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‘ Finding Transformations I

e Multivariable regression models assume that pre-
dictors relate linearly to some function of the re-
sponses

e NO reason for nature to be so nice
e Can try different transformations, e.dpg, v
e Can add nonlinear terms to model

e Example: fit a model containing age and squafe
of age
Allows parabolic (quadratic) shape for age effeqt

e More flexible: piecewise polynomials (spline fung
tions)’
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Figure 1: Linear spline fit for probability of bacterial vs. viral meningitis

as a function of age at ons®¥.
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‘ Predictive Accuracy'

Some models are used only for hypothesis testing

If used for prediction, need to consider accuragy
of predictions

Calibration: observed responses agree with pie-
dicted responses

Discrimination: model is able, through the use of
predicted responses, to separate subjects with lpw
observed responses from those with high responges
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/ ‘Perils of Overfitting I

e Fitting a model with 20 patients and 20 variables
(counting the intercept) will result ilk? = 1 no
matter what the variables are

e Analyzing too many variables for the availablg
sample size will not cause a problem widp-
parentpredictive accuracy

e Calibration or discrimination accuracy assessed pn
a new sample will suffer

e Caused by multiple comparison problems and try-
INng to estimate too many parameters (regressipn
coefficients) from the sample

e To use standard statistical methods, need to have a
certain number of subjects per candidate predictr

9The termcandidateis used because one needs to count all vali-

ables examined for association with the response even if somqg of

them are not included in the final model. This is because stepwi|se

significance testing involves multiple comparison problems. i8ee
\gression to the meaim the glossary handout.




Perils of Overfitting 5

variable for model to be able to validate on neWw
data

e Continuous response: 10-20 subjects per candi-
date predictor

e Binary response: 10-20 subjects per less frequent
of the two response values

e Survival analysis (time to event data): 10-20 sub-
jects per event
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‘Stepwise Variable Selectio:'

e Add variables to a model according to statistical
significance

e Commonly used, gives concise models

e Prone to problems of overstating importance of
variables which are retained in the model

e Does not solve the “too many variables, too fey
subjects” problem, because “insignificant” varij
ables are dropped on the basis of apparent lgck
of association

e Treating final model as if it were pre—specified
can cause statistical problems (inflate type | errgr,
confidence intervals too shot)
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/ \Validation I\/Iethods.

e Need to use some validation method to honestly
assess the likely performance of a model on a ngw
series of subjects

e Data—splitting: split sample into two parts at ran-
dom
Use first part to develop model
Use second part to measure predictive accuracy

¢ Is an honest method but assessment can vary greatly
when take different splits

e Cross-validation: e.g., leave ouf of subjects,
develop model in-%, evaluate in5, repeat 10
times and average

e Still not very precise way to measure accuracy

e Bootstrap method is more precise and doesn't fle-
quire holding back data (see glossary)
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‘Validation Example'

Dataset of 200 observations on 2ihdompredic-
tors

Response variable is survival time, generated
random, independently of predictors

Apparent calibration accuracy assessed by divid-
Ing observations into quintiles of predicted 0.p

year survival

Fit 20 predictors to 100 events

Fair apparentagreement between predicted and

Kaplan—Meier survival over all strata (dots)

Bias—corrected (overfitting—corrected) calibration

(Xs) gives accurate estimates (predicted survial

probability actually unrelated to survival time)

at
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Fraction Surviving 0.5 Years

0.60 0.65 0.70 0.75 0.80
Predicted 0.5 Year Survival

Flgure 2 Calibration of random predictions using Efron’s bootstrap with

50 re-samples and 40 patients per interval. Dataset has n=200, 100 uncensored
observations, 20 random predictopé0 = 9.87. e: apparent calibration; X:
bias—corrected calibration.
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‘ Graphical Depictions'

Model needn’t be a black box

Instead of concentrating on regression coefficien

can draw effects of predictors each on its own axi

In a nomogram

Nonlinear effects will have nonlinear scales

ts

Each predictor put on a common scale but scales

are labeled in the original scale of the predictor

Addition of effects of predictors can be done by

connecting two axes and seeing where the line h
a reading line, or by having a “points” axis an
making the user manually add up the points ea
predictor receives

ts
|
ch
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Figure 3: A nomogram for estimating the likelihood of significant coronary
artery disease (CAD) in women. Depiction of a fitted binary logistic regression
model. Categorical predictors have their points added manually. ECG = elec-

trocardiographic; MI = myocardial infarctiof®. Presence of important age

risk factor interactions is handled by constructing separate age scales for each
level of the interacting factor. Here, interaction means a change in the slope
(regression coefficient) for age depending on which risk factors are present. A
change in slope implies stretching or shrinking the scale on the age axis. A
better way to interpret this is that the effect of the risk factors declines with age.
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Flgure 4. Nomogram for estimating probability of bacterial (ABM) vs. viral
(AVM) meningitis. Depiction of a fitted binary logistic regression model. Step
1, place ruler on reading lines for patient’s age and month of presentation and
mark intersection with line A; step 2, place ruler on values for glucose ratio and
total polymorphonuclear leukocyte (PMN) count in cerbrospinal fluid and mark
intersection with line B; step 3, use ruler to join marks on lines A and B, then

read off the probability of ABM vs. AVMZY,
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Figure 5: Software—generated nomogram for predicting death in a prostate

cancer trial. From a fitted Cox proportional hazards model predicting time until
death (any cause). For each predictor one locates the value on that predictor’s
axis and then reads off the number of “severity points” on the top axis. These
severity points are added manually and located on the “Total Points” axis. A
vertical line drawn down from this value hits the 3—year survival probability,
5-year survival probability, and median survival time axes at the points corre-
sponding to the predicted values. Median survival time stops at 6 years because
patients were only followed up to 76 months.
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