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Some Sample Size and Power Considerations for Clinical Studies

Some factors increasing the power to detect a difference in outcomes between two
treatments, and lowering the sample size needed to achieve a given power:

1. Large total number of subjects
2. Large true treatment effect
3. Binary outcome incidence close to ½

Exclude low-risk patients from study
Exclude doomed patients

4. Large total number of events in a follow-up study (probability of event × number of subjects)
Can be achieved by longer follow-up

5. Use an ordinal or continuous endpoint instead of a binary one
For ordinal responses, the more categories that commonly occur the better

6. Equal allocation ratio, for
Continuous responses with equal variance in both treatment groups
Binary endpoints that don’t have extreme distributions, when treatment effect is large

7. Low variability in responses across subjects (for continuous responses)
8. Higher type I error
9. Not having to adjust α downward for multiple comparisons

Prioritize endpoints, report both "positive" and "negative" results, or be Bayesian
10. Low proportion of dropouts (non-compliers) and drop-ins (crossover from placebo to active

arm)
11. Pattern of treatment effect over time matches that assumed by the statistical model to be used

in the primary analysis
Cox-logrank survival analysis method assumes equal effect of treatment over time
Log-normal survival model assumes treatment effect decreases over time
Some drugs take time to begin working
Some treatments wear off (e.g., coronary bypass surgery – in long-term patients’ native
disease advances)
For ordinal clinical outcome scales, think about whether the treatment is likely to have
the same effect for all levels of the outcome scale.

12. Covariable adjustment for strong prognostic factors

Methods for estimating power and sample size:

1. Simple model, willing to assume that the model will fit the data (e.g., 2-sample t-test, Cox-
logrank, 2-sample binomial)

Exact or approximate formulas (S-Plus Statistics menu for 1- and 2-sample t-test, S-
Plus Hmisc library bpower, bpower.sim, bsamsize, cpower, popower,
ballocation functions)

2. Allowance for model not to fit data perfectly, including problems with compliance and
delayed treatment effect

Approximations based on modifying “pure” formulas (cpower function)
Simulation (spower function)
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Recommendations for including power and sample size estimates in proposals and study
plans:

1. Above all, get an estimate of the treatment effect that is clinically worthwhile to detect and an
estimate of variance and compliance before showing any investigators any of the calculations

2. There is a strong tendency for investigators to exaggerate the expected treatment effect to
lower the sample size needed

Don’t choose a treatment effect that is more than clinically important to patients
Result would be an inability to detect a clinically meaningful effect
Confidence interval for treatment effect will be so wide as to be useless

3. Instead of computing one power or one sample size, compute them for a plausible range of
treatment effects, compliance, variance, etc.  Results are best presented as graphs rather than
tables.

Example 1: Acute study, binary endpoint.  Probability of a clinical endpoint in control arm is 0.1.
Compute the power to detect various treatment effects (odds ratio .2, .3, …, .9) for sample sizes
from 10 to 1000 by increments of 10.

n <- seq(10, 1000, by=10)
OR <- seq(.2, .9, by=.1)
pow <- lapply(OR, function(or,n)
               list(x=n, y=bpower(p1=.1, odds.ratio=or, n=n)), n=n)
names(pow) <- format(OR)
labcurve(pow, pl=T, xlab=’n’, ylab=’Power’)
abline(h=.9, lty=2)
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Another useful graph is a contour plot for various probabilities of outcome in the control group,
fixing the treatment effect (odds ratio), here at .8 ([p2/(1-p2) / p1/(1-p1)] = .8).  We also allow n
to vary.

p1 <- seq(.01,.99,by=.01)
n  <- seq(100,5000,by=250)
pow <- outer(p1, n, function(p1,n) bpower(p1, n=n, odds.ratio=.8))
# This forms a length(p1)*length(n) matrix of power estimates
contour(p1, n, pow)
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Example 2: Long-term follow-up study, endpoint is time until death, all causes.  In this example,
4 plots are drawn on one page, one plot for each combination of noncompliance percentages.
Within a plot, the 5-year mortality % in the control group is on the x-axis, and separate curves are
drawn for several % reductions in mortality with the intervention.  The accrual period is 1.5y,
with all patients followed at least 5y and some 6.5y.  There is a total of 14,000 patients in the
study.

par(mfrow=c(2,2),oma=c(3,0,3,0))

morts <- seq(10,25,length=50)  # 5-year control mortalities
red <- c(10,15,20,25)          # Hypothesized % reductions in mortality

for(noncomp in c(0,10,15,-1)) {
  if(noncomp>=0) nc.i <- nc.c <- noncomp else {nc.i <- 25; nc.c <- 15}
  z <- paste("Drop-in ",nc.c,"%, Non-adherence ",nc.i,"%",sep="")
  plot(0, 0, xlim=range(morts), ylim=c(0,1),
       xlab="5-year Mortality in Control Patients (%)",
       ylab="Power", type="n")
  title(z)
  lty <- 0
  for(r in red) {
        lty <- lty+1
        power <- morts
        i <- 0
        for(m in morts) {
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          i <- i+1
          power[i] <- cpower(5, 14000, m/100, r, 1.5, 5,
                             nc.c, nc.i, pr=F)
        }
        lines(morts, power, lty=lty)
  }
  if(noncomp==0)legend(18,.55,rev(paste(red,"% reduction",sep="")),
                       lty=4:1,bty="n")
}
mtitle("Power vs Non-Adherence for Main Comparison",
       ll="alpha=.05, 2-tailed, Total N=14000",cex.l=.8)
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Example 3: Using simulation to estimate exact power in a complex situation.
Here we use the spower function to simulate a 2-arm 5-year follow-up study (350 patients per
arm) for which the control group's survival distribution is Weibull with 1-year survival of .95 and
3-year survival of 0.7.  All subjects are followed at least one year, and patients enter the study
with linearly increasing probability after that.  Assume there is no chance of drop-in for the first 6
months, then the probability increases linearly up to .15 at 5 years. Assume there is a linearly
increasing chance of dropout up to .3 at 5 years.  Assume that the treatment has no effect for the
first 9 months, then it has a constant effect (hazard ratio of .75).

# First find the right Weibull distribution for
# compliant control patients
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sc <- Weibull2(c(1,3), c(.95,.7))

# Specify censoring distribution
rcens <- function(n) 1 + (5-1) * (runif(n) ^ .5)

# Put it all together

f <- Quantile2(sc,
      hratio=function(x)ifelse(x<=.75, 1, .75),
      dropin=function(x)ifelse(x<=.5, 0, .15*(x-.5)/(5-.5)),
      dropout=function(x).3*x/5)

par(mfrow=c(2,2))
plot(f, 'all', label.curves=list(keys='lines'))
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rcontrol <- function(n) f(n, 'control')
rinterv  <- function(n) f(n, 'intervention')

set.seed(211)
spower(rcontrol, rinterv, rcens, nc=350, ni=350,
       test=logrank, nsim=300)
[1] 0.4033333

The power for an 0.05-level Cox-logrank test for this situation is thus 0.40.


