nearest neighbor to z

» as k increaes, neighborhood gets bigger

» as k increaes, model of Y vs X less flexible
» as k increaes, higher bias, lower variance

» k is a tuning parameter
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FIGURE 6.1. In each panel 100 pairs x;, y; are gen-
erated at random from the blue curve with Gaussian
errors: Y =sin(4X) +¢, X ~ U[0,1], ¢ ~ N(0,1/3).
In the left panel the green curve is the result of a
30-nearest-neighbor running-mean smoother. The red
point is the fitted constant f(zo), and the red circles
indicate those observations contributing to the fit at xo.
The solid yellow region indicates the weights assigned to
observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel
with (half) window width A = 0.2.




Code example

kernel-methods—-examples-mcycle.R



Local linear regression

» N-W estimator is “local constant regression”

» local linear regression assumes local linearity

v

different 5 for each xzg

» prediction at xg is o = xoS(z0)

v

find B(xg) by minimizing weighted training error

N

erry (o) ZK,\ (zo, z:i) L(yi, i)
i=1
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NW vs. local linear
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FIGURE 6.3. The locally weighted average has bias
problems at or near the boundaries of the domain.
The true function is approximately linear here, but
most of the observations in the neighborhood have a
higher mean than the target point, so despite weight-
ing, their mean will be biased upwards. By fitting a lo-
cally weighted linear regression (right panel), this bias
is removed to first order
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Local linear regression

» can implement NW as local linear; intercept only

» can also do local polynomials or local splines



Code example

kernel-methods—-examples-mcycle.R



Local regression with multiple predictors

» local linear regression is very flexible

» need sample size to grow exponentially in p to maintain bias
and variance

» can make restrictions to regularize the problem



Structured kernels

Structured Epanechnikov kernel

Kou(zo,2) = D <(x —z0)T Az — x0)>

A
A=

In this example A forces the kernel function to consider only on
first dimension of the input; all others are ignored.



Code example

mixture-data-knn-local.R



Varying coefficients models

» divide p predictors into x and z
assume f(X,7) = Xp5(Z)
f(X,Z) is linear in X by different for each Z

special kind of interaction between X and Z
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z - gender and age, x - diameter
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FIGURE 6.10. In each panel the aorta diameter is
modeled as a linear function of age. The coefficients of
this model vary with gender and depth down the aorta
(left is near the top, right is low down). There is a clear
trend in the coefficients of the linear model.




z - gender and age, = - diameter
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FIGURE 6.11. The intercept and slope of age as
a function of distance down the aorta, separately for
males and females. The yellow bands indicate one stan-
dard error.




Local likelihood

» likelihood function depends on xg
> e.g., say li(yi, i, 0) = d(yi, p = xif,0 = 1)
> l(e(l‘o)) = Ziil K/\(:L‘Oaxi)li(yiyxia 9)



Local logistic regression in R

> use weighting

» R docs say that weights w; affect binomial density as follows
Fuly) = pi"™ (1 = pi)iti=w)
log fu(yi) = wiyilog pi + wi(1 — y;) log(1 — p;)
= w;(yilogp; + (1 — y;) log(1 — p;))
= w;log f(yi)

> let w; = K)\(.%(),.%‘i)



Kernel density estimation

» unsupervised learning method
» summarize distribution of some data

» Parzen estimator
N
1
= F Z 960, xz

» K)(xo,x) and Ny must be chosen such that fx(azo)
integrates to 1

» e.g., Ky(zo,z) = ¢(xo — 2,0, B)) zero mean normal density
with var-cov B)

> {0 Fx(t)dt = - 2%, bt — 23,0, By)dt = {-

» thus Ny = N



Kernel density classification

> suppose Z1,...,TnN, classes g1,...,gn € G, and targets
Yi,-- -5 YN

let fj(xo) be the KDE for class G;
let ﬁj = Nj/N

G =g/ =) = 2,
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