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Outline

Voronoi estimator
Investigate and improve the Voronoi estimator

Derivations of sampling distribution and bias
Foundational result in stochastic geometry

Optimal allocation of resources
Find the optimal placement of facilities

Versatile driver for solving a range of variants
Connect image analysis and operations research

Climate change
Improve climate change legislation and air pollution mitigation

Draw a connection and strengthen both cases
Prime projects estimating gains from ancillary mitigation



Section 1: The Voronoi estimator

- Joint with Rick Schoenberg -



Definition of a Voronoi diagram

Cell Ci contains all locations closer to point pi than any other point

Ci = {y ∈ S : ||y − pi || ≤ ||y − pj ||, ∀pj ∈ N}



Practical examples

Voronoi diagrams have a natural interpretation as territories
Breeding regions of animals
Cells growing in a dish at a constant rate



Future Voronoi tessellation

Photo courtesy of Travis Gerke, 12-25-2009
Text message: ”Future Voronoi tessellation”



Fundamental domain

Points outside the fundamental domain have no influence

FD(Ci ) =
⋃

y∈Ci
B(y ; ||y − pi ||)



Motivation and goals

Voronoi estimator proposed
Neuroscience method
Limited precedent

Theoretical goals
Bias
Sampling distribution

Practical goals
Improvements
Applicability



A framework in stochastic geometry

The classic pursuit
Draw a realization from a point process
Tessellate the point pattern
Record a property associated with a random cell

Recent efforts
Moment type results in closed form
Distributional results largely by simulation

Two types of cells
Typical cell, randomly selected cell
Voronoi estimator cell, cell covering a specific location



Results for the typical homogeneous Poisson Voronoi cell

Closed form
Expected cell area is λ−1

Expected cell perimeter is 4λ−1/2

Expected number of sides is 6

Simulation
Distribution of cell area is gamma, A ∼ G (x ;α, β)



Inhomogeneous Poisson point process

Regulate by an intensity function λ(y)

Pr{N(A) = i} =
[
R
A λ(y)dµ]i

i! exp
{
−
∫
A λ(y)dµ

}



Assumptions

Area of the typical inhomogeneous Poisson Voronoi cell is gamma

Assumption 1: At(y) ∼ G (x ;αy , βy )

Intensity is bounded globally

Assumption 2: M
(k)
1 < λ(k)(r , θ) < M

(k)
2 , ∀(r , θ) ∈ S

Intensity is locally homogeneous

Assumption 3: λ(k)(r , θ) = a(k), if r < b(k)

Intensity is locally homogeneous

Assumption 4:
exp{−πM

(k)
1 b2

(k)
/4}

M
(k)
1

converges to 0 as k →∞



Theoretical results

Expected area of the typical cell is the reciprocal of the intensity

Theorem 1: E (At(y))→ 1/λy

Sampling distribution of the Voronoi estimator is inverse gamma

Theorem 2: λ̂y ∼ IG (x ;αy + 1, 1/βy )

Voronoi estimator is approximately unbiased

Corollary 1: E (λ̂y )→ λy



Centroidal Voronoi estimator

Points moved to centroid at each iteration
Will smooth to homogeneous if allowed



Kernel estimators

Kernel intensity estimation

λk(y ; γ,S) = {
∑n

i=1 k(||y − yi ||; γ)} /p(y ; γ,S).

Gaussian kernel is common
Fixed and adaptive bandwidth techniques

Drawbacks
Bias, parameter selection



Two test cases

Test Case 1
Extreme variation
Example to follow

Test Case 2
Heikkinen and Arjas
Bayesian Voronoi



Performance

Comparison along one hundred locations in each test case
Centroidal Voronoi estimator trades bias for reduced variance

Voronoi Estimator

Lo
g 

In
te

ns
ity

(0,.5) (1,.5)

−
2

2
4

6
8

Centroidal Voronoi Estimator

Lo
g 

In
te

ns
ity

(0,.5) (1,.5)

−
2

2
4

6
8

Adaptive Kernel Estimator

Lo
g 

In
te

ns
ity

(0,.5) (1,.5)

−
2

2
4

6
8

Fixed Kernel Estimator

Lo
g 

In
te

ns
ity

(0,.5) (1,.5)

−
2

2
4

6
8

Voronoi Estimator

In
te

ns
ity

(.2,.2) (.8,.8)

0
10

00
20

00
30

00

Centroidal Voronoi Estimator

In
te

ns
ity

(.2,.2) (.8,.8)

0
10

00
20

00
30

00

Adaptive Kernel Estimator

In
te

ns
ity

(.2,.2) (.8,.8)

0
10

00
20

00
30

00

Fixed Kernel Estimator

In
te

ns
ity

(.2,.2) (.8,.8)

0
10

00
20

00
30

00



Introducing earthquakes

Global earthquakes with tectonic plates
High intensity along many plate boundaries



Earthquake intensity

Original data set
Magnitude > 3
Since January 1977

Voronoi estimator
Reasonable in the East
Responsive in the West

Kernel estimator
Zero in the East
Too smooth in West



Summary

Challenge
Investigate and improve the Voronoi estimator

Contributions
Derivations of sampling distribution and bias
Foundational result in stochastic geometry

Future work
Iterations for centroidal estimator, neuroscience collaboration

Reference
Barr CD, Schoenberg FP. On the Voronoi estimator for
intensity of an inhomogeneous planar Poisson process.
Biometrika, tentatively accepted



Section 2: Optimal allocation of resources

- Joint with Travis Gerke -



Possible approaches

Operations research
Placement of schools
Gradient descent

Bayesian image analysis
Model locations and colors
Bayesian framework
MCMC to search space



Introducing the model

Locations and colors as the parameter space to be searched

Θ = {(ui , vi , ci ), i = 1, 2, ..., n}

Starting with an uninformative prior

Π(Θ) = Πn
i=1U(0, 1)2 × p

I (ci=η1)
c (1− pc)I (ci=η−1)

Suppose Gaussian error

P(z |Θ) ∝ exp
{
− 1

2σ2 ΣN
j ,k=1(zjk − µjk(Θ))2

}
Posterior to be explored

P(Θ|z) ∝ Π(Θ)× P(z |Θ)



Recovering a tessellation

Forming optimal Voronoi covers
Regions that are Voronoi cells can be matched exactly



Federal emergency response centers

Find the best location for one center per state
Notice Washington and Oregon, Kansas and Oklahoma



Flexible framework

A solution more locally optimal
Inhibitory prior on the location of points

Variable number of facilities
Reversible jump MCMC



Summary

Challenge
Find the optimal placement of facilities

Contributions
Versatile driver for solving a range of variants
Connect image analysis and operations research

Future work
Theoretical underpinnings, broader applicability of driver

Reference
Barr CD, Gerke TA. Allocating point-type resources
to form optimal Voronoi covers. In progress.



Section 3: Climate change

- Joint with Francesca Dominici -



The ACES Act

American Clean Energy and Security Act (ACES) of 2009
Regulates carbon dioxide, methane, nitrous oxide and others
Capped at 2005 annual levels and reduced by 2% per year
Buy and sell pollution permits
Tariffs on countries that fail to pass similar legislation

Passed in the House
June 26, 2009 by a vote of 219-212

Debate
Economic costs and implied tax across the country
Mitigation of global warming, associated public health issues



Shared sources

Co-pollutant:NOx

Greenhouse Gas:CO2



Quantifying the ancillary benefits of cap and trade

Reduction in air pollutants associate with cap and trade
Scenarios with different sectors
National emissions inventory

Connecting air pollution and human health
Top ten public health problems by World Health Organization
3000 hospital admissions for every 10 µg/m3

Half a year of life lost for every 10 µg/m3



Summary

Challenge
Improve climate change legislation and air pollution mitigation

Contributions
Draw a connection and strengthen both cases
Prime projects estimating gains from ancillary mitigation

Future work
Quantify the benefits of ancillary air pollution mitigation

Reference
Barr CD, Dominici F. Cap and trade legislation for greenhouse
gas emissions: additional public health benefits from air
pollution mitigation. JAMA (2010).



Conclusion

Voronoi estimator
Investigate and improve the Voronoi estimator

Derivations of sampling distribution and bias
Foundational result in stochastic geometry

Optimal allocation of resources
Find the optimal placement of facilities

Versatile driver for solving a range of variants
Connect image analysis and operations research

Climate change
Improve climate change legislation and air pollution mitigation

Draw a connection and strengthen both cases
Prime projects estimating gains from ancillary mitigation
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