XI. OTHER TOPICS

Complicated Statistics with Nasty Properties

Bootstrap Analysis

- Treat the sample as if it were the target population
- Sample repeatedly without replacement to obtain many samples of the same size as the real sample
- Calculate the test statistic for each sample
- Examine the variation of the test statistic among bootstrapped samples to assess its dispersion.

© William D. Dupont, 2010, 2011 Use of this file is restricted by a Creative Commons Attribution Non-Commercial Share Alike license. See http://creativecommons.org/about/licenses for details.

Multiple imputation of missing values

- Most statistical packages, including Stata do complete case analyses. That is they discard the data on any patient who is missing any model covariate.
- Multiple imputation is a method that adjusts for missing data by predicting missing values from non-missing covariates.
- Lead to unbiased results if the probability of the outcome of interest is not affected by whether a specific covariate is missing.
- Stata has a very comprehensive package for doing multiple imputation
- Particularly useful to adjust for missing values in confounding variables.

1. Discriminatory Analysis

We often wish to place patients into two or more groups on the basis of a set of explanatory variables with a minimum of misclassification error.

For example, we might wish to classify patients as

- · having or not having cancer,
- benefiting or not benefiting from aggressive therapy.

We typically start of with a learning set of patients whose true classification is known. We then use these patients for developing rules to classify other patients. The three most common ways of doing this are as follows.

• Logistic Regression

The linear predictor from a multiple logistic regression can be used to develop a classification rule. Patients whose linear predictor is greater than some value are assigned to one group; all other patients are assigned to the other.

The advantages of this approach are

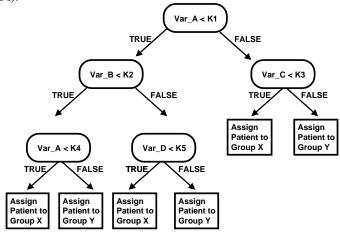
- ⇒ It can lead to a simple rule based on a weighted sum of covariates.
- ⇒ By adjusting the cutoff point we can control the sensitivity and specificity of the rule. It is easy to generate receiver operating characteristic curves for this method.
- ⇒ Particularly effective when used with restricted cubic splines

The disadvantage is that the rule may be less than optimal if the model is mis-specified.

- Classification and Regression Trees
- Neural Networks

2. Classification and Regression Trees (CART)

The basic idea here is to derive a tree that consists of a series of binary decisions that lead to patient classification (Breiman et al. 1984).



The CART graphic indicates the degree of increased homogeneity induced by each split. Trees can then be pruned back to produce a classification rule that makes clinical sense and is fairly easy to remember.

The advantages of this method are

- It often does better than logistic regression when the model for the latter is poorly specified.
- It gives a rule that is intelligible to clinicians and can be judged by its clinical criteria.

A disadvantage is that, when applied to continuous covariates it looses information due to the fact that it dichotomizes the selected variable at each split.

3. Neural Networks

This method attempts to outperforms the logistic regression approach by adopting models that varies from complex to extremely complex (Hinton 1992).

Advantages

- Great name.
- Sometimes does better than logistic regression.

Disadvantages

- Method is essentially a black box. You need a computer to apply it and it is very difficult to gain intuitive insight into what it is doing.
- Method usually performs only as well as the CART method or logistic regression models with restricted cubic splines.

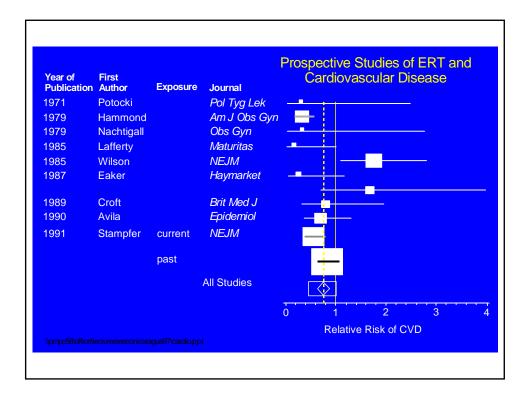
4. Meta-Analyses

One of the strengths of this approach is the meta-analysis graphic.

This is a rather pretentious term for doing quantitative reviews of the medical literature. The English refer to these techniques as **quantitative overviews**, which is a far more reasonable description. However, in this country we appear to be stuck with the term meta-analysis.

The basic steps in performing a meta-analysis are as follows:

- Systematically identify all publications that may be germane to the topic of interest.
- Review these publications. Eliminate those that are irreverent or misleading using explicitly defined criteria.
- Present the results of the individual studies graphically to show the extent to which they agree or disagree.
- Use clinical judgment and statistical methods to determine whether it is reasonable to combine some or all of the studies into a single analysis. In this case present the relative risk derived from the combined data, together with its 95% confidence interval.



- In these graphs the relative risk from each study is displayed on a single line.
- Each relative risk or odds ratio is plotted as a square.
- The size of this square is proportional to the reciprocal of the variance of the log relative risk (often referred to as the study information).
- The 95% confidence interval for each study is depicted as a horizontal line.
- A vertical line depicts a weighted geometric mean of the studies. This mean is weighted by the information content of each study.
- One, or preferably two, 95% confidence intervals are drawn for this combined geometric mean. These confidence intervals are usually drawn as diamonds or squares. They are calculated using either a fixed effects or random effects model.

a) Fixed effects model for meta-analysis

This approach assumes that all studies are measuring the same risk in a comparable way, and that the only variation between studies is due to chance.

If this assumption is false it will overestimate the precision of the combined estimate.

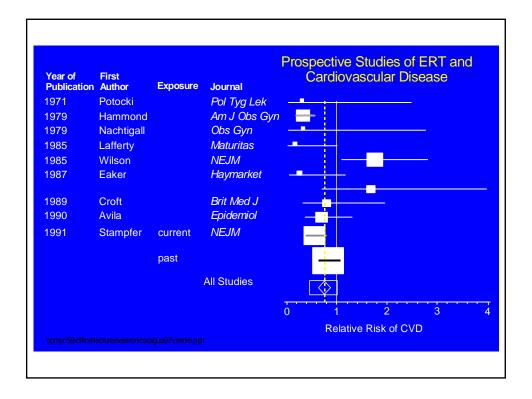
b) Random effects model for meta-analysis

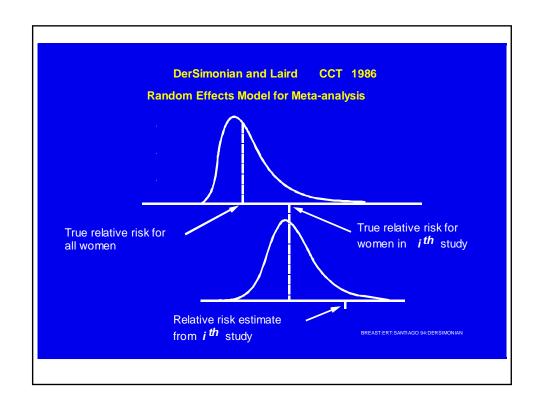
This model assumes that that each study is estimating a different unknown relative risk that is specific to that study. These risks differ from one study to the next due to differences in study populations, study designs, or biases of one kind or another.

It assumes that these study-specific relative risks follow a log-normal distribution, and that the variation in the estimated relative risks is due both to variation in the study specific risk as well as intra-study variation of study subjects.

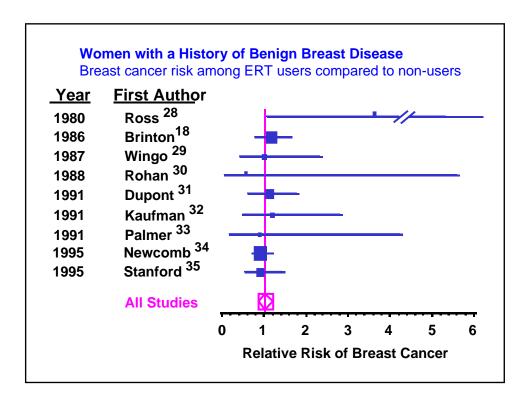
DerSimonian and Laird (1986) devised a way to estimate the confidence interval for the combined relative risk for this model.

It is a good idea to plot both the fixed effects and random effects confidence intervals for the combined relative risk estimate. If these intervals disagree then the inter-study variation is greater than we would expect by chance and the studies are most likely estimating different risks. In this case we need to be very cautious about combining the results of these studies.





On the other hand, if these estimates agree then the studies are mutually consistent and there is no statistical reason not to combine them



5. Publication bias

One of the ways that meta-analyses can be misleading is through publication bias. That is, papers may be more likely to be published if they show that a risk factor either increases or reduces some risk than if they find a relative risk near one.

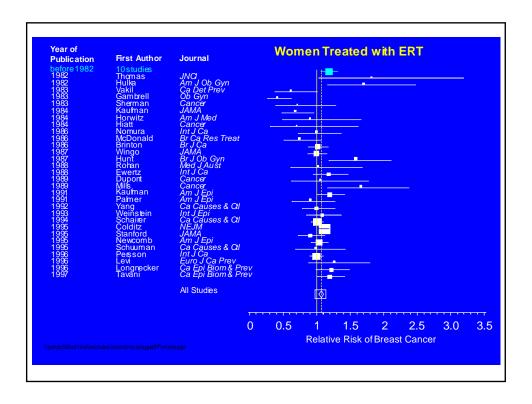
Small studies are more likely to be affected by publication bias than large ones.

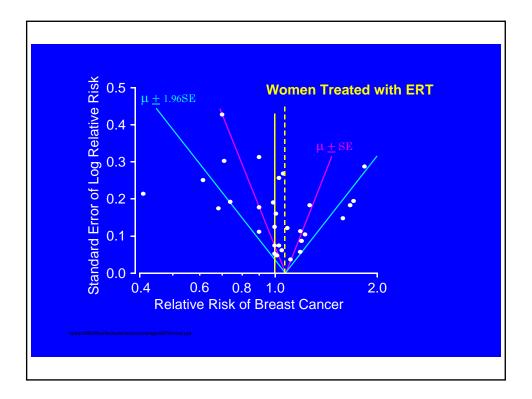
6. Funnel graphs

One way to check for publication bias is to plot funnel graphs (Light & Pillemer 1984).

In these graphs we plot the standard error of the log relative risk against log relative risk. If this plot has a funnel shape we have evidence of publication bias

When this happens it may make sense to exclude studies with a standard error of the log relative risk that is greater than some value.





Approaches to Extreme Multiple Comparisons Problems

- Permutation Tests
- Cross validation Methods
- False Discovery Rates
- Shrinkage Analysis
- Learning set Test Set Analyses

This course has been concerned with methods that are appropriate when the number of patients far exceeds the number of model parameters.

Diversity Among Statisticians

We all want to

Minimize probabilities of Type I errors

Minimize probabilities of Type II errors

All other things being equal, simple explanations are better than complex ones.

Science may be described as the art of systematic over-simplification—the art of discerning what we may with advantage omit.

Karl Popper

Today, reputable statisticians may disagree to some extent about the relative emphasis that should be placed on these three goals

XII. SUMMARY OF MULTIPLE REGRESSION METHODS

Table 1.1. Classification of Response Variables and Regression Models

Nature of Response Variable(s)	Model	Table in Appendix A	Chapters
One response per patient			
Continuous	Linear regression	A.1	2, 3, 10
Dichotomous	Logistic regression	A.2	4, 5
Categorical	Proportional odds and polytomous logistic regression	A.2	5
Survival	Hazard regression	A.3	6, 7
Rates	Poisson regression	A.4	8, 9
Multiple responses per patient			
Continuous	Response feature and A.5 generalized estimating equation analysis		11
Dichotomous	Response feature and generalized estimating equation analysis	A.5	11

Model Attributes	Method of Analysis	Pages
ormally distributed response variable.		
Single continuous independent		
variable.		
Linear relationship between	Simple linear regression.	47 - 99
response and independent variable.		
Non-linear relationship between	Multiple linear regression using	138 - 159
response and independent variable.	restricted cubic splines.	
	Transform response or	75 - 84
	independent variables and use	
	simple linear regression.	
	Convert continuous independent	222 - 231,
	variable to dichotomous variables	100 - 163
	and use multiple linear regression.	
Single dichotomous independent	Independent t-test.	36 - 41
variable.		
Single categorical variable.	Convert categorical variable to	222 - 231,
	dichotomous variables and use	100 - 163
	multiple linear regression.	
	One-way analysis of variance.	439 - 457

Model Attributes	Method of Analysis	Pages
ormally distributed response variable.		
Multiple independent variables.		
Independent variables have additive effects on response variable.	Multiple linear regression model without interaction terms.	100 - 124
Independent variables have non-additive effects on response variable.	Include interaction terms in multiple linear regression model.	111 – 114
Independent variables are categorical or have non-linear effects on the response variable.	Multiple linear regression: see above for single independent variable.	100 - 163
Two independent categorical variables.	Two-way analysis of variance.	457 – 458
Multiple categorical and continuous independent variables.	Analysis of covariance. This is another name for multiple linear regression.	100 – 165

variable. ra	lcoxon-Mann-Whitney 446 .k-sum test.	
variable. ra	· ·	
Single categorical independent Kr		
variable.	uskal-Wallis test. 445	- 446
variables. to	ply normalizing transformation 75 - response variable. Then see thods for linear regression noted ove.	- 84

Model Attributes	Method of Analysis	Pages
ichotomous response variable.		
Single continuous independent variable.		
Linear relationship between log-odds of response and independent variable.	Simple logistic regression.	164 - 206
Non-linear relationship between	Multiple logistic regression using	271 - 285
log-odds of response	restricted cubic splines.	
and independent variable.	Transform independent variable. Then	75 - 84,
	use simple logistic regression.	164 - 206
	Convert continuous variable to	222 - 230
	dichotomous variables and use multiple	
	logistic regression.	
Single dichotomous independent	2 × 2 contingency table analysis.	193 - 197
variable.	Calculate crude odds ratio.	
	Simple logistic regression.	197 - 203
Single categorical variable.	Convert categorical variable to	222 - 231
-	dichotomous variables and use multiple	
	logistic regression.	

Model Attributes	Method of Analysis	Pages
richotomous response variable.		
Multiple independent variables.	-	
Two dichotomous independent	Mantel-Haenszel odds-ratio and test for	207 - 216
variables with multiplicative	multiple 2×2 tables.	
effects on the odds ratios.	Multiple logistic regression.	218 - 22
Independent variables have	Multiple logistic regression model without	216 - 23
multiplicative effects on the	interaction terms.	
odds-ratios.		
Independent variables have	Include interaction terms in multiple	238 - 24
non-multiplicative effects on the	logistic regression model.	
odds-ratios.		
Independent variables are	Multiple logistic regression. See above for	222 - 23
categorical or have non-linear	single independent variable.	271 - 28
effects on the log odds.		75 - 84
Matched cases and controls.	Conditional logistic regression.	264 - 26

Model Attributes	Method of Analysis	Pages
Dichotomous response variable.		
Categorical response variable.		
Response categories are ordered and proportional odds assumption is valid.	Proportional odds logistic regression.	285 - 287
Response categories not ordered or proportional odds assumption invalid.	Polytomous logistic regression.	287 – 289
Independent variables have	See above for logistic regression.	238 - 244
non-multiplicative effects on the		222 - 231
odds-ratios, are categorical or have		271 - 285
non-linear effects on the log odds.		75 - 84

Model Attributes	Method of Analysis	Pages
Categorical independent variable.	Kaplan-Meier survival curve.	298 - 305
	Log-rank test.	305 - 314
Proportional hazards assumption valid.		
Single continuous independent variable.		
Linear relationship between log-hazard and independent variable.	Simple proportional hazards regression model.	315 – 321
Non-linear relationship	Multiple proportional hazards model	329 - 332
between log-hazard and	using restricted cubic splines.	341 - 357
independent variable.	Transform independent variable. Then	75 - 84
	use simple proportional hazards model.	315 - 321
	Convert continuous variable to	332 - 333
	dichotomous variables. Then use multiple proportional hazards regression model.	341 – 357
Time denotes age rather	Proportional hazards regression analysis	358 - 363
than time since recruitment.	with ragged entry.	

Model Attributes	Method of Analysis	Pages
Proportional hazards assumption valid.		
Single categorical independent	Convert categorical variable to	222 - 224
variable.	dichotomous variables and use multiple	332 - 333
	proportional hazards regression model.	341 - 357
Multiple independent variables.		324 - 368
Independent variables have	Include interaction terms in multiple	336 - 33
non-multiplicative effects on the hazard ratios.	proportional hazards regression.	341 - 357
Independent variables are	Multiple proportional hazards regression.	324 - 368
categorical or have	See above for single independent variable.	
non-linear effects on the		
log-hazard.		

Model Attributes	Method of Analysis	Pages
Proportional hazards assumption	Stratified proportional-hazards regression	357 – 358
invalid.	analysis.	
	Hazard regression analysis with	368 - 379
	time-dependent covariates.	
Events are rare and sample size	Poisson regression.	393 - 436
is large.		
Independent variables have	Include interaction terms in	336 - 33
non-multiplicative effects on the	time-dependent hazard regression model.	368 - 379
hazard ratios.		
Independent variables have	See above for a single continuous	329 - 33
non-linear effects on the	independent variable. Use a	75 - 84
log-hazard.	time-dependent hazard regression model.	368 - 379
Independent variables are	Convert categorical variables to dichoto-	332 - 33
categorical.	mous variables in time-dependent model.	368 - 379
Time denotes age rather than	Hazards regression analysis with time-	358 - 363
time since recruitment	dependent covariates and ragged entry.	368 - 379

Table A.4. Models for response variables that are event rates or the number of events during a specified number of patient-years of follow-up. The event must be rare.

Model Attributes	Method of Analysis	Pages
Single dichotomous independent	Incident rate ratios.	383 - 386
variable.	Simple Poisson regression.	387 - 391
Single categorical independent	Convert categorical variable to	222 - 224
variable.	dichotomous variables and use multiple	414 - 432
	Poisson regression.	
Multiple independent variables.		
Independent variables have	Multiple Poisson regression models	411 - 417
multiplicative effects on the	without interaction terms.	
event rates.		
Independent variables have	Multiple Poisson regression models with	417 - 432
non-multiplicative effects on the	interaction terms.	
event rates.		
Independent variables are	Multiple Poisson regression. See above for	222 - 224
categorical.	single independent variable	414 - 432

Table A.5. Models with multiple observations per patient or matched or clustered patients. Model Attributes Method of Analysis Pages Continuous response measures. 33 - 36 Dichotomous independent Paired t-test. variable. Multiple independent variables. 469 - 479 Response feature analysis: consider slopes of individual patient regressions or areas under individual patient curves. GEE analysis with identity link function 479 - 491and normal random component. Dichotomous response measure. Multiple independent variables Response feature analysis: consider within-470 patient event rate. GEE analysis with logit link function and 491 binomial random component.

Problem	Method
Cross-sectional Study	
Continuous outcome	
Normally distributed	
Linear model ok	Linear regression
	Fixed-effects analysis of variance
Non-linear model	Linear model of transformed data
	Linear model with restricted cubic splines
Skewed response data	Linear model of transformed data
Dichotomous outcome	Logistic regression
Rare response	Poisson regression
Longitudinal Data	
	Response feature analysis
	Repeated measures analysis of variance
	Generalized estimating equation analysis

Problem	Method
Cohort Study	
Proportional hazards assumption ok	Hazard regression
Rare events	Poisson regression
Ragged entry	Proportional hazard regression with ragged entry times
Expensive data collection	Logistic regression
	(Nested case-control study)
Complete follow-up with time. to failure not important	Logistic regression
Proportional hazards invalid	
Entry uniform or ragged	Stratified hazard regression
	Time dependent hazard regression
	Poisson regression
Large study: proportional	
hazards assumption invalid	Poisson regression
Case-Control Study	
Unstratified or large strata	Unconditional logistic regression
Small strata	Conditional logistic regression
	-

Additional Reading

A good reference for the response-compression approach to mixed-effects analysis of variance is Matthews et al. (1990).

Classic although rather mathematical references for generalized estimating equations are Liang and Zeger (1986) and Zeger and Liang (1986). Diggle et al. (2002) is an authoritative text on the analysis of longitudinal data.

Armitage and Berry (1994) discuss receiver operating characteristic curves.

Classification and regression trees are discussed by Breiman et al. (1984).

An introduction to neural networks is given by Hinton (1992). A comparison of neural nets with classification and regression trees is given by Reibnegger et al. (1991)

An introduction to meta-analysis is given by Greenland (1987). This paper also describes the fixed effects method of calculating a confidence interval for the combined relative risk estimate. The random effects method is given by DerSimonian and Laird (1986).

Harrell (2001) is an advanced text on modern regression methods.

References

Armitage P and Berry G: Statistical Methods in Medical Research, Third ed. Cambridge, MA: Blackwell Science, Inc., 1994.

Bernard GR, Wheeler AP, Russell JA, Schein R, Summer WR, Steinberg KP, Fulkerson WJ, Wright PE, Christman BW, Dupont WD, Higgins SB, Swindell BB: "The Effects of Ibuprofen on the Physiology and Survival of Patients with Sepsis". *New England Journal of Medicine*, 1997; 336: 912-918

Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Belmont CA: Wadsworth, 1984.

Breslow NE and Day NE: Statistical Methods in Cancer Research: Vol. I The Analysis of Case-Control Studies. Lyon: IARC Scientific Publications, 1980.

Breslow NE and Day NE: Statistical Methods in Cancer Research: Vol. II. The Design and Analysis of Cohort Studies. Lyon: IARC Scientific Publications, 1987

Cleveland WS. *The Elements of Graphing Data*: Monterey, CA: Wadsworth Advanced Books and Software, Bell Telephone Laboratories, Inc., 1985.

Der
Simonian R. Laird N. Meta-analysis in clinical trials.
 ${\it Controlled~Clinical~Trials}$ 1986; 7:177-188.

Diggle PJ, Heagerty P, Liang K-Y, Zeger SL: Analysis of Longitudinal Data 2nd Ed. Oxford: Oxford University Press, 2002

Fleiss JL: Statistical Methods for Rates and Proportions, Second ed.: New York: John Wiley & Sons, Inc., 1981.

Greene J and Touchstone J. "Urinary Tract Estriol: An Index of Placental Function. *American Journal of Obstetrics and Gynecology*, 1963; 85: 1-9.

Greenland S. Quantitative methods in the review of epidemiologic literature. *Epidemiologic Reviews* 1987; 9:1-30.

Harrell, FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer, 2001

Hinton GE. How neural networks learn from experience. *Scientific American* September 1992; p.145-151.

Kalbfleisch JD and Prentice RL: *The Statistical Anallysis of Failure Time Data*, New York: John Wiley and Sons, 1980.

Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. *Biometrika* 1986; 73:13-22.

Liang K-Y, Zeger SL. Longitudinal data analysis for discrete and continuous outcomes. *Biometrics* 1986; 42:121-130.

Light RJ, Pillemer DB. Summing Up: The Science of Reviewing Research. Cambridge, MA: Harvard University Press. 1984.

Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. *British Medical Journal* 1990;300:230-235.

McCullagh P and Nelder JA: Generalized Linear Models, Second ed.: New York: Chapman and Hall, 1989.

McKelvey EM, Gottlieb JA, Wilson HE, Haut A, Talley RW, et al.: "Hydroxyldaunomycin (Adriamycin) Combination Chemotherapy in malignant lymphoma. *Cancer*, 1976; 38: 1484-1493.

Pagano M and Gauvreau K, *Principles of Biostatistics*, Belmont, CA: Duxbury Press, 1993.

Reibnegger G, Weiss G, Werner-Felmayer G, Judmaier G, Wachter H. Neural networks as a tool for utilizing laboratory information: Comparison with linear discriminant analysis and with classification and regression trees. *Proc. Natl. Acad. Sci. USA* 1991; 88:11426-11430.

Rosner B: Fundamentals of Biostatistics, Fourth ed.: Belmont, CA: Duxbury Press, 1995.

Schottenfeld D and Fraumeneni JF: Cancer Epidemiology and Prevention: Philadelphia, PA: W.B. Saunders Company, 1982.

Tuyns AJ, Pequignot G, and Jensen OM. "Le Cancer de l'oesophage en Ille-et-Villaine en fonction des niveaux de consommation d'alcool et de tabac. *Bulletin du Cancer*, 1977: 64: 45-60.

For additional references see

Dupont WD: Statistical Modeling for Biomedical Researchers, A Simple Introduction to the Analysis of Complex Data. 2nd Edition. Cambridge: Cambridge University Press. 2009.