Repeated Measures Design

Mark Conaway October 11, 1999

Common design: Repeated measures designs

- Take measurements on same subject over time or under different conditions.
- Same basic idea as a randomized block design:
 - treatment effects measured on ``units" that are similar as possible.

Repeated measures designs Advantages

- Precision determined by variation within same subject;
- May be the only design that answers the questions of interest.
 - For example, how do measurements on an individual change over time?

Repeated measures designs Disadvantages

- May not be feasible
- May not give realistic assessments of treatment effects
- Analyses more difficult
 - usually need to take into account associations between observations taken from same individual

Repeated measures designs Cross-over Designs

- Subjects receive every treatment
- Most common is ``two-period, two-treatment"
 - Subjects are randomly assigned to receive either
 - A in period 1, B in period 2 or
 - B in period 1, A in period 2

Repeated measures designs Cross-over Designs

- Important assumption: No carry-over effects
 - effect of treatment received in each period is not affected by treatment received in previous periods.
- To minimize possibility of carry-over effects
 - `wash-out" time between the periods in which treatments are received.

- Treatments: Impermeable (IP) / Semi-Permeable (SP)
- Outcomes: Skin temperature, heat storage, oxygen consumption
- Protocol:
 - 6 men studied under both types of clothing.
 - 3 men randomized to order (IP, SP), 3 men to (SP, IP)

Rissanen and Rintamaki (1997) Ergonomics p. 141-150.

- Why a crossover design and not a completely randomized design ?
- Would expect large amounts of variability in heat storage, oxygen consumption, etc. from different men.
- Would expect small variability in these measures from the same man at two different times

- Effects of fluids on exercise capacity.
- Treatments: (N) no drink, (W) water, (I) isotonic glucose electrolyte and (H) hypotonic glucose electrolyte.
- Outcome is ``time to exhaustion."
- 12 subjects available.

Cross-over designs: Example 2 Possible designs

- Completely randomized?
- Randomized block?
- Cross-over:
 - Each subject observed under each condition
 - Randomize order.
 - One week period between observations.

- Precision determined by variation in ``time to exhaustion" by a subject over multiple occasions.
 - Avoids basing precision on variation in time to exhaustion between different subjects

- Both examples illustrate importance of
 - ``wash-out period" and
 - randomizing/balancing the order that treatments are applied.

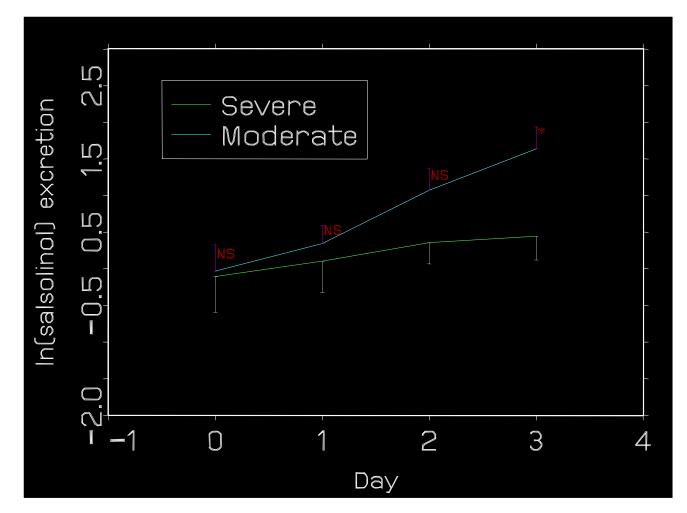
Completely randomized design or randomized block design or a cross-over design?

- Is the natural variability within a subject likely to be small relative to the natural variability across subjects?
- Are there likely to be carry-over effects?
- Are there likely to be ``drop-outs''?
- Is a cross-over design feasible?

Completely randomized design or randomized block design or a cross-over design?

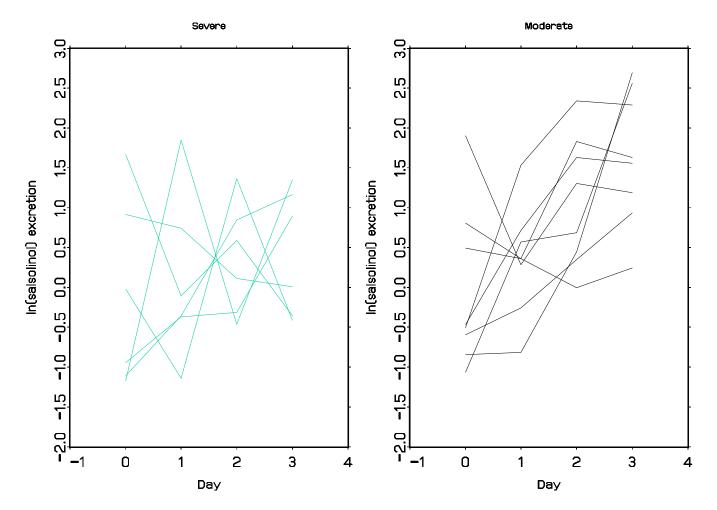
- No definitive statistical answer to the question.
- Answer depends on knowledge of
 - experimental material and
 - the treatments to be studied

Measurements over time (longitudinal studies)

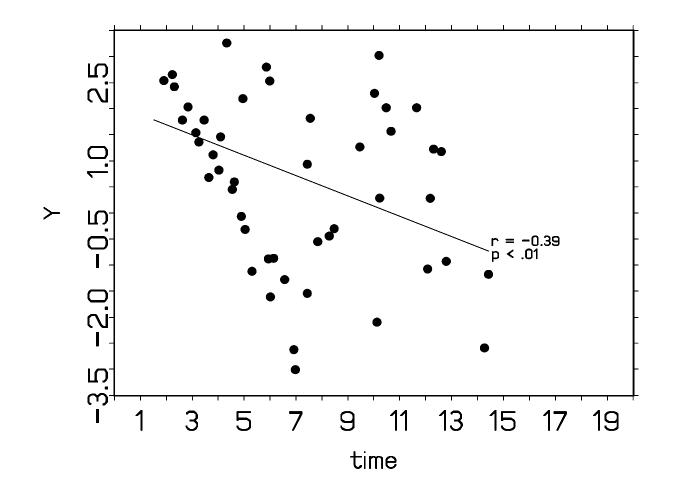

- Advantage:
 - May be the only design that answers questions of interest
- Diasadvantages:
 - Analyses can be difficult
 - Can be biased due to dropouts, especially if dropout related to treatment being studied

Measurements over time

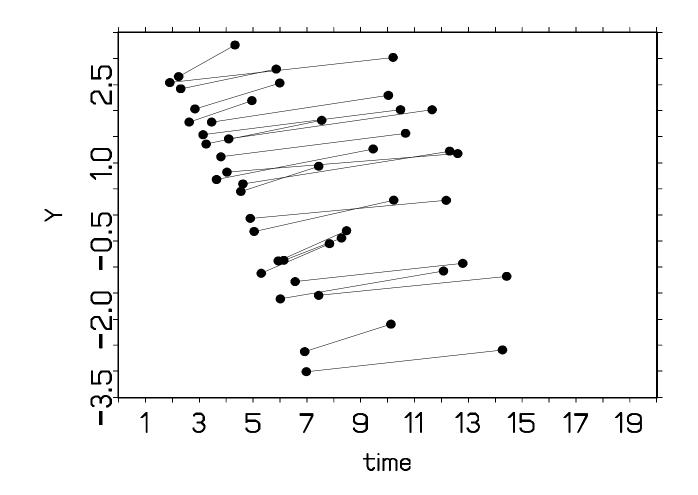
- Important to consider individual subject profiles over time.
- Ignoring individual subjects can give misleading impression of
 - variation
 - direction of effects


Ignoring individual patients can misrepresent variation

Modified data from Crowder and Hand. Analysis of Repeated Measures

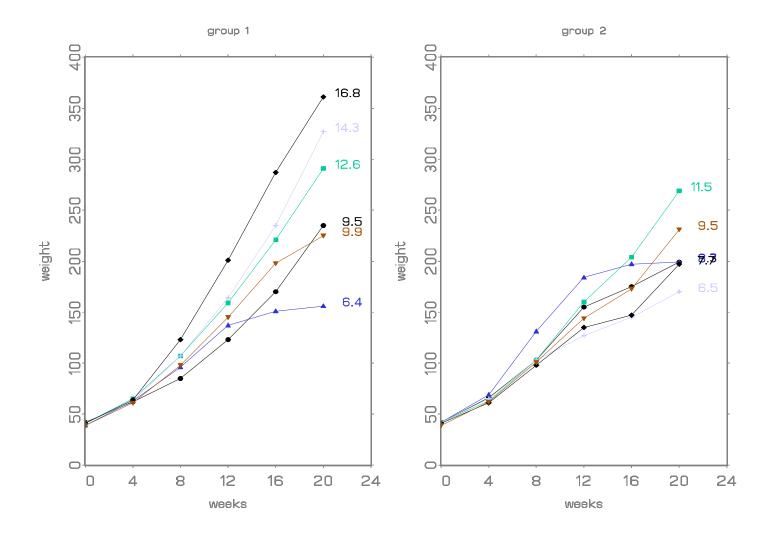


Ignoring individual patients can misrepresent variation


Modified data from Crowder and Hand. Analysis of Repeated Measures

Ignoring individual patients can misrepresent direction of effects

Ignoring individual patients can misrepresent direction of effects



Analysis by summary measures

- Matthews et al recommend analysis by summary measure
- Common summary measures are
 - individual slopes
 - area under curve

Example of Analysis by individual slopes.

Data from Crowder and Hand

Example of Analysis by individual slopes.

Data from Crowder and Hand

Group 1	Group 2
9.5	8.3
12.6	11.5
6.4	8.7
14.3	6.5
16.8	7.7
9.9	9.5

Analyze this as a standard 2 group problem.

Analysis by summary measures.

Senn, BMJ, 1990

- Advantages
 - Easy
 - Summary measures may have an interpretation
- Disadvantages
 - Makes sense with different lengths of follow-up?
 - Effect of predictors measured at time points within subject?
 - Can a single summary measure can capture entire curve?

Handling dropouts in longitudinal studies

- Possible approaches.
- Analyze only those who complete therapy.
 - May bias results, especially if reason for dropout is related to outcome

Handling dropouts in longitudinal studies

- Use ``Last Observation Carried Forward (LOCF)" method.
 - After patient has withdrawn, use the last observation.
 - Could bias results; last observation may not reflect true state of subject
 - Does not provide reasonable assessment of uncertainty
 - Generally dismissed as a method for handling dropouts

Handling dropouts in longitudinal studies

- Modeling the dropout process
 - Requires assumptions and sophisticated modeling methods.
- No generally accepted method for handling dropouts.