1 Comparing two proportions example

1.1 Study Description

- Consider patients who will undergo coronary artery bypass graft surgery (CABG)
- Mortality risk associated with open heart surgery
- Study question: Do emergency cases have a surgical mortality that is different from that of non-emergency cases?
- Population probabilities
 - $-p_1$: Probability of death in patients with emergency priority
 - $-p_2$: Probability of death in patients with non-emergency priority
- Statistical hypotheses
 - $H_0: p_1 = p_2 \text{ (or OR} = 1)$
 - $H_1: p_1 \neq p_2 \text{ (or OR } \neq 1)$

1.2 Power and Sample Size

- Prior research shows that just over 10% of surgeries end in death
- Researchers want to be able to detect a 3 fold increase in risk
- For every 1 emergency priority, expect to see 10 non-emergency
- $p_1 = 0.3$, $p_2 = 0.1$, $\alpha = 0.05$, and power = 0.90
- Calculate sample sizes using the PS software for these values and other combinations of p_1 and p_2

(p_1, p_2)	(0.3, 0.1)	(0.4, 0.2)	(0.03, 0.01)	(0.7, 0.9)
n_1	40	56	589	40
n_2	400	560	5890	400

1.3 Collected Data

In-hospital mortality figures for emergency surgery and other surgery

	Discharge Status		
Surgical Priority	Dead	Alive	
Emergency	6	19	
Other	11	100	

- $\hat{p}_1 = \frac{6}{25} = 0.24$
- $\hat{p}_2 = \frac{11}{111} = 0.10$

1.4 Statistical Test

• Stat program output

Discharge Status

Priority	Dead	Alive	${\tt oddsratio}$	lower	upper	p.value
Emergency	6	19	1.000000	NA	NA	NA
Other	11	100	2.870813	0.946971	8.703085	0.05429

\$measure

[1] "wald"

\$conf.level

[1] 0.95

\$pvalue

[1] "chi2"

- Interpretation
 - Compare odds of death in the emergency group $\left(\frac{\hat{p}_1}{1-\hat{p}_1}\right)$ to odds of death in non-emergency group $\left(\frac{\hat{p}_2}{1-\hat{p}_2}\right)$
 - Emergency cases are 2.87 times more likely (95% CI: [0.95, 3.36]) than non-emergency cases to die during surgery.

1.4.1 Fisher's Exact Test

Observed marginal totals from emergency surgery dataset

Emergency Dead Alive $\begin{array}{c|cccc}
 & Dead & Alive \\
\hline
 & a & b & 25 \\
\hline
 & c & d & 111 \\
\hline
 & 17 & 119 & 136
\end{array}$

- With fixed marginal totals, there are 18 possible tables $(a = 0, 1, \dots 17)$
- Can calculated probability of each of these tables
 - p-value: Probability of observing data as extreme or more extreme than we collected in this experiment
- Exact test: p-value can be calculated "exactly" (not using the Chisquared distribution to approximate the p-value)
- Stat program output

two-sided

Surgical Priority midp.exact fisher.exact chi.square
Emergency NA NA NA
Other 0.07930086 0.0870594 0.05429257

• Fisher's test more conservative than Pearson's Chi-square Test (larger *p*-value)