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XI.     OTHER TOPICS

Complicated Statistics with Nasty Properties

Bootstrap Analysis

 Treat the sample as if it were the target 
population

 Sample repeatedly without replacement to obtain 
many samples of the same size as the real sample

 Calculate the test statistic for each sample

 Examine the variation of the test statistic among 
bootstrapped samples to assess its dispersion.
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Multiple imputation of missing values

 Most statistical packages, including Stata do complete case 
analyses.  That is they discard the data on any patient who is 
missing any model covariate.

 Multiple imputation is a method that adjusts for missing data by 
predicting missing values from non-missing covariates.

 Lead to unbiased results if the probability of the outcome of interest 
is not affected by whether a specific covariate is missing.

 Stata has a very comprehensive package for doing multiple 
imputation

 Particularly useful to adjust for missing values in confounding 
variables.
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1. Discriminatory Analysis

We often wish to place patients into two or more groups on the 
basis of a set of explanatory variables with a minimum of 
misclassification error.  

We typically start of with a learning set of patients whose true 
classification is known.  We then use these patients for developing 
rules to classify other patients.  The three most common ways of 
doing this are as follows.

For example, we might wish to classify patients as

 having or not having cancer,

 benefiting or not benefiting from aggressive therapy.

 Logistic Regression

The linear predictor from a multiple logistic regression can be used 
to develop a classification rule.  Patients whose linear predictor is 
greater than some value are assigned to one group; all other 
patients are assigned to the other.

 Classification and Regression Trees

 Neural Networks

The disadvantage is that the rule may be less than optimal if the 
model is mis-specified. 

 By adjusting the cutoff point we can control the 
sensitivity and specificity of the rule.  It is easy to 
generate receiver operating characteristic 
curves for this method.

 Particularly effective when used with restricted 
cubic splines

 It can lead to a simple rule based on a weighted 
sum of covariates.

The advantages of this approach are
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2. Classification and Regression Trees (CART)

The basic idea here is to derive a tree that consists of a series of 
binary decisions that lead to patient classification (Breiman et al. 
1984).
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The CART graphic indicates the degree of increased homogeneity 
induced by each split.  Trees can then be pruned back to produce a 
classification rule that makes clinical sense and is fairly easy to 
remember.  

 It gives a rule that is intelligible to clinicians and can be 
judged by its clinical criteria.

 It often does better than logistic regression when the 
model for the latter is poorly specified.

The advantages of this method are

A disadvantage is that, when applied to continuous covariates it looses 
information due to the fact that it dichotomizes the selected variable at 
each split.
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3. Neural Networks

This method attempts to outperforms the logistic regression 
approach by adopting  models that varies from complex to extremely 
complex (Hinton 1992). 

 Method usually performs only as well as the CART method 
or logistic regression models with restricted cubic splines. 

 Method is essentially a black box.  You need a computer to 
apply it and it is very difficult to gain intuitive insight into 

what it is doing.

Disadvantages

 Sometimes does better than logistic regression.
 Great name.

Advantages

4. Meta-Analyses

This is a rather pretentious term for doing quantitative reviews of 
the medical literature.  The English refer to these techniques as 
quantitative overviews, which is a far more reasonable 
description.  However, in this country we appear to be stuck with 
the term meta-analysis.

The basic steps in performing a meta-analysis are as follows:

 Systematically identify all publications that may be 
germane to the topic of interest.

 Use clinical judgment and statistical methods to determine 
whether it is reasonable to combine some or all 
of the studies into a single analysis.  In this case present 
the relative risk derived from the combined data, together 
with its 95% confidence interval.

 Present the results of the individual studies graphically to 
show the extent to which they agree or disagree.

 Review these publications.  Eliminate those that are 
irreverent or misleading using explicitly defined criteria.

One of the strengths of this approach is 
the meta-analysis graphic.
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 In these graphs the relative risk from each study is displayed 
on a single line.

 One, or preferably two, 95% confidence intervals are drawn for 
this combined geometric mean.  These confidence intervals are 
usually drawn as diamonds or squares.  They are calculated 
using either a fixed effects or random effects model.

 A vertical line depicts a weighted geometric mean of the 
studies.  This mean is weighted by the information content of 
each study.

 The 95% confidence interval for each study is depicted as a 
horizontal line.

 The size of this square is proportional to the reciprocal of the 
variance of the log relative risk (often referred to as the study 
information).

 Each relative risk or odds ratio is plotted as a square.
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a)     Fixed effects model for meta-analysis

This approach assumes that all studies are measuring the same 
risk in a comparable way, and that the only variation between 
studies is due to chance.

If this assumption is false it will overestimate the precision of the 
combined estimate.

b)     Random effects model for meta-analysis

This model assumes that that each study is estimating a different 
unknown relative risk that is specific to that study.  These risks 
differ from one study to the next due to differences in study 
populations, study designs, or biases of one kind or another.  

It assumes that these study-specific relative risks follow a log-normal 
distribution, and that the variation in the estimated relative risks is 
due both to variation in the study specific risk as well as intra-study 
variation of study subjects.

DerSimonian and Laird (1986) devised a way to estimate the 
confidence interval for the combined relative risk for this model.

It is a good idea to plot both the fixed effects and random effects 
confidence intervals for the combined relative risk estimate.  If these 
intervals disagree then the inter-study variation is greater than we 
would expect by chance and the studies are most likely estimating 
different risks.  In this case we need to be very cautious about 
combining the results of these studies.
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On the other hand, if these estimates agree then the studies are 
mutually consistent and there is no statistical reason not to combine 
them.
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5.     Publication bias

One of the ways that meta-analyses can be misleading is through 
publication bias.  That is, papers may be more likely to be published 
if they show that a risk factor either increases or reduces some risk 
than if they find a relative risk near one.

When this happens it may make sense to exclude studies with a 
standard error of the log relative risk that is greater than some 
value. 

In these graphs we plot the standard error of the log relative risk 
against log relative risk.  If this plot has a funnel shape we have 
evidence of publication bias

Small studies are more likely to be affected by publication bias than 
large ones.

6.     Funnel graphs

One way to check for publication bias is to plot funnel graphs (Light 
& Pillemer 1984).
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 Permutation Tests

 Cross validation Methods

 False Discovery Rates

 Shrinkage Analysis

 Learning set Test Set Analyses

Approaches to Extreme Multiple Comparisons Problems

This course has been concerned with methods that are 
appropriate when the number of patients far exceeds the 
number of model parameters.
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Diversity Among Statisticians

We all want to

Minimize probabilities  of Type I errors

Minimize probabilities of Type II errors

All other things being equal, simple explanations are better than 
complex ones.

Science may be described as the art of systematic over-simplification —
the art of discerning what we may with advantage omit.  

Karl Popper

Today, reputable statisticians may disagree to some extent about 
the relative emphasis that should be placed on these three goals

XII.     SUMMARY OF MULTIPLE REGRESSION METHODS



MPH Program,  Biostatistics II   
W.D. Dupont

February 18, 2011

11: Summary and Other Topics 11.12

Table A1. Continued: continuous response, fixed effects
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Table A1. Continued: continuous response, fixed effects
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Table A2. Continued: dichotomous response, fixed effects

Table A2. Continued: categorical response, fixed effects
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Table A3. Continued:  survival data
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Table A3. Continued
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Problem Method

Cross-sectional Study
Continuous outcome

Normally distributed
Linear model ok Linear regression

Fixed-effects analysis of variance

Non-linear model Linear model of transformed data
Linear model with restricted cubic splines

Skewed response data Linear model of transformed data

Dichotomous outcome Logistic regression
Rare response Poisson regression

Longitudinal Data
Response feature analysis
Repeated measures analysis of variance
Generalized estimating equation analysis
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Problem Method

Cohort Study
Proportional hazards assumption ok Hazard regression

Rare events Poisson regression
Ragged entry Proportional hazard regression with ragged 

entry times

Expensive data collection Logistic regression
(Nested case-control study)

Complete follow-up with time. 
to failure not important Logistic regression 

Proportional hazards invalid
Entry uniform or ragged Stratified hazard regression

Time dependent hazard regression
Poisson regression

Large study:  proportional 
hazards assumption invalid Poisson regression

Case-Control Study
Unstratified or large strata Unconditional logistic regression
Small strata Conditional logistic regression

Additional Reading

A good reference for the response-compression approach to mixed-effects 
analysis of variance is Matthews et al. (1990).

Classic although rather mathematical references for generalized estimating
equations are Liang and Zeger (1986) and Zeger and Liang (1986). Diggle
et al. (2002) is an authoritative text on the analysis of longitudinal data.

Armitage and Berry (1994) discuss receiver operating characteristic curves.

Classification and regression trees are discussed by Breiman et al. (1984).

An introduction to neural networks is given by Hinton (1992). A
comparison of neural nets with classification and regression trees is given
by Reibnegger et al. (1991)

An introduction to meta-analysis is given by Greenland (1987). This paper
also describes the fixed effects method of calculating a confidence interval
for the combined relative risk estimate. The random effects method is given
by DerSimonian and Laird (1986).

Harrell (2001) is an advanced text on modern regression methods.
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