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Logistic regression

§ models G|X directly

§ K classes G “ tG1, . . . ,GKu
§ when K ą 2 called “multinomial logistic regression”

§ Pk “ Pkpx, βq “ PrpG “ Gk|X “ x, βq



Logistic regression

LR model:

§ “logit” or log-odds

log

„

Pk
PK



“ xβk k “ 1, . . . ,K ´ 1

§ “expit” or “sigmoid” or “logistic”

Pk “
exppxβkq

1`
řK´1
l“1 exppxβlq

§ expit converts K´ 1 numbers to K probabilities that sum to 1

§ “sigmoid” used in Keras as output activation



Estimating βk

§ given sample g1, . . . , gn, targets y1, . . . , yn, inputs x1, . . . , xn
§ let β “ tβ1, . . . , βKu

§ minimize average loss in training data

Ďerrpfq “
1

n

n
ÿ

i“1

Lpyi, fpxiqq

§ using cross-entrpoy loss

´

K
ÿ

k“1

yik log pik

where
pik “ Pkpxi, βkq



Estimating βk

§ minimizing the average loss equivalent to maximizing the “log
likelihood” function, assuming that outcome has a
multinomial distribution:

§ log likelihood:

lpβq “
n
ÿ

i“1

K
ÿ

k“1

yik log pik
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Estimating βk

§ to minimize expected loss, find d
dβ Ďerrpβq “ Ďerr1pβq “ 0

§ no closed-form expression for Ďerr1pβq

§ need an algorithm to solve

§ use Newton-Raphson algorithm



Newton-Raphson algorithm
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Newton-Raphson algorithm

Use first-order Taylor approximation to linearize Ďerr1 at starting
point β0

§ want to solve Ďerr1pβ̂q “ 0

§ Taylor approximation:

Ďerr1pβ̂q « Ďerr1pβ0q ` Ďerr2pβ0qpβ0 ´ β̂q

β̂ « β0 ´ Ďerr2pβ0q
´1

Ďerr1pβ0q

§ convert to iterative algorithm:

β̂pmq “ β̂pm´1q ´ Ďerr2pβ̂pm´1qq
´1

Ďerr1pβ̂pm´1qq



LR vs. LDA

§ both express logrPk{PKs as linear in x (see HTF eq. 4.9)

§ β estimated differently

§ LR makes fewer distributional assumptions

§ LR uses cond. prob. PrpG|Xq where PrpXq ignored

§ LDA uses joint prob. PrpG,Xq

§ LDA smaller varpβ̂q whem model true (see HTF eq. 4.38)

§ LDA can use unclassified observations to help estimate PrpXq

§ LR parameters not defined when there is perfect separation

§ neither LR nor LDA have natural tuning parameter



Uncertainty in model predictions

§ Ĝpxq “ argmaxGk
PrpG “ Gk|X “ x, β̂q

§ but β̂ is a sample statistic and therfore has sampling
uncertainty given approximately by Npβ̂, Îpβ̂q´1q

§ thus PrpG “ Gk|X “ x, β̂q also has sampling uncertainty

§ if using PrpG “ Gk|X “ x, β̂q to make decisions, might like
to know something about this uncertainty



Sampling uncertainty

§ statisticians have spent more than 100 years trying to identify
the sampling distributions of this and other statistics

§ greatest discoveries in statistics were generic strategies for
this, e.g., approximate sampling distribution for MLEs, delta
method, bootstrap



Sampling distribution for β̂

§ β̂ is an MLE, thus β̂ Ñ Npβ,EG|Xr´l
2pβqs´1q

§ approximate β̂ „ Npβ̂, r´l2pβ̂qs´1q

§ Hessian of log likelihood

§ Fisher information denoted Ipβq “ EG|Xr´l
2pβqs

§ observed Fisher information at β̂ denoted Îpβ̂q “ ´l2pβ̂q



Sampling distribution for PrpG “ Gk|X “ x, β̂q

Unfortunately PrpG “ Gk|X “ x, β̂q is a nonlinear function of β̂,
so can’t easily determine sampling distribution. But we can
linearize PrpG “ Gk|X “ x, β̂q in β̂ using a first-order Taylor
approximation:

§ let rpβ̂q “ PrpG “ Gk|X “ x, β̂q

§ then rpβ̂q « rpβq ` r1pβqpβ̂ ´ βq

§ thus, since pβ̂ ´ βq Ñ Np0, Ipβq´1q it follows approximately
that prpβ̂q ´ rpβqq Ñ Np0, r1pβqT Ipβq´1r1pβqq

§ approximate r1pβqT Ipβq´1r1pβq using r1pβ̂qT Îpβ̂q´1r1pβ̂q

§ this is the “delta method”


