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q Finding Transformations for Continuous Predic-

tors

q Aspects of a Model’s Predictive Accuracy

q Perils of Overfitting

q Pitfalls of Stepwise Variable Selection

q Methods of Validating Models

q Graphical Depiction of Models
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Finding Transformations

q Multivariable regression models assume that pre-

dictors relate linearly to some function of the re-

sponses

q No reason for nature to be so nice

q Can try different transformations, e.g.,ORJ�S

q Can add nonlinear terms to model

q Example: fit a model containing age and square

of age

Allows parabolic (quadratic) shape for age effect

q More flexible: piecewise polynomials (spline func-

tions)17
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Figure 1: Linear spline fit for probability of bacterial vs. viral meningitis

as a function of age at onset29.
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Predictive Accuracy

q Some models are used only for hypothesis testing

q If used for prediction, need to consider accuracy

of predictions

q Calibration: observed responses agree with pre-

dicted responses

q Discrimination: model is able, through the use of

predicted responses, to separate subjects with low

observed responses from those with high responses
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Perils of Overfitting

q Fitting a model with 20 patients and 20 variables

(counting the intercept) will result in5�  � no

matter what the variables are

q Analyzing too many variables for the available

sample size will not cause a problem withap-

parentpredictive accuracy

q Calibration or discrimination accuracy assessed on

a new sample will suffer

q Caused by multiple comparison problems and try-

ing to estimate too many parameters (regression

coefficients) from the sample

q To use standard statistical methods, need to have a

certain number of subjects per candidate predictora

aThe termcandidateis used because one needs to count all vari-
ables examined for association with the response even if some of
them are not included in the final model. This is because stepwise
significance testing involves multiple comparison problems. Seere-
gression to the meanin the glossary handout.
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variable for model to be able to validate on new

data

q Continuous response: 10–20 subjects per candi-

date predictor

q Binary response: 10–20 subjects per less frequent

of the two response values

q Survival analysis (time to event data): 10–20 sub-

jects per event
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Stepwise Variable Selection

q Add variables to a model according to statistical

significance

q Commonly used, gives concise models

q Prone to problems of overstating importance of

variables which are retained in the model

q Does not solve the “too many variables, too few

subjects” problem, because “insignificant” vari-

ables are dropped on the basis of apparent lack

of association

q Treating final model as if it were pre–specified

can cause statistical problems (inflate type I error,

confidence intervals too short)15
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Validation Methods

q Need to use some validation method to honestly

assess the likely performance of a model on a new

series of subjects

q Data–splitting: split sample into two parts at ran-

dom

Use first part to develop model

Use second part to measure predictive accuracy

q Is an honest method but assessment can vary greatly

when take different splits

q Cross–validation: e.g., leave out�
��

of subjects,

develop model in �
��

, evaluate in �

��
, repeat 10

times and average

q Still not very precise way to measure accuracy

q Bootstrap method is more precise and doesn’t re-

quire holding back data (see glossary)
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Validation Example

q Dataset of 200 observations on 20randompredic-

tors

q Response variable is survival time, generated at

random, independently of predictors

q Apparent calibration accuracy assessed by divid-

ing observations into quintiles of predicted 0.5

year survival

q Fit 20 predictors to 100 events

q Fair apparent agreement between predicted and

Kaplan–Meier survival over all strata (dots)

q Bias–corrected (overfitting–corrected) calibrations

(Xs) gives accurate estimates (predicted survival

probability actually unrelated to survival time)
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Figure 2: Calibration of random predictions using Efron’s bootstrap with
50 re-samples and 40 patients per interval. Dataset has n=200, 100 uncensored
observations, 20 random predictors,�

�

��
 ����. q: apparent calibration; X:

bias–corrected calibration.
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Graphical Depictions

q Model needn’t be a black box

q Instead of concentrating on regression coefficients

can draw effects of predictors each on its own axis

in a nomogram

q Nonlinear effects will have nonlinear scales

q Each predictor put on a common scale but scales

are labeled in the original scale of the predictor

q Addition of effects of predictors can be done by

connecting two axes and seeing where the line hits

a reading line, or by having a “points” axis and

making the user manually add up the points each

predictor receives
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Figure 3: A nomogram for estimating the likelihood of significant coronary
artery disease (CAD) in women. Depiction of a fitted binary logistic regression
model. Categorical predictors have their points added manually. ECG = elec-

trocardiographic; MI = myocardial infarction25. Presence of important aged
risk factor interactions is handled by constructing separate age scales for each
level of the interacting factor. Here, interaction means a change in the slope
(regression coefficient) for age depending on which risk factors are present. A
change in slope implies stretching or shrinking the scale on the age axis. A
better way to interpret this is that the effect of the risk factors declines with age.
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Figure 4: Nomogram for estimating probability of bacterial (ABM) vs. viral
(AVM) meningitis. Depiction of a fitted binary logistic regression model. Step
1, place ruler on reading lines for patient’s age and month of presentation and
mark intersection with line A; step 2, place ruler on values for glucose ratio and
total polymorphonuclear leukocyte (PMN) count in cerbrospinal fluid and mark
intersection with line B; step 3, use ruler to join marks on lines A and B, then

read off the probability of ABM vs. AVM29.
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Figure 5: Software–generated nomogram for predicting death in a prostate

cancer trial4. From a fitted Cox proportional hazards model predicting time until
death (any cause). For each predictor one locates the value on that predictor’s
axis and then reads off the number of “severity points” on the top axis. These
severity points are added manually and located on the “Total Points” axis. A
vertical line drawn down from this value hits the 3–year survival probability,
5–year survival probability, and median survival time axes at the points corre-
sponding to the predicted values. Median survival time stops at 6 years because
patients were only followed up to 76 months.
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